Roberto Gorrieri
Heike Wehrheim (Eds.)

" Formal Methods
¢ for Open Object-Based
o ° °
= Distributed Systems
, 8th IFIP WG 6.1 International Conference, FMOODS 2006
: = Bologna, Italy, June 2006

Proceedings

A;i - " gm
e ifip
i

@ Springer

. lioberto Gorrieri Heike Wehrheim (Eds.)

i Formal Methods
for Open Object-Based
Distributed Systems

8th IFIP WG 6.1 International Conference, FMOODS 2006
Bologna, Italy, June 14-16, 2006
Proceedings

e

prin ger E200603636

Volume Editors

Roberto Gorrieri

Universita di Bologna

Dipartimento di Scienze dell’Informazione
Mura A. Zamboni, 7, 40127 Bologna, Italy
E-mail: gorrieri@cs.unibo.it

Heike Wehrheim

Universitidt Paderborn

Institut fiir Informatik

Warburger Str. 100, 33098 Paderborn, Germany
E-mail: wehrheim @uni-paderborn.de

Library of Congress Control Number: 2006926884 %

; & e
A

CR Subject Classification (1998): C.2.4, D.1.3,D.2, D.3,E3,D.4
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-34893-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34893-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11768869 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4037 -

Lecture Notes in Computer Science

For information about Vols. 1-3921

please contact yourbookseller or Springer

Vol. 4039: M. Morisio (Ed.), Reuse of Off-the-Shelf Com-
ponents. XIII, 444 pages. 2006.

Vol. 4038: P. Ciancarini, H. Wiklicky (Eds.), Coordination
Models and Languages. VIII, 299 pages. 2006.

Vol. 4037: R. Gorrieri, H. Wehrheim (Eds.), Formal Meth-
ods for Open Object-Based Distributed Systems. X, 267
pages. 2006.

Vol. 4034: J. Miinch, M. Vierimaa (Eds.), Product-Focused
Software Process Improvement. XVII, 474 pages. 2006.

Vol. 4027: H.L. Larsen, G. Pasi, D. Ortiz-Arroyo, T. An-
dreasen, H. Christiansen (Eds.), Flexible Query Answer-
ing Systems. XVIII, 714 pages. 2006. (Sublibrary LNAI).
Vol. 4024: S. Donatelli, P. S. Thiagarajan (Eds.), Petri Nets
and Other Models of Concurrency - ICATPN 2006. XI,
441 pages. 2006.

Vol. 4021: E. André, L. Dybkjer, W. Minker, H. Neumann,
M. Weber (Eds.), Perception and Interactive Technologies.
XI, 217 pages. 2006. (Sublibrary LNAI).

Vol. 4011: Y. Sure, J. Domingue (Eds.), The Semantic
Web: Research and Applications. XIX, 726 pages. 2006.

Vol.4010: S. Dunne, B. Stoddart (Eds.), Unifying Theories
of Programming. VIII, 257 pages. 2006.

Vol. 4007: C. Alvarez, M. Serna (Eds.), Experimental Al-
gorithms. XI, 329 pages. 2006.

Vol. 4006: L.M. Pinho, M. Gonzalez Harbour (Eds.), Reli-
able Software Technologies — Ada-Europe 2006. XII, 241
pages. 2006.

Vol. 4004: S. Vaudenay (Ed.), Advances in Cryptology -
EUROCRYPT 2006. XIV, 613 pages. 2006.

Vol. 4003: Y. Koucheryavy, J. Harju, V.B. Iversen (Eds.),
Next Generation Teletraffic and Wired/Wireless Advanced
Networking. XVI, 582 pages. 2006.

Vol. 4001: E. Dubois, K. Pohl (Eds.), Advanced Informa-
tion Systems Engineering. XVI, 560 pages. 2006.

Vol. 3999: C. Kop, G. Fliedl, H.C. Mayr, E. Métais (Eds.),
Natural Language Processing and Information Systems.
X111, 227 pages. 2006.

Vol. 3998: T. Calamoneri, I. Finocchi, G.F. Italiano (Eds.),
Algorithms and Complexity. XII, 394 pages. 2006.

Vol. 3997: W. Grieskamp, C. Weise (Eds.), Formal Ap-
proaches to Software Testing. XII, 219 pages. 2006.

