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PREFACE

This book is an introduction to standard topics in differential
equations for the average sophomore engineering or science student.
The fundamental first two chapters treat first-order equations and
linear constant-coefficient equations, including a brief view of
2 X 2 systems via elimination. The five chapters that follow give
mutually independent treatments of systems, the Laplace transform,
power series solutions, numerical methods, and Fourier series meth-
ods for partial differential equations. With an appropriate choice of
topics, this book can serve as the basis for various courses to follow
a two- or three-semester calculus sequence; the possibilities range
from a basic survey of general methods for solving a single differ-
ential equation to an integrated introduction to linear differential
equations and systems that incorporates the rudiments of linear al-
gebra (without assuming previous exposure to determinants, mat-
rices, or vectors).

Our exposition is aimed at the beginning user of differential
equations; it guides the reader through the underlying ideas of the
subject while maintaining a hands-on experience of specific prob-
lems. The discussion proceeds from the concrete to the abstract by
means of many worked-out examples and observation of general
patterns. Boxed summaries reiterate the main points to remember,
including explicit problem-solving procedures. These serve as handy
reference points for the reader. The notes that follow the summaries
discuss technical fine points and specific shortcuts or difficulties that
arise in practice. Exercises at the end of each section are arranged
roughly in order of increasing difficulty and abstraction; especially
involved problems are starred. Review problems at the end of each
chapter provide an opportunity for the reader to check his or her
understanding of the chapter as a whole. The answers to odd-
numbered exercises appear at the end of the book.

The introductory section at the beginning of each chapter con-
siders a single class of physical models (e.g., populations, springs,
electrical circuits, or heat flow) as a practical motivation for the
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mathematical discussion that follows. This can be treated as independent reading when
no class time is available for modeling or applications. The chapter-by-chapter con-
tents of the mathematical discussion are summarized as follows:

First-Order Equations (Chapter 1) are handled primarily by separation of var-
iables and variations of parameters. The discussion of graphing and exact equations
can be skipped or deferred until later.

In Chapter 2, Linear Differential Equations, the method of characteristic roots
is developed through specific examples. The treatment of completeness tests for lists
of solutions allows flexibility concerning which methods to stress. The methods of
undetermined coefficients and variation of parameters are treated as natural extensions
of earlier techniques. Some further consideration of physical models, and a brief
treatment of 2 X 2 differential systems by elimination, can be used or skipped at the
user’s discretion. Those wishing to treat 2 X 2 systems, but nothing larger, may
choose to use Section 2.12 and skip Chapter 3. Appendix A supplements Section 2.4
with a treatment of determinants of higher order.

Our discussion of Linear Systems of Differential Equations (Chapter 3) occurs
earlier than usual because we feel it forms a natural sequel to the discussion in Chapter
2. (The book, however, is written in such a way that the sequence in which topics
from Chapters 3 to 7 are covered can be easily altered to suit the user’s taste.) Basic
tools from linear algebra are developed as the need for them arises. A fundamental
computational tool in this chapter is row reduction of matrices (3.6), which in itself
is one of the most useful techniques for a student of engineering or science to learn
at this stage. The depth and generality of the treatment of systems can be controlled
by the extent to which the material on complex eigenvalues (3.8) and generalized
eigenvectors (3.9) is covered. The retrospective appendices that end this chapter show
the reader how the phenomena and ideas encountered in Chapters 1 to 3 fit into a
more general mathematical context.

The motivation for Chapter 4, The Laplace Transform, comes from problems
with discontinuous forcing terms. The chapter develops an operational calculus for
handling initial value problems via the Laplace transform, including the adaptation to
systems.

The motivation for Chapter 5, Linear Equations with Variable Coefficients:
Power Series, comes from the Cauchy-Euler, Legendre, and Bessel equations as they
arise in temperature distribution problems. After a review of power series, we develop
power series solution of 0.d.e.’s with polynomial coefficients, including the Frobenius
method.

