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ABSTRACT

We give a survey of recent results concerning Schrddinger operators describing the
motion of a quantum mechanical particle in R3 or ]RI under the influence of a
potential concentrated at N centers, N £ «,

We dedicate particular attention to the case N = », with centers forming a periodic
lattice (model of a crystal) or with centers randomly distributed with random

strengths(models of disordered solids or random alloys).



0. Introduction

The study of the motion of quantum mechanical particles in an ordered or disordered
solid presents formidable difficulties and various simplifications/idealizations

have to be made. In the '"one electron approximation' just one particle (electron) is
considered and the centers of forces (nuclei) are fixed, belonging to a lattice
(Muclear vibrations and presence of other electrons are thus neglected).

In the case where the total interaction potential between the electron and the nuclei

is periodic ("Bloch/Floquet model"), structural results (band structure, estimates

on number of gaps) on the spectrum are known, see e.g. [+ 1,0 21,0 3 1,

[ 41, [ 5 1. In the case of randomly disturbed lattices also some general results
are known, see e.g. [ 6 ], [ 7 ], [ 8 1. However in both cases there is great
interest in having '"solvable models" in which all quantities can be calculated. Such
models have also the important function of dealing as reference for testing
approximate mathematical methods.

An important class of solvable models is provided by the so called point interaction
models (also known under the name of S-interaction models or zero range models; they
are also closely related to "pseudo potentials'" models). These models have been
introduced in solid state physics and nuclear physics since the thirties, see [ 9 ]
(which surveysup to 65 work on the 1-dimensional case), [10], [11], [ 12 ]. One
should also mention later applications to problems of electromagnetic theory, see
e.g.[13,14]. In particular the Kronig-Penney model of a one-dimensional crystal with
periodic S-interactions is well known and have played an important role as a reference
model in solid state physics, see e.g. [ 15 ]. The 3-dimensional analogue of this
model has only been brought under mathematical control in recent years (see e.g.[11 ],
[16,17 ,34, 40] and references therein)and should come to play an important role also for
more realistic approaches of solid state physics. The first part of each section

of this paper is dedicated to a description of this model and of the corresponding
results concerning the spectrum.

For the description of disordered solids, like those arising from impurities or from
alloys, models with stochastic interactions have been investigated, in particular in
recent years, under the stimulus of Anderson-Mott discussion of the phenomenon

of localization; there 1is by now a quite large literature, see e.g.[ 8 1, [18],[ 11 ]
and references therein. Also in this case, the study of solvable models provides new
insights, as was already clear since the work around the Hutton-Saxner conjecture in
one-dimension (see e.g. [9 ] and references therein). Recently the one-dimensional case
of models of alloys built with §-interaction of random strength and position

has been discussed in [ 6], [ 7],-[19]. The case of three dimensional models with §-
interactions of random strengths and positions has also been discussed recently, see
{20]-[23] . We take up this subject in Sect. 2. Finally we also mention some other
models hwolvinginteractionslocalizedatcertainsubsetsof]RB,1ikethose involving §-shell

models, models of electrons interacting with polymers and models for self-interacting
polymers, see e.g. [24] resp.25,2%] and references therein.



1. Schriédinger operators with non random point interactions

Let us start by explaining the meaning of the words 'point interactions" in the title
of this lecture. By this one understands in general, in the theory of Schrddinger
operators, hence in quantum theory, the presence in the Hamiltonian of potentials,
"interactions", of the form of operators multiplication by a "function" V supported
on some subset of Rd consisting of isolated points (or, more generally, of measure
zero). "Function" is to be understood in some generalized sense (even more general
than distribution), and the first problem one meets is of course to define properly

say — A4 + V as an operator in LZGRd,dx),with A the Laplacian in Rd.

To illustrate what we have mind let us consider a couple of typical examples.
a) d<3, = A + A8§(x). This model has a long history in nuclear physics, as an

idealized model of a short range force (Bethe-Peierls, Thomas 1935; seee.g. [11]

(121 [ 261)-
b) d <3, - + 2 X 6§(x-y) for Y a discrete subset of Pd. This model has a long
yEY
history in solid state physics, at least for d = 1 and Y periodic, e.g. Z:

"Kronig-Fenney" model for the motion of an electron in an idealized crystal
(see e.g. [151, [11] ).
c) = A + AV(x) with |supp V| = 0 (| | meaning Lebesgue measure)
(e.g. supp V the surface of a sphere for d = 3: "delta shell model", see e.g.
[ 26 1, [ 27 D).
d) -+ Aft §(x-b(s))ds, with {b(s), O0<s <=t} a continuous curve in md, like
o

e.g. a path of a Brownian particle (this latter case constitutes a model of a

quantum mechanical particle interacting with a polymer, see e.g. (251,028],029D).

