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Foreword

Camelot and Avalon are landmark systems — they show how the transaction concept can be layered
atop operating system kernels and how transaction semantics can be integrated with conventional
programming languages. The result is a transactional execution environment for all applications.
With this design, programming languages can easily provide persistent data types; implementors
of new types can make the types transactional; and implementors of applications can structure the
applications as collections of transactions. It is now widely accepted that transactions are the key
to constructing reliable distributed objects and computations. In the past, transactions were used
almost exclusively in commercial database applications. Such applications use transactions to get
the ACID execution properties:

e Atomicity: The transaction consists of a collection of actions. The system provides the all-or-
nothing illusion that either all these operations are performed or none of them are performed
— the transaction either commits or aborts.

o Consistency: Transactions are assumed to perform correct transformations of the abstract
system state. The transaction concept allows the programmer to declare such consistency
points and allows the system to validate them by application-supplied checks.

o Isolation: While a transaction is updating shared data, that data may be temporarily incon-
sistent. Such inconsistent data must not be exposed to other transactions until the updater
commits. The system must give each transaction the illusion that it is running in isolation;
that is, it appears that all other transactions either ran previous to the start of this transaction
or ran subsequent to its commit.

o Durability: Once a transaction commits, its updates must be durable. The new state of all
objects it updated will be preserved, even in case of hardware or software failures.

These ACID properties were first used to protect data in centralized database applications. But
with the advent of distributed databases, transactional RPC became the key technique for structuring
distributed database queries and updates. About a decade ago, researchers began generalizing the
transaction concept to the broader context of distributed computations. The Argus project at the
Massachusetts Institute of Technology, and the TABS group at Carnegie Mellon University pioneered
this work. The MIT group, led by Barbara Liskov, evolved the CLU language to Argus, a persistent
programming language that included distributed and nested transactions. The CMU group, led
by Alfred Spector, initially focused on integrating a general transaction model with an operating
system kernel. Their goal was to structure the transaction manager as an “open” interface which
could be used by any programming language and any resource manager. They implemented the
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TABS system which provided an open, general-purpose nested-transaction mechanism on top of the
Accent kernel. By 1985, both the Argus and TABS systems were operational and both demonstrated
the validity of the approach, but both had disappointing performance. The thesis of TABS was that
transactions could be efficiently layered on an operating system kernel as a general-purpose facility
open to all resource managers (data servers in TABS/Camelot terminology). Camelot, the successor
to TABS, corrected many of its performance problems, generalized many of the basic concepts, and
demonstrated the original thesis — the Camelot transaction manager was efficient and derived much
of its performance, flexibility, and generality from careful use of operating system kernel facilities.
Included with Camelot is the Library, a collection of C procedures that ease resource manager (data
server) implementation. Several resource managers have been written using the Camelot Library,
including the Jack and Jill example in Chapter 5 of this book. The Avalon programming language, a
persistent C++, is implemented as a layer on Camelot. Both Avalon and the Camelot Library show
how persistent programming languages can be implemented atop an open transaction manager. It
is fair to say that Camelot and Avalon have widely influenced other transaction processing systems.
They made substantial contributions to algorithms in many areas. Notable examples are:

transactional virtual memory integrated with the memory manager,

transactional remote procedure call,

commit protocols including lazy commit, non-blocking commit, and group commit,

log replication protocols for a cluster of servers,

parallel, nested transactions,

transaction semantics integrated as a C Programming Language library to automate the stan-
dard aspects of constructing transactional clients and servers,

e persistent programming language data types, and

o a zero-knowledge approach to authenticating and authorizing clients and servers.

Their solutions in these areas arc prototypes for future transaction processing systems. Open
recovery managers such as IBM’s MVS DBSR, DEC’s VMS DECdtm, and X/Open DTP all have
this open style, allowing new resource managers to implement new object types with transactional
semantics.

This book tells ALL about Camelot and Avalon. It gives the design rationale, explains the key
algorithms, and then describes how they are implemented. The presentation should satisfy even the
most curious; it includes implementation details down to the C-structures of interfaces and control
blocks. In addition, it includes a detailed study of the performance of the resulting system. As such,
this is an excellent book for the novice and the guru, alike. It teaches the novice the basic concepts,
and exemplifies these concepts with a concrete implementation. It presents the guru with a whole
new world: one in which transactional RPC is not a special-purpose database-only technique, but
rather a structuring principle for reliable distributed computations. It shows how the transaction
mechanism interacts with the operating system kernel, the communication subsystem, and how it
is externalized to its resource manager and application clients. In addition, it explains the system’s
performance and administration.

Jim Gray
Digital Equipment Corporation



Preface

This book presents details of a general-purpose distributed transaction facility. Future thinking
information system specialists will find that this book addresses transactions from paradigms for
modern programming languages to details of two-phase commitment protocols. Our goal is to
provide the reader with a comprehensive view of an experimental distributed transaction facility so
that he can develop a good intuitive understanding of these vital concepts as distributed systems
comes of age.