Vol. 3996: A. Keller, J.-P. Martin-Flatin (Eds.), Self-
Managed Networks, Systems, and Services. X, 185 pages.
2006.

Vol. 3995: G. Miiller (Ed.), Emerging Trends in Informa-
tion and Communication Security. XX, 524 pages. 2006.
Vol. 3994: V.N. Alexandrov, G.D. van Albada, PM.A.

Sloot, J. Dongarra (Eds.), Computational Science — ICCS
2006, Part IV. XXXV, 1096 pages. 2006.

Vol. 3993: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra (Eds.), Computational Science — ICCS
2006, Part ITI. XXXVI, 1136 pages. 2006.

Vol. 3992: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra (Eds.), Computational Science — ICCS
2006, Part IT. XXXV, 1122 pages. 2006.

Vol. 3991: V.N. Alexandrov, G.D. van Albada, PM.A.
Sloot, J. Dongarra (Eds.), Computational Science — ICCS
2006, Part I. LXXXI, 1096 pages. 2006.

Vol. 3990: J. C. Beck, B.M. Smith (Eds.), Integration of AI
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. X, 301 pages. 2006.

Vol. 3989: J. Zhou, M. Yung, F. Bao, Applied Cryptogra-
phy and Network Security. XIV, 488 pages. 2006.

Vol. 3987: M. Hazas, J. Krumm, T. Strang (Eds.),
Location- and Context-Awareness. X, 289 pages. 2006.

Vol. 3986: K. Stglen, W.H. Winsborough, F. Martinelli,
F. Massacci (Eds.), Trust Management. XIV, 474 pages.
2006.

Vol. 3984: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part V. XXV, 1045 pages. 2006.

Vol. 3983: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part IV. XX VI, 1191 pages. 2006.

Vol. 3982: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part II1. XXV, 1243 pages. 2006.

Vol. 3981: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part IT. XX VI, 1255 pages. 2006.

Vol. 3980: M. Gavrilova, O. Gervasi, V. Kumar, C.J. K.
Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.), Com-
putational Science and Its Applications - ICCSA 2006,
Part I. LXXYV, 1199 pages. 2006.

Vol. 3979: T.S. Huang, N. Sebe, M.S. Lew, V. Pavlovié, M.
Kolsch, A. Galata, B. Kisacanin (Eds.), Computer Vision
in Human-Computer Interaction. XII, 121 pages. 2006.

Vol. 3978: B. Hnich, M. Carlsson, F. Fages, F. Rossi (Eds.),
Recent Advances in Constraints. VIII, 179 pages. 2006.
(Sublibrary LNAI).

Vol. 3976: F. Boavida, T. Plagemann, B. Stiller, C. West-
phal, E. Monteiro (Eds.), Networking 2006. Network-
ing Technologies, Services, and Protocols; Performance
of Computer and Communication Networks; Mobile and
Wireless Communications Systems. XX VI, 1276 pages.
2006.

Vol. 3975: S. Mehrotra, D.D. Zeng, H. Chen, B. Thurais-
ingham, F.-Y. Wang (Eds.), Intelligence and Security In-
formatics. XXII, 772 pages. 2006.

Vol. 3973: J. Wang, Z. Yi, J.M. Zurada, B.-L. Lu, H. Yin
(Eds.), Advances in Neural Networks - ISNN 2006, Part
II1. XXIX, 1402 pages. 2Q06.

Vol. 3972: J. Wang, Z. Yi, J.M. Zurada, B.-L. Lu, H. Yin
(Eds.), Advances in Neural Networks - ISNN 2006, Part
I1. XX VII, 1444 pages. 2006.

Vol. 3971: J. Wang, Z. Yi, J.M. Zurada, B.-L. Lu, H. Yin
(Eds.), Advances in Neural Networks - ISNN 2006, Part
I. LXVII, 1442 pages. 2006.

Vol. 3970: T. Braun, G. Carle, S. Fahmy, Y. Koucheryavy
(Eds.), Wired/Wireless Internet Communications. XIV,
350 pages. 2006.

Vol. 3968: K.P. Fishkin, B. Schiele, P. Nixon, A. Quigley
(Eds.), Pervasive Computing. XV, 402 pages. 2006.