The questions one can ask are: can one associated with above heuristic Hamiltonians
. o : 2. d
well defined self-adjoint operators H in L"(R)?

What about their spectrum, eigenfunctions etc.?

1.1 The case of a one center interaction in I

Let us first recall some methods for defining H in the case a). The first observation
is that the case d 24 is trivial in as much as formally H = — A on C:,OGRd)(the

C” functions of compact support vanishing in a neighborhood of zero) and - APC:’OGPd)
is essentially self-adjoint for d 24, cfr. e.g. [ 30 ], Ch. X), hence there is no

self-adjoint extension of H Pc: OGRd) different from the trivial one,- 4 .
’

We shall now examine in some details the most interesting case for physics, namely

d = 3 (for the cases d = 1,2 see [ 11 ]).

a) 1. The first method for defining Il = - A + A§(x) in LZGRB) is to use nonstandard
analysis. We shall not describe here this method (see [ 31 1, [ 32 ], [25], [ 11 D),



we just give a hint. Let € be a positive infinitesimal. By transfer H =- A + AEGE
€

. : v i L% 2 3 . & 3.~1
is well defined, self-adjoint in L"(IR ) with Ge(x) = (Eﬂe )

x1([x[/€), a non
standard realization of the &-function, X, being the characteristic function of a
sphere of radius 1 and centre at the origin, and

2
__2 3 (4m) 2
AE =-3me+ 3 ae, a€R.

Then the standard part (defined by the resolvent) of Hc exists and is equal to the

"point interaction of strength a at the

self-adjoint operator - Aa describing a
origin" (we shall give below a standard description of - Aa)' This non standard
procedure shows also that the only possible realizations of "= A + A6(x)" form

a one-parameter family, with parameter a € R. In fact also a a positive infinite
number is allowed, in which case - Aa is simply the free Hamiltonian - A. It also
indicates that an infinitesimal negative coupling constant is needed to obtain, after

taking standard parts, an Hamiltonian different from - A.

It also turns out that the sign of the '"renormalized coupling constant" o determines
whether or not - Aa has a bound state (eigenvalue) (at —(Anq)%, namely if o &0 there

is an eigenvalue, if a =0 there is no eigenvalue.

a) 2. Let us now give shortly a first standard method of constructing - Aa’ for
details and proofs see [ 33], [ 11]. Let V be Pollnik

‘ -2 s 5
(i.e. ff]v(x)\ lv(y)] |x - y[ dxdy <®) and in L1(H{3), and let )\ be C1(H{) with

A(0) = 1. We shall study - 4 + A(g) 5_2 V(x/e) as e +0. Set v E|V|1/2
1k|"‘ 3 2,1
Ck(x) :——T—T— for Imk >0, x#0, x € R~ (so that Gk(x) =(-A-%k") (x) is the

, u=v sign V,

kernel of the resolvent of - A).

2 i
If €L (H{3) solves uG vw = - m then define ¥ EGva. Then from the assumption on
V we have Y ELIOC(H?3), Vv €EL (R ) = 0 in the sense of distributions, where
H=- 4 + V (in the sense of quadratic forms). If uA¢L2(H13) then one says that H has

a zero energy resonance (or there is such a resonance for V). If y €L2(H13) then

Hy = 0 in sense that y €D(H) (the definition domain of H) and Fy = 0. In this case y
is a zero energy eigenstate for H. One has, under the additional assumption

x| veo €L (®?): yer?(®?) @ (v, = - fvpax = 0.

The following case distinction is important (we assume here(1 + |-]) V €L1(H{3)):

Case I: - 1 is not an eigenvalue of uGo v =K (this is the case when V20, e.g.).

Case II: =- 1 is a simple eigenvalue of K and ¢I¢L2(H13) i.e. y is not an eigen-

function (i.e. there is a "simple zero energy resonance').

