

9262561

CAMELOT
AND
AVALON

A Distributed Transaction Facility

Edited by

Jeffrey L. Eppinger
Transarc Corporation

b N
Lily B. Mun‘)tnef} ' i
Carnegie Mellon University

(AL

Alfred Z. Spéctor." ‘ ‘ E9262561
Transarc Corporation

MORGAN KAUFMANN PUBLISHERS, INC.
SAN MATEO, CA

Sponsoring Editor Bruce Spatz
Production Editor Sharon Montooth
Cover Designer Victoria Ann Philp

Border of the cover design taken from Simon Vostre’s Heures a I’Usage

de Rome of 1948, a reproduction of which was printed by O. Jouaust and
published by L. Gauthier, 1890, France. Reproduced with permission of the
publishers from PRINTING TYPES: THEIR HISTORY, FORMS, AND
USE: ASTUDY IN SURVIVALS, Volume II, Second Edition, by Daniel
Berkeley Updike, Copyright © 1922 and 1937 by Harvard University Press,
Cambridge, Mass.

Library of Congress Cataloging-in-Publication Data

Canelot and Avalon : a distributed transaction facility / edited by
Jeffrey L. Eppinger, Lily B. Mummert, Alfred Z. Spector.
p. cm. -- (The Morgan Kaufmann series in data management

systems, ISSN 1046-1698)

Incliudes bibliographical references and index.

ISBN 1-55860-185-6

1. Distributed data bases. 2. Avalon. 3. Canmelot (Computer file)
I. Eppinger, Jsffrey L. II. Mummert, Lily B. III. Spector, Alfred
Z. 1IV. Series.
QA76.9.D3C363 1991
005.75'8--dc20 90-24944

CIP

Morgan Kaufmann Publishers, Inc.
2929 Campus Drive, Suite 260
San Mateo, CA 94403

Copyright 1991 by Morgan Kaufmann Publishers, Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means-electronic, mechanical, recording,
or otherwise-without the prior permission of the publisher.

95 94 93 92 91 5 4 3 2 1 RRD

This research was sponsored by IBM and by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4976 (Amendment 20), under contract F33615-87-C-1499 monitored by the Avionics Laboratory,
Wright Air Force Aeronautical Laboratories, Wright-Patterson Air Force Base. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of any of the sponsoring agencies or of the United States Government.

CAMELOT
AND
AVALON

A Distributed Transaction Facility

THE MORGAN KAUFMANN SERIES IN
DATA MANAGEMENT SYSTEMS

Series Editor, Jim Gray

Camelot and Avalon: A Distributed Transaction Facility
Edited by Jeffrey L. Eppinger (Transarc Corporation),
Lily B. Mummert (Carnegie Mellon University), and
Alfred Z. Spector (Transarc Corporation)

Database Modeling and Design: The Entity-Relationship Approach
Toby J. Teorey (University of Michigan)

Readings in Object-Oriented Database Systems
Edited by Stanley B. Zdonik (Brown University) and
David Maier (Oregon Graduate Center)

o S

Foreword

Camelot and Avalon are landmark systems — they show how the transaction concept can be layered
atop operating system kernels and how transaction semantics can be integrated with conventional
programming languages. The result is a transactional execution environment for all applications.
With this design, programming languages can easily provide persistent data types; implementors
of new types can make the types transactional; and implementors of applications can structure the
applications as collections of transactions. It is now widely accepted that transactions are the key
to constructing reliable distributed objects and computations. In the past, transactions were used
almost exclusively in commercial database applications. Such applications use transactions to get
the ACID execution properties:

e Atomicity: The transaction consists of a collection of actions. The system provides the all-or-
nothing illusion that either all these operations are performed or none of them are performed
— the transaction either commits or aborts.

o Consistency: Transactions are assumed to perform correct transformations of the abstract
system state. The transaction concept allows the programmer to declare such consistency
points and allows the system to validate them by application-supplied checks.

o Isolation: While a transaction is updating shared data, that data may be temporarily incon-
sistent. Such inconsistent data must not be exposed to other transactions until the updater
commits. The system must give each transaction the illusion that it is running in isolation;
that is, it appears that all other transactions either ran previous to the start of this transaction
or ran subsequent to its commit.

o Durability: Once a transaction commits, its updates must be durable. The new state of all
objects it updated will be preserved, even in case of hardware or software failures.