Camelot and Avalon are research systems built at Carnegie Mellon University. Camelot is
a transaction processing facility for C programmers. It is layered on top of the Mach operating
system. The Camelot Library provides procedures and macros that naturally extend C for transaction
semantics. Avalon is a language for C++ programmers that extends C++ to support transactions and
highly concurrent access to shared data. Avalon is implemented as a layer on top of Camelot.

The book is organized into six parts to reflect the different levels of understanding on which the
reader might focus:

e Part I: The Extended Camelot Interface presents the high-level interface for Camelot
programmers. We assume a good understanding of UNIX! and C. The first chapters in this
part introduce Camelot and Mach. The Camelot chapter also presents a brief introduction
to transactions. The Mach chapter includes material on how to create transactional remote
procedure call interfaces.

Subsequent chapters in this part describe the Camelot Library and Node Configuration Appli-
cation. The Camelot Library provides extensions to the C programming language implemented
with macros and calls to library procedures. To help clarify the explanations, we repeatedly
refer to an example application (Jack) and data server (Jill) that are distributed with Camelot.
Jack provides an interactive interface that is invoked in response to user commands. Jill
implements read and write operations on a recoverable array of non-negative integers.

o Part II: The Primitive Camelot Interface describes Camelot’s low-level message interfaces.
These interfaces are hidden by the Camelot Library and the Camelot Node Configuration
Application. Chapters in this part describe the interfaces for Mach’s message passing and
thread of control primitives, as well as interfaces to Camelot’s recoverable virtual memory,
transaction management, and node management components. The material discussed in these
chapters presents Camelot’s structure in much greater detail and should aid in debugging
Camelot programs. It also provides information needed to write new Camelot libraries.

IRegistered trademark of AT&T.
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o Part III: Design Rationale explains how Camelot is organized internally. The first chapter
describes the overall design of Camelot. Subsequent chapters describe each of the Camelot
components in detail.

o Part IV: The Avalon Language presents a new programming language that extends C++
to provide support for transactions. In Avalon, the recoverability attribute for storage is
inherited via the type mechanism. The language also supports hybrid atomic transactions to
allow highly concurrent access to data.

¢ Part V: Advanced Features presents three research packages that can be used with Camelot.
The first package is an experimental version of the Camelot Library for Lisp. The second is
the Strongbox security package. The third is the distributed log facility that allows Camelot
nodes to spool log data to stable storage that is maintained on other nodes.

e Part VI: The Appendices describe how to debug Camelot programs, the Camelot abort
codes, the Camelot interface specifications, and the Avalon grammar.

Readers that desire a high-level view of the system should focus on the early chapters in each
part as they introduce issues each part addresses. The reader that desires a broad understanding
of distributed transactions should read the first and third parts of the book as they present high-
level concepts and design decisions of Camelot. Specialists that wish to learn how to implement
a distributed transaction facility will find the functional separation of the Camelot components in
Parts II and III makes the implementation details easier to grasp. Researchers will find discussions
of the many novel aspects of the Camelot and Avalon systems throughout the book.

This document describes Camelot as of release 1.0(84) and Mach as of release 2.5. This book
was a collaborative effort of Joshua Bloch, Stewart Clamen, Eric Cooper, Dean Daniels, David
Detlefs, Richard Draves, Dan Duchamp, Jeffrey Eppinger, Maurice Herlihy, Elliot Jaffe, Karen
Kietzke, Richard Lerner, Su-Yuen Ling, David McDonald, George Michaels, Lily Mummert, Sherri
Nichols, Randy Pausch, Alfred Spector, Peter Stout, Dean Thompson, Doug Tygar, Jeannette Wing,
and Bennet Yee. Kathryn Swedlow provided editorial assistance. Initially, this book was oriented
as a Camelot manual. The focus later shifted to a comprehensive description of Camelot and related
software. We thank Jim Gray, Norm Hutchinson, and Domenico Ferrari for their guidance during
this refocusing.

The developers of Camelot are deeply indebted to the initial users of the system, who have helped
to uncover a number of bugs and design failures. These users are Steven Berman, Gregory Bruell,
Mark Hahn, Andrew Hastings, Scott Jones, Toshihiko Kato, Jay Kistler, Puneet Kumar, Maria
Okasaki, Mahadev Satyanarayanan, Ellen Siegel, and David Steere. Prose from various Mach
Project documents has been incorporated into the text, with permission of the authors (including
Mary Thompson and Rick Rashid).

Jeffrey L. Eppinger
Transarc Corporation

Lily B. Mummert
Carnegie Mellon University

Alfred Z. Spector
Transarc Corporation
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