Case IIL: - 1 is an eigenvalue of K with eigenfunctions ®. and the corresponding w

are in L (R ) for all j (in this case there is no zero energy resonance)

Case IV: -1 is an eigenvalue of K, with eigenfunctions mj and at least one

¥ ¢Li®).



Under the above assumption on the potential and on A, and in addition assuming

9 = =
A'(0) # O in cases III, IV we have that n - lim (He - k%) LI (- - kz) 1, where
5840 @
n-lim means norm-limit and @ = + « in cases I, IIl (so that in these cases - Aa == A).
In case 1I we have a = - A'(0) I(v,q0|_2; in case IV we have a = - A'(0){ ? |(sz£)e}—l
=1

(in these formulae we have chosen suitable normalizations of the 0, @, e.g., in case

II, (sign VO,©) = - 1, where (,) is the scalar product in L GR W

Remark: The intuitive reason for the dependence of a on the zero energy behaviour
of = A + V can be found in the fact that

H o= 20 (= 8+ A(V()UT,
€ € €

; -3/2 ; 2,3
where UE 1s the unitary scaling (U g)(x) = € g(x/e), €>0 in L"(R"), hence
O(Ha) = g(= & + A(e)V()), where o(+) means spectrum. This indicates that the

behaviour of O(He) as € +0 is determined by the behaviour at 0 of o(-=24 + A(0)V(-)).

Remark: The above procedure is a construction of the point interaction Hamiltonian
- AOL as limit of Schridinger operators with "scaled local potentials". Other
regularizations of the interaction have been discussed in the literature,seee.g.

L51,[ 11] (and references therein).

a) 3. Perhaps the most directly usable characterization of _Aa is by its resolvent

kernel:
2.~1 _ _ e .
(=4 <¥Y =4 (GkZ Y, )AG, , .1
withazs ', B=C-ao , T & 30, & € ol-4 3,
4 a

> © 2 g 2
where o(-A ) = [0,=) ; for >q 20
* {‘(417(1) } u [O,w) for a<0.

It follows easily 0 (-A ) =0 (=4 ) = [0,%), ¢ (-4 ) = @.
ess a ac’ sc’ a
For a <0 the normalized eigenfunction @ to the simple eigenvalue —(4na)2 is

(“&)1/2 \1»(|_1 exp(4ma  |x|). For a >0, there is a resonance at k = 4rmia.

1/2|xl—I exp(&ﬂa[x]) for x *O a €R, © = 1 for a = + ». The

a) 4. Take m [a]
quadratic form f €(3 GR ) > f( Vf) w dx in L (R @édx) is well defined and

closable. The self- adJ01nt positive operator ﬁ in L GR > 0 dx) assoc1ated with 1ts

closure is unitary equivalent - by * (Awa) for a € R, in fact H = [ A +(4ma) ]@.
For o = + @ it is - A,

The Lnterest of the realization H is that ﬁa =-A- Bq. vV on C:OR3)—functions in
L GR (6] dx) hence with B =V 1mpOL . This is a "diffusion operator", whose closure

generates a Markov semigroup in LZGR " mzdx), with invariant measure mzdx (a
probability measure for a<0). Aa is the operator associated with the closed Dirichlet
form f(Vf)2 qﬁdx in LZ(R3, widx). Thus H has an immediate probablllstlc meaning as
generator of a symmetric diffusion proccss (whereas -A + (47 u) has only the inter-

pretation of a Brownian motion disturbed by 'creation of mass' at the origin). For



these concepts and results see [ 35 ], [ 36 ], [ 37 ].

1.2 The case of point interactions at N centers

Of course there was nothing special in choosing the source in the origin, we could

have treated on the same footing the operator — A + Xéy(x) for any y E]PJ.

In fact all considerations extend also to — A + E A 8 (x), with Y any finite subset
3 yEY

of IR~. We shall limit ourselves here to give the formula for the resolvent.