These ACID properties were first used to protect data in centralized database applications. But
with the advent of distributed databases, transactional RPC became the key technique for structuring
distributed database queries and updates. About a decade ago, researchers began generalizing the
transaction concept to the broader context of distributed computations. The Argus project at the
Massachusetts Institute of Technology, and the TABS group at Carnegie Mellon University pioneered
this work. The MIT group, led by Barbara Liskov, evolved the CLU language to Argus, a persistent
programming language that included distributed and nested transactions. The CMU group, led
by Alfred Spector, initially focused on integrating a general transaction model with an operating
system kernel. Their goal was to structure the transaction manager as an “open” interface which
could be used by any programming language and any resource manager. They implemented the

\4

vi

TABS system which provided an open, general-purpose nested-transaction mechanism on top of the
Accent kernel. By 1985, both the Argus and TABS systems were operational and both demonstrated
the validity of the approach, but both had disappointing performance. The thesis of TABS was that
transactions could be efficiently layered on an operating system kernel as a general-purpose facility
open to all resource managers (data servers in TABS/Camelot terminology). Camelot, the successor
to TABS, corrected many of its performance problems, generalized many of the basic concepts, and
demonstrated the original thesis — the Camelot transaction manager was efficient and derived much
of its performance, flexibility, and generality from careful use of operating system kernel facilities.
Included with Camelot is the Library, a collection of C procedures that ease resource manager (data
server) implementation. Several resource managers have been written using the Camelot Library,
including the Jack and Jill example in Chapter 5 of this book. The Avalon programming language, a
persistent C++, is implemented as a layer on Camelot. Both Avalon and the Camelot Library show
how persistent programming languages can be implemented atop an open transaction manager. It
is fair to say that Camelot and Avalon have widely influenced other transaction processing systems.
They made substantial contributions to algorithms in many areas. Notable examples are:

transactional virtual memory integrated with the memory manager,

transactional remote procedure call,

commit protocols including lazy commit, non-blocking commit, and group commit,

log replication protocols for a cluster of servers,

parallel, nested transactions,

transaction semantics integrated as a C Programming Language library to automate the stan-
dard aspects of constructing transactional clients and servers,

e persistent programming language data types, and

o a zero-knowledge approach to authenticating and authorizing clients and servers.

Their solutions in these areas arc prototypes for future transaction processing systems. Open
recovery managers such as IBM’s MVS DBSR, DEC’s VMS DECdtm, and X/Open DTP all have
this open style, allowing new resource managers to implement new object types with transactional
semantics.

This book tells ALL about Camelot and Avalon. It gives the design rationale, explains the key
algorithms, and then describes how they are implemented. The presentation should satisfy even the
most curious; it includes implementation details down to the C-structures of interfaces and control
blocks. In addition, it includes a detailed study of the performance of the resulting system. As such,
this is an excellent book for the novice and the guru, alike. It teaches the novice the basic concepts,
and exemplifies these concepts with a concrete implementation. It presents the guru with a whole
new world: one in which transactional RPC is not a special-purpose database-only technique, but
rather a structuring principle for reliable distributed computations. It shows how the transaction
mechanism interacts with the operating system kernel, the communication subsystem, and how it
is externalized to its resource manager and application clients. In addition, it explains the system’s
performance and administration.

Jim Gray
Digital Equipment Corporation

Preface

This book presents details of a general-purpose distributed transaction facility. Future thinking
information system specialists will find that this book addresses transactions from paradigms for
modern programming languages to details of two-phase commitment protocols. Our goal is to
provide the reader with a comprehensive view of an experimental distributed transaction facility so
that he can develop a good intuitive understanding of these vital concepts as distributed systems
comes of age.