Vol. 3967: D. Grigoriev, J. Harrison, E.A. Hirsch (Eds.),
Computer Science — Theory and Applications. XVI, 684
pages. 2006.

Vol. 3966: Q. Wang, D. Pfahl, D.M. Raffo, P. Wernick
(Eds.), Software Process Change. XIV, 356 pages. 2006.

Vol. 3965: M. Bernardo, A. Cimatti (Eds.), Formal Meth-
ods for Hardware Verification. VII, 243 pages. 2006.

Vol. 3964: M. U. Uyar, A.Y. Duale, M.A. Fecko (Eds.),
Testing of Communicating Systems. X1, 373 pages. 2006.

Vol. 3963: O. Dikenelli, M.-P. Gleizes, A. Ricci (Eds.), En-
gineering Societies in the Agents World VI. X, 303 pages.
2006. (Sublibrary LNAI).

Vol. 3962: W. Isselsteijn, Y. de Kort, C. Midden, B. Eggen,
E. van den Hoven (Eds.), Persuasive Technology. XII, 216
pages. 2006.

Vol. 3960: R. Vieira, P. Quaresma, M.d.G.V. Nunes, N.J.
Mamede, C. Oliveira, M.C. Dias (Eds.), Computational
Processing of the Portuguese Language. XII, 274 pages.
2006. (Sublibrary LNAI).

Vol. 3959: J.-Y. Cai, S. B. Cooper, A. Li (Eds.), Theory and
Applications of Models of Computation. XV, 794 pages.
2006.

Vol. 3958: M. Yung, Y. Dodis, A. Kiayias, T. Malkin (Eds.),
Public Key Cryptography - PKC 2006. XIV, 543 pages.
2006.

Vol. 3956: G. Barthe, B. Grégoire, M. Huisman, J.-L.
Lanet (Eds.), Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices. IX, 175 pages. 2006.

Vol. 3955: G. Antoniou, G. Potamias, C. Spyropoulos,
D. Plexousakis (Eds.), Advances in Artificial Intelligence.
XVII, 611 pages. 2006. (Sublibrary LNAI).

Vol. 3954: A. Leonardis, H. Bischof, A. Pinz (Eds.), Com-
puter Vision — ECCV 2006, Part IV. XVII, 613 pages.
2006.

Vol. 3953: A. Leonardis, H. Bischof, A. Pinz (Eds.), Com-
puter Vision — ECCV 2006, Part III. XVII, 649 pages.
2006.

Vol. 3952: A. Leonardis, H. Bischof, A. Pinz (Eds.), Com-
puter Vision — ECCV 2006, Part IL. XVII, 661 pages. 2006.

Vol. 3951: A. Leonardis, H. Bischof, A. Pinz (Eds.), Com-
puter Vision — ECCV 2006, Part I. XXXV, 639 pages.
2006.

Vol. 3950: J.P. Miiller, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VI. X VI, 249 pages. 2006.

Vol. 3947: Y.-C. Chung, J.E. Moreira (Eds.), Advances in
Grid and Pervasive Computing. XXI, 667 pages. 2006.

Vol. 3946: T.R. Roth-Berghofer, S. Schulz, D.B. Leake
(Eds.), Modeling and Retrieval of Context. XI, 149 pages.
2006. (Sublibrary LNAI).

Vol. 3945: M. Hagiya, P. Wadler (Eds.), Functional and
Logic Programming. X, 295 pages. 2006.

Vol. 3944: J. Quinionero-Candela, I. Dagan, B. Magnini, F.
d’ Alché-Buc (Eds.), Machine Learning Challenges. XIII,
462 pages. 2006. (Sublibrary LNAI).

Vol. 3943: N. Guelfi, A. Savidis (Eds.), Rapid Integration
of Software Engineering Techniques. X, 289 pages. 2006.
Vol. 3942: Z. Pan, R. Aylett, H. Diener, X. Jin, S. Go-
bel, L. Li (Eds.), Technologies for E-Learning and Digital
Entertainment. XXV, 1396 pages. 2006.

Vol. 3941: S.W. Gilroy, M.D. Harrison (Eds.), Interactive
Systems. XI, 267 pages. 2006.