Similarly as for the case Y = {0} treated above, each coupling constant Ay has to be

renormalized to yield a corresponding ay € R U{+=}. Denoting by - Aa . the realization

’
of = A + X 6 (x) as a well defined self-adjoint operator on L2(1R3,dx) we get
correspondingly to a 3) above:

I ) © =), )

A, G (y' =), (1.2)
a,Y ara yy' Tk

; 2
with kK" €éo(- 2 ), Imk >0,

o5 Y
Ayy' the kernel of the operator A in RZ(Y) defined by A = B_1, where B is the
operator %S QZ(Y) with kernel Byy' E(%% - ay) Sy = y') + Ek(y—y'), EL(Z) = Gk(z)
for z %0, Ck(z) = (0 for z = 0,

For Y = {0}, a = o, Ayy' = A this reduces to the formula in a) 3. i.e. in this
ase = A =~ A .

case o, ¥ "

Remark: As discussed in [ 38 ] for |Y| = n there are actually n2 self-adjoint

; ® 3 ;
extensions of - A PCO O(H{ ), where the first zero means compact support and the
b
second vanishing at a neighborhood of Y. The above n parametricrealization - Aq <
’
can be shown to be the one given by separated boundary conditions at each point, see [11,38,39].

Remark: The same results for > O, @s for - Au hold. The point spectrum

Yess’ %ac
of - Aa,Y is entirely contained in (- ©,0) and consists ;f at most N eigenvalues
counting multiplicity and the eigenvalues are given by k~ with Im k >0 s.t. det B(k)=0,
the multiplicity of the zero eigenvalue of B(k) being equal to the multiplicity of

the eigenvalue k2. See e.g. [ 11 ], where also many other results on point inter-
actions with N centers can be found.

We shall now procede to the most interesting case for us, the case of infinitely

many centers.

1.3 Point interactions at a discrete set of centers

We shall consider heuristic Hamiltonians of the form - A + 2 Ayd (+), with Y a
yeY
discrete infinite set i.e. Y= {y. €er’ [jJEWN, inf |y. = y., |>0.
J j*j‘ J

In analog’with our discussion in 1.1, 1.2 we shall have to define properly an



Hamiltonian - Lq Y "realizing" the above heuristic one, by '"renormalizing" the
b
coupling constants A to o« with a a real-valued function on Y (as we know from 1.1,
y y

1.2 the value + « of'ay would simply correspond to deleating this y from Y).

We shall give a description of - A v by its resolvent, using the one given in 1.2.
O”

Let thus Y run over the finite subsets of Y and let o =a Y. Then, by 1.2

2.1
CRyE)

’

is the well defined resolvent of a lower bounded self-adjoint

operator - AE ¥- The following theorem can be proven, see e.g. [11]:
>

2 o NG - : :
Theorem4:For Im k™ #0 the strong limit as Y *Y of (- Aa A kz) : exists and is the
b

2. =1 ; s ; : :
resolvent (- &u v~ k™) of a self-adjoint operator. This resolvent 1is given by
’
s -5 Voe + T fr w1, Ie (o= y.OKG (== vyl (1.3)
a,Y k oy “a,Y 3,3 Tk ] k |
JaJ_1
. . s 2 . =1 3
r (k) is the closed operator in 27 (Y) given by (I _(k)) = - (B ) , with
a,Y a,Y )’~,ij
)
B . defined as in 1.2 on HO(Y) ={g€17(Y), supp g finite }. For Im k >0 large
yj j'
enough one has (Fa Y(k))—1 bounded. I Y(k) is analytic in k for Im k >0.
> Gy
; - . s I .
The proof exploits the monotonicity properties of the resolvent (- A~k ) L in Y,
2 a,Y
for k” sufficiently large.
Remark: It is possible to show that - A g is local in the sense that if Y E€D(- A Y)
— a, o,
and y = O in a domain U of H13, then - A o= 0 in U. Moreover it is possible to
a,
approximate in norm resolvent sense — A ¥ by local scaled short range interactions,
‘;’.,

extending 1.1, a2): see [ 11 ].

1.4 Periodic point interactions

The case of "periodic point interactions'" is of particular importancein solid state
. s i g% 3
physics. In this case both o and Y are periodic, e.g. Y =Z  and a constant. The

corresponding Schrddinger operator - Aa v of 1.3 is then the mathematical realization
>
of the heuristic Hamiltonian - A + X 2
3
y €EZ
constant A (independent of y). This Eamiltonian fits in the so called "one-electron

Sy(-), after renormalization of the coupling

model of a solid", in as much as the solid is exemplified by a fixed infinitely extended
crystal with (infinitely massive) nuclei at the vertices, and the electron moving in

the crystal interacts only with the crystal (other effects like relativistic effects,
lattice vibrations, spin-orbit coupling,...,are neglected, in this picture). More
generally, we can consider heuristic point interaction Hamiltonians of the following

a basis of P3 and

1

{
i

5 s " @
form. Let A\ be a lattice of R7, i.e. I n.ai}, with a,,a

i 2293

Il 10

1
= . 3
n = (nl’nZ’HB) running over Z~.