Camelot and Avalon are research systems built at Carnegie Mellon University. Camelot is
a transaction processing facility for C programmers. It is layered on top of the Mach operating
system. The Camelot Library provides procedures and macros that naturally extend C for transaction
semantics. Avalon is a language for C++ programmers that extends C++ to support transactions and
highly concurrent access to shared data. Avalon is implemented as a layer on top of Camelot.

The book is organized into six parts to reflect the different levels of understanding on which the
reader might focus:

e Part I: The Extended Camelot Interface presents the high-level interface for Camelot
programmers. We assume a good understanding of UNIX! and C. The first chapters in this
part introduce Camelot and Mach. The Camelot chapter also presents a brief introduction
to transactions. The Mach chapter includes material on how to create transactional remote
procedure call interfaces.

Subsequent chapters in this part describe the Camelot Library and Node Configuration Appli-
cation. The Camelot Library provides extensions to the C programming language implemented
with macros and calls to library procedures. To help clarify the explanations, we repeatedly
refer to an example application (Jack) and data server (Jill) that are distributed with Camelot.
Jack provides an interactive interface that is invoked in response to user commands. Jill
implements read and write operations on a recoverable array of non-negative integers.

o Part II: The Primitive Camelot Interface describes Camelot’s low-level message interfaces.
These interfaces are hidden by the Camelot Library and the Camelot Node Configuration
Application. Chapters in this part describe the interfaces for Mach’s message passing and
thread of control primitives, as well as interfaces to Camelot’s recoverable virtual memory,
transaction management, and node management components. The material discussed in these
chapters presents Camelot’s structure in much greater detail and should aid in debugging
Camelot programs. It also provides information needed to write new Camelot libraries.

IRegistered trademark of AT&T.

vii

viii

o Part III: Design Rationale explains how Camelot is organized internally. The first chapter
describes the overall design of Camelot. Subsequent chapters describe each of the Camelot
components in detail.

o Part IV: The Avalon Language presents a new programming language that extends C++
to provide support for transactions. In Avalon, the recoverability attribute for storage is
inherited via the type mechanism. The language also supports hybrid atomic transactions to
allow highly concurrent access to data.

¢ Part V: Advanced Features presents three research packages that can be used with Camelot.
The first package is an experimental version of the Camelot Library for Lisp. The second is
the Strongbox security package. The third is the distributed log facility that allows Camelot
nodes to spool log data to stable storage that is maintained on other nodes.

e Part VI: The Appendices describe how to debug Camelot programs, the Camelot abort
codes, the Camelot interface specifications, and the Avalon grammar.

Readers that desire a high-level view of the system should focus on the early chapters in each
part as they introduce issues each part addresses. The reader that desires a broad understanding
of distributed transactions should read the first and third parts of the book as they present high-
level concepts and design decisions of Camelot. Specialists that wish to learn how to implement
a distributed transaction facility will find the functional separation of the Camelot components in
Parts II and III makes the implementation details easier to grasp. Researchers will find discussions
of the many novel aspects of the Camelot and Avalon systems throughout the book.

This document describes Camelot as of release 1.0(84) and Mach as of release 2.5. This book
was a collaborative effort of Joshua Bloch, Stewart Clamen, Eric Cooper, Dean Daniels, David
Detlefs, Richard Draves, Dan Duchamp, Jeffrey Eppinger, Maurice Herlihy, Elliot Jaffe, Karen
Kietzke, Richard Lerner, Su-Yuen Ling, David McDonald, George Michaels, Lily Mummert, Sherri
Nichols, Randy Pausch, Alfred Spector, Peter Stout, Dean Thompson, Doug Tygar, Jeannette Wing,
and Bennet Yee. Kathryn Swedlow provided editorial assistance. Initially, this book was oriented
as a Camelot manual. The focus later shifted to a comprehensive description of Camelot and related
software. We thank Jim Gray, Norm Hutchinson, and Domenico Ferrari for their guidance during
this refocusing.