Vol. 3940: C. Saunders, M. Grobelnik, S. Gunn, J. Shawe-
Taylor (Eds.), Subspace, Latent Structure and Feature Se-
lection. X, 209 pages. 2006.

Vol. 3939: C. Priami, L. Cardelli, S. Emmott (Eds.), Trans-
actions on Computational Systems Biology IV. VII, 141
pages. 2006. (Sublibrary LNBI).

Vol. 3936: M. Lalmas, A. MacFarlane, S. Riiger, A.
Tombros, T. Tsikrika, A. Yavlinsky (Eds.), Advances in
Information Retrieval. XIX, 584 pages. 2006.

Vol. 3935: D. Won, S. Kim (Eds.), Information Security
and Cryptology - ICISC 2005. XIV, 458 pages. 2006.
Vol. 3934: J.A. Clark, R.F. Paige, FA. C. Polack, PJ.
Brooke (Eds.), Security in Pervasive Computing. X, 243
pages. 2006.

Vol. 3933: F. Bonchi, J.-F. Boulicaut (Eds.), Knowledge
Discovery in Inductive Databases. VIII, 251 pages. 2006.
Vol. 3931: B. Apolloni, M. Marinaro, G. Nicosia, R. Tagli-
aferri (Eds.), Neural Nets. XIII, 370 pages. 2006.

Vol. 3930: D.S. Yeung, Z.-Q. Liu, X.-Z. Wang, H. Yan
(Eds.), Advances in Machine Learning and Cybernetics.
XXI, 1110 pages. 2006. (Sublibrary. LNAI).

Vol. 3929: W. MacCaull, M. Winter, I. Diintsch (Eds.),
Relational Methods in Computer Science. VIII, 263 pages.
2006. *

Vol. 3928: J. Domingo-Ferrer, J. Posegga, D. Schreckling
(Eds.), Smart Card Research and Advanced Applications.
X1, 359 pages. 2006.

Vol. 3927: J. Hespanha, A. Tiwari (Eds.), Hybrid Systems:
Computation and Control. XII, 584 pages. 2006.

Vol. 3925: A. Valmari (Ed.), Model Checking Software.
X, 307 pages. 2006.

Vol. 3924: P. Sestoft (Ed.), Programming Languages and
Systems. XII, 343 pages. 2006.

Vol. 3923: A. Mycroft, A. Zeller (Eds.), Compiler Con-
struction. XIII, 277 pages. 2006.

Vol. 3922: L. Baresi, R. Heckel (Eds.), Fundamental Ap-
proaches to Software Engineering. XIII, 427 pages. 2006.

%53§.027

Preface

This volume contains the proceedings of the 8th IFIP International Confer-
ence on Formal Methods for Open Object-based Distributed Systems (FMOODS
2006). The conference was held in Bologna, Italy, 14-16 June 2006, as part of
the federated multiconference DisCoTec (Distributed Computing Techniques),
together with the 8th International Conference on Coordination Models and
Languages (COORDINATION) and the 6th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS). DisCoTec was
organized by the Department of Computer Science of the University of Bologna.

Established in 1996, the FMOODS series of conferences aims to provide an
integrated forum for research on formal aspects of open object-based distributed
systems. The FMOODS 2006 especially attracted novel contributions reflecting
recent developments in the area, such as component- and model-based design,
service-oriented computing, and software quality. Some more specific topics of
interest were: semantics and implementation of object-oriented programming
and (visual) modelling languages; formal techniques for specification, design,
analysis, verification, validation and testing; formal methods for service-oriented
computing; and integration of quality of service requirements into formal models.

These proceedings contain a selection of 16 research contributions, out of
51 submissions, which went through a rigorous review process by international
reviewers. We therefore owe special thanks to all members of the Program Com-
mittee, and their sub-referees, for the excellent work they have done in the short
time they had.

Additionally, these proceedings include three invited papers by Pierpaolo
Degano (University of Pisa), José Luiz Fiadeiro (University of Leicester) and
Davide Sangiorgi (University of Bologna).

Finally, our thanks go to the Organizing Committee of the DisCoTec fed-
erated conference, chaired by Gianluigi Zavattaro, for the excellent work done
and for the support they gave in managing the submission system by Philippe
Rigaux. We also gratefully acknowledge the financial support of the Department
of Computer Science of the University of Bologna and from the EU-project
SENSORIA.