A is called a Bravais lattice.



A i e ) 5 A
Let [ be the basic period cell or primitive cell relative to A i.e. T = R3/A (so that
A X A AL A . 5 i
each x € R3 can be written as x = )\ + Y,3w1th AEA and y € T). I' can be identified

with the so called Wigner-Seitz cell { z s;a; }, s; € [ = %, %).

i=1
Let yj, j =1 ... Nbe N points in I i.e. yJ € F.

Then we can consider the heuristic Hamiltonian:

H=-2a+ ) Y. 8 (). (1.4)

AEA 53 Y

This yields a model of a multiatomic crystal or a perfect alloy (think of Yy eee Yy
as carrying N different atoms or nuclei, acLing with coupling constants A1,.. s Ay
by a §-potential on an electron entering F~ and translate the whole picture by any
XEN ).
Of course for a proper mathematical definition of a self-adjoint operator associated
with the above heuristic Hamiltonian we can use the theorem in 1.3, with

’ a,Y
in particular its spectrum, we

A
= {yj + A, Xj € 'y, A€EA} . Then the corresponding - A is the mathematical

realization of H. For the detailed study of - A

a,Y’
shall have to exploit the particular symmetry properties of (a,Y). It is useful to
th].rﬂ(of—-z%"Y as coming from the interaction EA Z 6'.+X(') and reason on its
yc! J

invariance properties on the basis of those of the potential V, formally

z Ekj 5y +)\( *). More generally, it is useful to clarify the picture by studying
XEA ]
Schrédinger operators of the form - A + V in L GR ), with V the multiplication

operator by a periodic, say smooth function with periods the vectors X in a

Bravais lattice A. By the smoothness and periodicity of V we can expand V in Fourier
iyx
\

series i.e. V(x) = Z e , with uniform convergence, where
er Y
¥
- =1 15

v = |r| ! f v(v) e TV v, ¢85}

! §
I is the so called dual or reciprocal or orthogonal lattice i.e. I' ={I niﬁi}, with

i

bi’ i=1,2,3 the dual basis of R3 given by aibj,= 2n6jj,, with n = (n ,n2,n3) running
over 23.

A
It is useful to consider also the Fourier transform H of H.

Let V(p) = (2m) 32 f3 V(x)e ~ipx dx be the Fourier transform of V (which exists if we

look upon V e.g. as a tempered distribution; in fact, V being bounded, V is a pseudo
measure) .

The Fourier inversion formula holds i.e.
-3/2 ¢ A i
v = 2w 7% [ V) etPRap, (1.6)
P

in the sense of tempered distributions.
00 .3 . s ;

Let us now assume e.g. VEC (R”). Then the Fourier series expansion for V converges
o

uniformly and one has



n 3/2
) = en3? T vsGp-n, (1.7
YET 3
with convergence e.g. in the weak topology on F'(R7).

Let 7 be the unitary operator given by Fourier transform in LZCRj,dx). Then, as well
~ * . . . . Z .
known, J(-A)F 1is multiplication by pz in LZGRB,dp).
* . " 2 A3
Fv 3 is the convolution operator in L (R™,dp):

-3/2 .4
2@ -2y = TV sGmyr,0). (1.8)
YyeTl ¥
. 218 ® o2 . 2
Let U be the mapping from L“(R”,dp) onto f £7(r)de = L
A

2 A 2,73 b : ST A
f(6+y), where f € L"(R”,dp), with the identification p <« 6 +y, Y€, 8 €A,

(27m)

A 2 :
(A, 27(I')) given by

A
U £)(6,v)

"

A A
with A = R3/F the dual group to A (also called basic periodic cell or primitive
A
cell of the dual lattice I'). A can be identified with the Wigner-Seitz cell