The developers of Camelot are deeply indebted to the initial users of the system, who have helped
to uncover a number of bugs and design failures. These users are Steven Berman, Gregory Bruell,
Mark Hahn, Andrew Hastings, Scott Jones, Toshihiko Kato, Jay Kistler, Puneet Kumar, Maria
Okasaki, Mahadev Satyanarayanan, Ellen Siegel, and David Steere. Prose from various Mach
Project documents has been incorporated into the text, with permission of the authors (including
Mary Thompson and Rick Rashid).

Jeffrey L. Eppinger
Transarc Corporation

Lily B. Mummert
Carnegie Mellon University

Alfred Z. Spector
Transarc Corporation

Contents

Foreword

Preface

I The Extended Camelot Interface

1 Introduction to Camelot
1.1 Background
1.2 ATransaction Example
1.3 Overview of the Camelot Distributed Transaction Facility
1.4 Major Camelot Functions
1.5 Camelot from a User’s Pointof View

2 An Introduction to Mach for Camelot Users
21 TasksandThreads
2.2 Virtual Memory Management
23 Interprocess Communication
2.4 Mach Interface Generator

3 The Camelot Library
31 Imtroduction
3.2 Usingthe CamelotLibrary
3.3 ApplicationBasics
34 ServerBasics.
-
36 Advanced Constructs.

4 Camelot Node Configuration

4.1 ServerMaintenance
4.2 AccountMaintenance
4.3 Accessing aRemote Node Server
44 The Node Server Database ___
45 CommandsListed

21
21
22
23
26
33
35

X Contents

5 A Sample Camelot Application and Server

5.1 Introduction
5.2 SANPIEEXCCUHON « = v o o o omomosmow mom v 5 5 6 0 v 5 6 & 4 5w ow e om e w6 s
5.3 TheApplication . . . oo oo w e oo 00 85 86835883535 S8manwn® i i
54 TheServer
5.5 Installation

II The Primitive Camelot Interface

6 The Structure of Camelot

6.1 The Camelot Architecture

6.2 AnExample Message Flow
7 Mach for Camelot Implementors

7.1 Interprocess Communication

7.2 The External Memory Management Interface

73 CThreads

8 Recoverable Storage Management in Camelot

8.1 Recoverable Segmentsand Regions
8.2 [Inmitialization
83 Mapping
8.4 Forward Processing
8.5 The Shared Memory Queues L.,
8.6 Recovery Processing,

9 Transaction Management in Camelot

9.1 The Nested TransactionModel
9.2 Transaction Services for Applications
9.3 Transaction Services for Servers

10 Camelot Node Management
10.1 The NA interface

IIT Design Rationale

11 The Design of Camelot
11.1 Introduction
11.2 Architecture
113 Algorithmso
11.4 Related Systems Work
11.5 Conclusions

63
63
63
67
71
76

79

81
81
84

93
93
98
98

111
111
113
114
115
117
120

121
121
122
129

139
140

12

13

14

15

16

17

18

Contents

The Design of the Camelot Library

121 Totroduchion - . v v o s 5 59 96 5 8 &8 3.9 5 % § 8 B8 & 5 B % 68 869 ¢ s s
129, Architectire . « v o w s mwe a2 = 5 8 5 5 5 8 ¥ § G b b BEHEE S @6 w ¥ £ B &8 5§
123 Related Work e e e e e
1224 (COTCIUSTONS . w0 v v w0 & 5 5 5 % 5 o e s BB o o5 o oo o o 0 8 & & & a a B BB

The Design of the Camelot Local Log Manager

13.1 Introduction L e e e e
13.2 ATERIBEIIIE « w o p o w e 50 cw ¢ 88 5 v 58 s B OB E S G HG Em L& 88 8 5 §
133 Algorithms
134 Related Work L e
13.5 Conclusions - . - o v v v v v v v v e e e e e e e e e e s e s s e e

The Design of the Camelot Disk Manager

141 TAEGAUEHON = ¢ 5 o o ww o s wd 5 & 0 8 85 % 5 6 b oo 8 5 5 @ M it w b onm § 4 3
14.2 Architecture L
14.3 Algorithms and Data Structures
144 Related Work L
14.5 Discussion