In Chapter 6, Nonlinear Equations: Numerical Approximations, we discuss
the Euler, average-slope, and Runge-Kutta methods. We believe that it is both desir-
able and practicable to give students a hands-on experience of calculating numerical
schemes on electronic devices. Our treatment is written to allow the use of computers
or programmable hand calculators. Notes at the end of Sections 6.2, 6.4, 6.5, and
6.7 include sample computer (BASIC) and calculator programs. An important section,
which should be included in any treatment of numerical methods, is Section 6.6,
treating examples of the limitations of numerical methods. The ideas of Chapter 6 are
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applied in Appendix D, in a sketch of the proof of the Existence and Uniqueness
Theorem for o.d.e.’s

Chapter 7, Partial Differential Equations: Fourier Series, introduces p.d.e.’s
via the heat equation. Separation of variables and Fourier series (including sine series
and cosine series) are used to solve various boundary value problems. These tech-
niques are then also applied to the one-dimensional wave equation and the two-
dimensional Dirichlet problem. In the final section we show how expansion in other
orthogonal families of functions can be needed to solve certain higher-dimensional
problems.
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First-order Equations

ONE

1.1 INTRODUCTION

In the late seventeenth century, Isaac Newton in England (1665, 1687) and
Gottfried Wilhelm Leibniz in Germany (1673) synthesized several centuries of math-
ematical thought to create a language and method for describing and predicting the
motion of bodies in various physical situations. The invention of the calculus was
immediately followed by a period of intense mathematical activity, and the effect of
these ideas on the development of mathematics, science, and technology makes this
event surely one of the most important in the history of western thought. During the
development of calculus, differential equations and their solutions played the central
role. They arose as mathematical formulations of physical problems, and attempts at
their solution motivated much of the mathematical development of calculus.

The role of differential equations in the modeling of physical phenomena is well
illustrated by Newton’s second law of motion, familiar to all physics students in the
mnemonic form

F = ma.

In the situation that most interested Newton (gravity), the force F is the weight of the
body, the constant m is its mass, and a is its acceleration. Although we are really
interested in the position of the body, the equation tells us about neither the position
nor its rate of change, but rather about the rate of change of the rate of change of the
position. In the language of calculus, if x = x(z) represents the position at time ¢,
then the velocity is the derivative of x, v = dx/dt, and the acceleration is the derivative
of velocity, @ = dv/dt = d*x/df*. Thus Newton’s second law

o4
dr?

is an equation involving a derivative of the interesting variable—that is, it is a
differential equation.
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It was Newton'’s brilliant observation that in many physical situations the relation
between rates of change of observablg quantities is simpler than the relation between
the quantities themselves. This is at the same time the source of the power of differ-
ential equations and the central problem in using them to predict physical phenomena.
For if Newton’s second law is to lead to useful physical predictions, we must translate
this statement about the second derivative of position into a prediction of the position
of the body at some time in the future; that is, we must express x as a function of
time

x = @),

Any such prediction (function) that is consistent with a given law (differential equa-
tion) is called a solution of the differential equation. The problem of obtaining so-
lutions to a given differential equation is a purely mathematical one and forms the
subject of this book.

Some important features of the solution of differential equations can be illus-
trated by a special case of Newton’s law. When the force is constant, it is easy to
solve the equation by integrating both sides twice. We first recall that v = dx/dt and
write the law in the form

Integrating both sides with respect to ¢

dv J’F
—dt = |— dt
dt m
gives
dx
— =v=—1+ ¢

Now, we integrate again

dx f F
—dt = —t + dt
dt (m C‘)