1

3
{) s.b, |s. €[ - =) , i=1,2,3} of I', also called Brillouin zone.
i=1

X
A i 22
* % &, . A » . 2 .
Then UF (-a+ V) F U = f 1H(6)d6, with H(8) acting in 2 (') according to, as
A
A
easily deduced from (1.8):
A 2
H®)) () = |y + 6|7 gy) + ) Vy'g(Y_Y')‘ (1.9)
Y'€T
The sum on the r.h.s. converges for g € KZ(F).
* % A A A 2 .73
Thus (UF(-a+ V) F U f) (6,y) = (H(B)f(8,*),*)(y), V fEL (R ,dp). (1.10)

In particular the spectrum of — A + V is obtained by determining the spectrum of

A ] A %
H(8). Now with = &4 = F (-4) #  we have

A 2
(- a(8)g)(y) = |y + GI g(y), (1.11)
A A . 2 )
hence o(-A(8)) = od(~ A(8)) = |T + 8|7, where o4 means discrete spectrum and
2
T+ 92[ = {|y+9] ly e 1} .

If e.g. VY € 22, then one shows, see e.g. [ 1] , [ 3] ,

A A
o) =o = U o)), (1.12)
A s O€4
with H = Fu# . o(l(8)) is purely discrete, consisting of isolated eigenvalues

of finite multiplicity and o(ﬁ) is absolutely continuous and consists of bands
separated by gaps.
How can one prove similar results in the case where V is a periodic point interaction,
and hence is too singular to satisfy the above assumptions?
Two equivalent procedures can be followed. Either start with H replaced by - AQ,Y and
decompose according to

D'!

* D A
UG-8, U = { (- AQ,Y)(e)de. (1.13)
A

A A . . .
Or use a perturbation theorem to perturb first - A(8) to - A(8) plus point interaction

and integrate afterwards.
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We shall describe here shortly the latter procedure. Formally we have to perturb
N

- A(0) by V(x) = - Z 2 u. 8(x - y. -x) for some p. € P (which are going to be
j=1 XA J d

renormalized), s being points in the basic periodic cell I'. In this case

I “iyy, -
VY = - |r| Y uy e J, yer, with |T| the volume of T.
j=1

~

" 2 . -
Introduce for any k >0 the operator in £ (I') (with cut off k):

R . . N
@@ () =y +081% gt = [T T 1. (6" (@),8) ¢ (o), (1.14)
=t 7]
where SER, YET, gEQ(ZD(F).
(,) 1is the scalar product in 22(1").
. -i(y+0)y.
05 (8) (Y= x (y +0) e I, (1.15)
)’j K

. P 3 - i o3 ;
with x the characteristic function of the closed ball in R~ with radius k and
K

center at the origin. We then have the
Theorem2:Let H(6) be the self-adjoint operator in RZ(T) given by (1.14) with domain

D(ES(8)) = D(- A(8)) = {g€2%(™)| T |y +6]* |g(x)|% <=}, V 6 €A.
YET

Then 1if uj(K) = (aj + »</2712)_1 for some aj € R, then 1 (0) converges for all

6 €A in norm resolvent sense as k >« to a self-adjoint operator - Aa A Y(e),
b ’
with Y = {y1,...,yN}, a = (OL1 otN), whose resolvent is given by
~ ~ N
Ca @ - o T Y, GeIT L, (Rl (0),0)F,  (0)
a,h,Y k . By a, A, Y i, i - ’ k,y. ’
J,i'=1 ¥y ]
(1.16)
2 2 N g
for all k s.t. k" € [T + 8|7, Im k >0, det ra,A,Y(k,e) +0,6 €A, where ra’A’Y(k,e) is
the N xN matrix with jj'-element a«. §.., - (y. = y.,,6), with
J] i %3t &, yJ va’
T I 1(y+6)x 2 2 o
[Tl 1im 2 et / (y + 6|7 - kD)= z Gk(x+)\)e 19>‘,XE]RB_ A
K00 Y€F AEAN
|y+6 =k 1.17)
gK(x,e) N
-3 i . -1 7 ~ -ign, ik
(2m) ? e 1% lim [ z (ly + 6[2 - k2) L [A] - 4mc]= Z Gk(x+k)e 1B, 71"1?,
K> YET AEA
|y+8]|<x x € A,

Gﬂ(e) the right hand side of(1.17), is the multiplication operator in ZZ(F) by the
function (|Y + 8|2 - kz)_1.

The term Gk(x + 9), XEIR3 - A, B €N appearing in the second expression for gk(x+6),