June 2006 Roberto Gorrieri
Heike Wehrheim

Organization

General Chair Gianluigi Zavattaro (University of Bologna, Italy)
Program Chairs Roberto Gorrieri (University of Bologna, Italy)

Heike Wehrheim (University of Paderborn, Germany)
Publicity Chair Martin Steffen (University of Kiel, Germany)

Steering Committee

John Derrick (University of Sheffield, UK)
Roberto Gorrieri (University of Bologna, Italy)
Elie Najm (ENST, Paris, France)

Program Committee

Lynne Blair (U. of Lancaster, UK)

Eerke Boiten (U. of Kent, UK)

Nadia Busi (U. of Bologna, Italy)

John Derrick (U. of Sheffield, UK)
Alessandro Fantechi (U. of Florence, Italy)
Colin Fidge (U. of Queensland, Australia)
Robert France (Colorado State U., USA)
Roberto Gorrieri (U. of Bologna, Italy)

Reiko Heckel (U. of Leicester, UK)

Einar Broch Johnsen (U. of Oslo, Norway)
Doug Lea (State U. of New York, USA)

Elie Najm (ENST Paris, France)

Uwe Nestmann (TU Berlin, Germany)

Erik Poll (U. of Nijmegen, Netherlands)
Arend Rensink (U. Twente, Netherlands)
Ralf Reussner (U. of Karlsruhe, Germany)
Bernhard Rumpe (TU Braunschweig, Germany)
Martin Steffen (U. of Kiel, Germany)
Carolyn Talcott (SRI International, USA)
Andrzej Tarlecki (Warsaw University, Poland)
Vasco Vasconcelos (U. of Lisbon, Portugal)
Heike Wehrheim (U. of Paderborn, Germany)
Elena Zucca (U. of Genova, Italy)

VIII Organization

Organizing Committee

Claudio Guidi
Ivan Lanese
Roberto Lucchi
Luca Padovani
Elisa Turrini
Stefano Zacchiroli

Referees

Davide Ancona
Michele Banci
Laura Bocchi
Edoardo Bonta
Mario Bravetti
Manuel Breschi
Barbara Catania
Walter Cazzola
Antonio Cerone
Giorgio Delzanno
Piergiorgio Di Giacomo
Luca Durante
Karsten Ehrig
Harald Fecher
Maurizio Gabbrielli
Geri Georg

Hans Gronniger
Andreas Gruener
Christian Haack
Jan Hendrik Hausmann
Marcel Kyas
Giovanni Lagorio

Grzegorz Marczynski
Francisco Martins
Viviana Mascardi
Peter lveczky
Wiestaw Pawlowski
Holger Rasch
Antonio Ravara
Dirk Reif3

Paolo Rosso

Murat Sahingoz
Luigi Sassoli
Martin Schindler
Gerardo Schneider
Aleksy Schubert
Graeme Smith
Mark Stein
Gabriele Taentzer
Simone Tini

Hugo Vieira
Steven Voelkel
Gianluigi Zavattaro
Artur Zawlocki

Table of Contents

I Invited Speakers

Security Issues in Service Composition
Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari

Separating Distribution from Coordination and Computation
as Architectural Dimensions
Jos€ Luiz Fiadeiro

The Bisimulation Proof Method: Enhancements and Open Problems
Davide Sangiorgi

II Regular Papers

An Approach to Quality Achievement at the Architectural
Level: AQUA
Heeseok Choi, Keunhyuk Yeom, Youhee Choi,
Mikyeong Moon

Bounded Analysis and Decomposition for Behavioural Descriptions
of Components
Pascal Poizat, Jean-Claude Royer, Gwen Salaiin

Modeling and Validation of a Software Architecture for the Ariane-5
Launcher
Tulian Ober, Susanne Graf, David Lesens

Synchronizing Behavioural Mismatch in Software Composition
Carlos Canal, Pascal Poizat, Gwen Salatin

Static Safety for an Actor Dedicated Process Calculus by Abstract
Interpretation
Pierre-Loic Garoche, Marc Pantel, Xavier Thiriouz