F o,
x=ﬁt + of + ¢y

Note that the solution involves two ‘‘arbitrary constants,”’ ¢; and c,, which
resulted from taking two indefinite integrals. The physical significance of these con-
stants becomes clearer when we think of a specific instance of this equation, the
motion of a falling ball under the force of gravity. Whereas the differential equation
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takes into account the Earth’s gravity and the mass of the ball, this is hardly enough
to predict the ball’s position. We need to know where it started from, and whether it
was dropped or thrown. Without such information, we can make only a general
prediction, vague enough to apply to all possible circumstances of the ball. To make
a specific prediction without ambiguity, we need to know the initial position (the value
of x when 7 = 0) and the initial velocity (the value of v = dx/dr when t = 0). If
we pick specific numerical values for the constants ¢, and ¢, in the general solution
above, we find upon substituting z = O that the initial position is

F
x(0) = m 02 + ¢,(0) + ¢ = ¢,
while the initial velocity is
F
vi0) = —(@0) + ¢; = ¢,.
m

We see that in this case the values of the two ‘‘arbitrary constants’ in our general
solution are numerically equal to the initial conditions that determine a specific so-
lution. We shall consider the role of initial conditions in determining specific solutions
as we study various kinds of differential equations.

Of course, the process of finding the general solution in the preceding case was
very easy. Some of the difficulties of the subject become clearer if we consider
Newton’s law in a context closer to the problems that motivated it in the first place.
When the distance between bodies reaches interplanetary scale, the gravitational force
depends on position according to an inverse-square law. Fixing masses and the con-
stant g appropriately, this leads to the differential equation

If we try to solve this equation by integrating both sides, we run into trouble on the
left. Remember, we want to take ““f( )dr’’ of both sides. To evaluate

-8
— dt
J-Xz

we need to express x as a function of 7. But if we knew that, we wouldn’t need to
integrate, since the equation would already be solved.

This shows that, even when our final goal is a practical one, we need a certain
amount of theory to handle the differential equations that arise in physical models.
We will consider specific theoretical questions as they come up in our study of solution
methods for differential equations. For the moment we consider some population
models, with an eye toward understanding the different kinds of differential equations
that can arise in modeling various phenomena. Other physical models leading to
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similar differential equations are considered in the exercises that follow. We will solve
the equations of these examples later in the text.

Example 1.1.1

A population grows at the rate of 5% per year. If x = x(¢) stands for the number
of individuals in the population after ¢ years, then the rate of change of x is numerically
equal to 5% of x. Written as an equation this is

dx 5

4 1007

Whereas Newton’s law involves the second derivative of the interesting variable,
the equation in Example 1.1.1 involves only the first derivative. In general, we refer
to the highest order of differentiation as the order of the equation. Thus, Newton’s
law is a second-order differential equation, while the population equation is of first
order.

Example 1.1.2

Our first population model assumed a constant growth rate. This will not always
be realistic. For example, the growth rate of the United States rose sharply after World
War II but recently has been decreasing slowly. One function that exhibits this phe-
nomenon (although it does not accurately portray the U. S. population) is

t
80 =57

Some calculation shows that starting from g(0) = 0, g(z) rises to a maximum value
of g(1) = 1/2 (i.e., 50% annual growth rate), then falls off gradually, approaching

0 in the distant future (see Figure 1.1). A model based on this changing growth rate
would give the equation

glf t
d 1+ 1

This equation, like the previous one, is of first order. Note that here the variable
¢t appears explicitly in the coefficients of the equation.
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Example 1.1.3

The rates of change of the populations in the previous examples were multiples
of the populations. In some cases there may be an additional component (immigration)
that depends only on time.

Suppose a disease-causing organism reproduces in its host by dividing once a
day (on the average). Suppose also that its presence causes the host’s resistance to
deteriorate, so that on the rth day after the initial infection, ¢ thousand organisms are
able to enter the host from the surrounding environment. Let x = x(¢) be the number
of organisms in the host, measured in thousands. Then the rate of change of x has
two components: reproduction contributes x to dx/dt, and new organisms entering
from the surrounding environment contribute ¢. The total rate of change is

dx

— =x + t
dt

Example 1.1.4

Suppose a population consisting of x = x(r) thousand organisms would, in an
unlimited environment, have a growth rate of 5% per year. Assume the environment
is limited and can support at most a population of 10 thousand. Then as the population
approaches 10 thousand, we would expect the growth rate to decline. The simplest
way to take account of this fact is to multiply the unlimited growth rate by a factor
that approaches zero as x approaches 10; the simplest such factors are constant mul-
tiples of 10 — x. Thus, we expect our population to satisfy

d
;’: = .05 (10 — X)x.