The Design of the Camelot Recovery Manager

15.1 Introduction
15.2 ATChItECIUIE . . & o v i v o e b o e e s b ek ke e e e e s e e s
153 Algorithms
154 Related Work
15:5 CONCIUSIONS. ¢ &« v o 5 2 0 ¢ 656 @ 5 & BB LS 56 4w m & & 6 8 5 5 o m w1 8

The Design of the Camelot Transaction Manager

16.1 Introduction
16.2 Architecture
16.3 Algorithms
16.4 Related Work
16.5 Conclusions

The Design of the Camelot Communication Manager
17.1 Introduction
17.2 Architecture

Performance of Select Camelot Functions

18.1 Performance Metrics
18.2 LibIary COoStS : « » 2 5 o o o v 6 5 2 o o 4 o 0 5 68 6 mn wm s oo n s s n e
18.3 Recoverable Virtual Memory Costs
18.4 Recovery Costs

xii

Contents

IV The Avalon Language

19

20

21

22

23

24

A Tutorial Introduction

19.1
19.2
19.3
19.4

Terminology : : : ¢ s + s s vu v s mum @@ @ 8 ¢ 2 8 8 85 5 5 5§ m e e
Array of AtomicIntegers
FIFOQueue
AtomicCounters

Reference Manual

20.1
20.2

Lexical Considerations
Servers

Library

21.1
21.2
213

Non-atomic Avalon/C++ Types and Type Generators
AtomicTypes
Catalog Server

Guidelines for Programmers

221

Choosing Identifiers L.

22.2 Using and Implementing Avalon Types

223
224

Constructing an Avalon Program
ForExpertsOnly

Advanced Features

Common Lisp Interface

23.1
23.2
233
234
23.5

Introduction L
Accessing Camelot Servers fromLisp
Examples,
The Lisp Recoverable Object Server
Summary and Future Work

Strongbox

24.1
242
243
24.4
245
24.6
24.7
248
249

Introduction

Converting Camelot Clients and Servers tobe Secure
Secure Loader and White Pages Server
Interfaces
Security Algorithms
Special Issues
Conclusions

303

305
305
306
315
320

335
335
335
337
341
344

347
347
351
353

357
357
357
363
364

Contents Xili

25 The Design of the Camelot Distributed Log Facility 401
251 Introduction e e e e e e e e 401
25.2 Architecture o i e e e e e e e e 402
253 Algorithms: : s : s 1 2 3 5 s v 9 v 5 v mwmmew o s o5 o s 0 a o mmm s 404
254 Related Work.. v v v o s v @ @@ @ 5 8 8 8 5 8 8 8 & 5 » 0 0 o 5w 422
25.5 Conclusions e e e 423

VI Appendices 425

A Debugging 427
Al AvOIdINEBUIS - - « « ¢« v wow s mowom wow ww e 6 v s v s e e e e 427
A.2 Toolsand Techniques 430

B Abort Codes 435
B.1 System AbortCodes 435
B2 Library Abort Codes . . « « = v vv v v m v s v v v 85 58 5 5 55 6w s e 5w e b 436

C Camelot Interface Specification 437
Cil ATINtEHACE : ¢ : : : s v w e s s e v E £ 8 8 58 5 5 8 565 6d Haame § & 3 437
C2 CAlnterface e 438
C3 CSlnterface e 438
C4 CTlnterface e 439
CS5 DLInterface e 439
C.6 DNlnterface 440
C.7 DRlnterface 442
C8 DSlInterface 447
C9 DTlInterface 451
CAOLDIOEIEACE: « « = 5 5 5 5 5 0 5 5 o W & 5 & & £ 5 § 5 5 5 & » 2 5 o o ;o mom o om 452
CAl1 MDInterface 455
CA2MRlInterface 456
CA3 MTInterface 456
Cl4 MXInterface 457
CAS NAIDETIACE « & & s & 5 & 5 516 5 5 6 5 8 © 5 508 £ 5 = » o s & s o o o mm o oo 457
Cl6 NDInterface 464
C17RDInterface 467
CA8 RTInterface 469
CA9 SRInterface 469
C20 STInterface, 470
C21 TAlnterface 472
C22 TClInterface 474
C23TDInterface 475
C24 TRInterface 477