Temporal Superimposition of Aspects for Dynamic Software
Architecture
Carlos E. Cuesta, Maria del Pilar Romay, Pablo de la Fuente,
Manuel Barrio-Solorzano

X Table of Contents

Modeling Long—Running Transactions with Communicating
Hierarchical Timed Automata

Ruggero Lanotte, Andrea Maggiolo-Schettini, Paolo Milazzo,

Angelo Troina

Transformation Laws for UML-RT
Rodrigo Ramos, Augusto Sampaio, Alexandre Mota

Underspecification, Inherent Nondeterminism and Probability in
Sequence Diagrams
Atle Refsdal, Ragnhild Kobro Runde, Ketil Stglen

Generating Instance Models from Meta Models
Karsten Ehrig, Jochen M. Kiister, Gabriele Taentzer,
Jessica Winkelmanmn

KM3: A DSL for Metamodel Specification
Frédéric Jouault, Jean Bézivin

Defining Object-Oriented Execution Semantics Using Graph
Transformations
Harmen Kastenberg, Anneke Kleppe, Arend Rensink

Type-Safe Runtime Class Upgrades in Creol
Ingrid Chieh Yu, Einar Broch Johnsen, Olaf Owe

Abstract Interface Behavior of Object-Oriented Languages with
Monitors)
Erika Abrahdm, Andreas Grimer, Martin Steffen...................

Mobility Mechanisms in Service Oriented Computing
Claudio Guidi, Roberto Lucchi............. oo ..

Theoretical Foundations of Scope-Based Compensable Flow Language
for Web Service

Geguang Pu, Huibiao Zhu, Zongyan Qiu, Shuling Wang,

Xiangpeng Zhao, Jifeng He

Author Index

Security Issues in Service Composition

Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari

Dipartimento di Informatica, Universita di Pisa, Italy
{bartolet, degano, giangi}@di.unipi.it

Abstract. We use a distributed, enriched A-calculus for describing net-
works of services. Both services and their clients can protect themselves,
by imposing security constraints on each other’s behaviour. Then, ser-
vice interaction results in a call-by-property mechanism, that matches
the client requests with service’s. A static approach is also described,
that determines how to compose services while guaranteeing that their
execution is always secure, without resorting to any dynamic check.

1 Introduction

Service-oriented computing (SOC) is an emerging paradigm to design distributed
applications [31, 30, 19]. In this paradigm, applications are built by assembling
together independent computational units, called services. A service is a stand-
alone component distributed over a network, and made available through stan-
dard interaction mechanisms. An important aspect is that services are open, in
that they are built with little or no knowledge about their operating environ-
ment, their clients, and further services therein invoked. Composition of ser-
vices may require peculiar mechanisms to handle complex interaction patterns
(e.g. to implement transactions), while enforcing non-functional requirements
on the system behaviour (e.g. security and service level agreement). Web Ser-
vices [3, 34, 38] built upon XML technologies are possibly the most illustrative
and well developed example of the SOC paradigm. Indeed, a variety of XML-
based technologies already exists for describing, discovering and invoking web
services [18, 14, 5, 39]. There are also several standards for defining and enforcing
non-functional requirements of services, e.g. WS-Security [6], WS-Trust [4] and
WS-Policy [15] among the others.

1.1 Security and Service Composition

The orchestration of services consists of their composition and coordination.
Languages for that have been recently proposed, e.g. BPELAWS [5, 25]. Service
composition heavily depends on which information about a service is made pub-
lic, on how to choose those services that match the user’s requirements, and
on their actual run-time behaviour. Security makes service composition even
harder. Services may be offered by different providers, which only partially trust
each other. On the one hand, providers have to guarantee the delivered ser-
vice to respect a given security policy, in any interaction with the operational

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 1-16, 2006.
© IFIP International Federation for Information Processing 2006

2 M. Bartoletti, P. Degano, and G.L. Ferrari

environment, and regardless of who actually called the service. On the other
hand, clients may want to protect their sensible data from the services invoked.

A typical approach consists in endowing the network infrastructure with au-
thentication mechanisms, so to certify the identity of services. However, security
may be breached even by trusted services, either because of unintentional be-
haviour (e.g. bugs), or because the composition of the client and the services
exhibits some behaviour unwanted by the client (e.g. leakage of information).