Since a small population experiences little competition, the limited-environment growth
rate should approach the unlimited-environment growth rate as x approaches zero.
Then o = 1/10. Our model has the equation
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dx = .005(10 — x)x.
dt

Note that this equation, like our second gravitational example, involves an x?
term.

Example 1.1.5

Suppose two neighboring countries, with populations x;(¢) and x,(¢), have nat-
ural growth rates (birth rate minus death rate) of 15% and 10%, respectively. Suppose
that 4% of the first population moves to the second country each year, while 3% of
the second population moves to the first country each year. Then the rate of change
of each of the populations is made up of three components, the natural growth rate,
emigration, and immigration:

d

% = 15x, — 04x + .03x, = .11x + .03 x,
dX2

o A0x, — .03x, + .04 x, = .04x + .07 x,

In this case we have a system of two differential equations, each involving both
variables x, and x, in an unavoidable way.

Each of our examples so far has involved only ordinary derivatives (as opposed
to partial derivatives). We refer to such equations as ordinary differential equations
(abbreviated o.d.e.’s). An equation like

u _ d%u

a Cax

which involves partial derivatives, is called a partial differential equation (p.d.e.).

In this book we shall concentrate primarily on a special class of o.d.e.’s and
systems (linear ones) for which a systematic solution procedure can be formulated
and which are used in a broad variety of physical models. The precise delineation of
this class will occur piecemeal as we study various specific instances.

In this chapter we will look at first-order equations, like the ones in Examples
1.1.1 through 1.1.4. These are the simplest from the point of view of calculus since
they involve only first derivatives. Yet a large variety of phenomena can be described
by using such equations.

We close this section with a summary of the basic definitions that will play a
large role in the first part of the book.
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SOME BASIC DEFINITIONS

An ordinary differential equation (abbreviated o.d.e.) is an equation
whose unknown x is a function of one independent variable ¢. The equation
relates values of x and its derivatives to values of ¢.

The order of an o.d.e. is the highest order of differentiation of x appearing
in the equation.

A solution of an nth-order o.d.e. is a function x = ¢(¢), with derivatives
at least up to order n, which when substituted into the o.d.e. yields an identity
on the domain of definition of ¢(z).

The general solution of an o0.d.e. of order 7 is a formula (usually involving
n ‘‘arbitrary constants’’) that describes all specific solutions of the equation. A
specific solution (or, equivalently, the value of each of the constants in the
general solution) is determined by certain initial conditions, such as the starting
point and the starting velocity.

EXERCISES
1. Determine the order of each of the following o.d.e.’s.
d’x dx de\’  d%
Lttt —x =7 ) sz -+ =0
a rostir X t b dt) e X t
d d’
c. xB .d;:.. + Eg =x + t9 d. (xl)zxm - x4xu + tsxl

In Exercises 2 to 6, check to see whether the given function x = ¢(¢) is a solution of the given
o.d.e.

d’x  20x d’x d’x
— 45, —_— 2 43 — L3t - f
2. o@) = r; P 2 t 3. @) = e a e 0
2 d
460 =1 TS -9 = 6e¥ 5. o) =In(—t), t<0; &' =1

2, t>0 ,
6. ¢(t)={3t2’ r<0° tx' —2x =0

In Exercises 7 to 12, find all values of the constant k for which the given function x = (1)
is a solution of the given o.d.e.
7. &@) =t >0 " - 6x=0

d*c

8. o@) = &~ i x=40
d'x dx
. = K; _— + — — =
9. ¢(t) =k i 2 x=7