C.25 TS Interface

Xiv Contents

D Avalon Grammar 479
D.1 Expressions 479
D.2 Declarations 480
D.3 Statements L 482
D.4 External Definitions 482

Bibliography 483

Index 493

List of Figures

1.1
1.2
1:3
1.4
1.5

24
22

3.1

51
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
501

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

71
42

A transaction to transfer $100 from savings to checking. 5
A transaction that adds monthly interest to savings account. 6
A Non-serializable Schedule 6
Client Server Model inCamelot 8
AUser’'sViewof Camelot 11
The Operation of a Mach Remote Procedure Call 17
The MIG Specification file jill.defs 18
COFORExample 41
Jack-MainProcedure oo v s il b i v s w5 e e s w s e s s 67
Jack - jill transactionFunction 68
Jack - jill transactionFunction 69
Jack - Read and Write Functions 70
Jack - Help Function 71
Jill - MIG Interface DescriptionFile 72
Jill - ClientHeader File 72
Jill - Internal Header File 73
Jill - Main Procedure 74
Jill - Initialization Procedure L. 74
Jill - OperationProcedures 75
Interfacesto Camelot 82
The Structureof a Camelot Node 83
Messages for the BEGIN_.TRANSACTION Statement 85
Messages for the jill read ServerCall 86
Messages for the jill writeServerCall 87
Messages for the END_-TRANSACTION Statement 88
Messages for a Network Server Call 89
Messages for Distributed Commitment 90
Messages for Abort 92
Mapping an External Memory Object 99
A Page Fault an External Memory Object 99

). 4%

XVvi

List of Figures
8.1 Camelot Segment Descriptor 112
82 CamelotRegionPointer 112
9.1 Example Family of Transactions 122
9.2 Applications and the Transaction Manager 123
9.3 Servers and the Transaction Manager — Top Level Transactions 130
9.4 Servers and the Transaction Manager — Nested Transactions 131
9.5 Alternatives for Lock Anti-Inheritance 133
9.6 AbortProtocol 134
9.7 Commitment Protocol — Read-only Independent Vote 136
9.8 Commitment Protocol — Read-only Dependent Vote 137
99 Commitment Protocol — Yes Vote, Successful Commit 137
9.10 Commitment Protocol — Yes or No Vote, Abort During Commit 137
11.1 TaskSInCamelot : : o v o m oo e m s o 0 6 5 5 5 5 85 5 4 bo m o mmom o on 156
12.1 Simplified Expansion of a TransactionBlock 178
12.2 Simplified Locking Procedure 181
12.3 Simplified House Cleaning Procedure 183
131 Threadsvs. I/Ocalls 194
141 A Shared Memory Queue, 203
14.2 The Grid Tracks Recordsinthelog 207
143 PageRecord, 208
14.4 TransactionRecord 209
145 GridRecord 210
146 PatchRecordsinthe Grid 219
147 PatchRecord 220
148 ServerRecord 224
149 Camelot Chunk Descriptor 228
16.1 Camelot Transaction Identifier 256
16.2 Timestampsin Camelot 257
16.3 Site Grid for a Transaction Family 258
16.4 Local Commitment Protocol 261
16.5 Distributed Two-Phase Commitment withoutErrors 264
16.6 Non-blocking Commitment withoutErrors 268
16.7 Non-blocking Commitment with CoordinatorCrash 270
16.8 Distributed abort of a top-level transaction 277
16.9 Distributed abort of an active nested transaction 278
16.10 FPlInternal Structure 282
16.11 Procedure for Assigning New Serial-Sequence Pair in FPI 282
16.12 FPI ComparisonMacro 283
16.13 Using Timestamps for Crash Detection 284