We have addressed the problem of security in a linguistic framework. In our
approach, clients may protect from their callers by wrapping security-critical por-
tions of their own code into safety framings. These framings enforce the given
security policy on the execution of the wrapped piece of code, aborting it when-
ever about to violate the policy, thus offering additional flexibility with respect
to monolithic global policies, and relieving the programmer of guarding each use
of security-critical resources.

On their side, callers may constrain the behaviour of the called services, by
supplying a security policy at the moment of invocation. We push further this
invocation mechanism, by allowing callers to request services that not only do
obey the imposed security constraints, but that also respect a given contract on
their functional behaviour. The implementation of this so-called call-by-property
invocation mechanism requires that services are published together with a cer-
tified abstraction of their behaviour.

1.2 The Planning Problem

Call-by-property invocation and safety framings make service composition se-
cure. A plan orchestrates the execution of a service-based application, by asso-
ciating the sequence of run-time service requests with a corresponding sequence
of selected services. A major problem is still left open: how to construct a plan
that guarantees no executions will abort because of some action attempting to
violate security.

Determining such a viable plan amounts to selecting from the network those
services that accomplish the requested task, while respecting the security con-
straints on demand. Those services that locally obey the property imposed by
a request are not always good candidates, because their behaviour may affect
security of the whole composition. For example, consider a device with a limited
computational power. Suppose it downloads an applet from the network, and
then delegates a remote service to run it. Although the contract between the
device and the code provider is fulfilled, the applet may violate a security policy
imposed by the executer. To determine the viable plans, one has to check the
effects of all the available applets against the security policies of all the remote
executers.

As a matter of fact, there might be several different kinds of plans, each with
a different expressive power. Among them, one may consider plans that attach
a selection of services to each program point representing a service request. The
expressive power varies according to the nature of the information associated
with each request. Simple plans associate a single service with each request,

Security Issues in Service Composition 3

multi-choice plans map requests into sets of services, and dependent plans also
convey the dependence of a service selection with the choices made in the past (a
sort of continuation-passing plan). These kinds of plans have been studied in [9].
Dependent multi-choice plans are a mix of the last two kinds. Further expressive
power is gained when relaxing the assumption of associating service selections to
the program points where requests are made. Regular plans drive the execution
of a program, by providing it with the possible patterns of service selections, in
the form of a regular expression. Dynamic plans can be updated at run-time,
according to the evaluation of some conditions on the program execution (e.g.
boolean guards in conditionals, number of iterations in a loop, etc.).

1.3 A Static Approach to Secure Service Composition

We have proposed a solution to the planning problem, within a distributed frame-
work [10]. Services are functional units in an enriched A-calculus, they are ex-
plicitly located at network sites, and they have a published public interface.
Unlike standard syntactic signatures, this interface includes an abstraction of
the service behaviour, in the form of annotated types. To obtain a service with a
specific behaviour, a client queries the network for a published interface match-
ing the requirements. Security is implemented by wrapping the critical blocks
of code inside safety framings (with local scopes, possibly nested), that enforce
the relevant policies during the execution of the block. In the spirit of history-
based security [1], a security policy can inspect the whole execution history at
a given site. Since our framework is fully distributed, our policies cannot span
over multiple sites.

We have introduced a type and effect system for our calculus [21, 28, 35]. The
type of a service describes its functional behaviour, while the effect is a history
expression, representing those histories of events relevant to security. History
expressions extend regular expressions with information about the selection of
services, coupled with their corresponding effect.

We have then devised a way of extracting from a history expression all the
viable plans, i.e. those that successfully drive secure executions. This is a two-
stage construction. A first transformation of history expressions makes them
model-checkable for validity [7]. Valid history expressions guarantee that the
services they come from never go wrong at run-time. From valid histories it is
then immediate to obtain the viable plans, that make any execution monitor
unneeded.

1.4 Trusted Orchestration

Our planning technique acts as a trusted orchestrator of services. It provides
a client with the plans guaranteeing that the invoked services always respect
the required properties. Thus, in our framework the only trusted entity is the
orchestrator, and neither clients nor services need to be such. In particular, the
orchestrator infers functional and behavioural types of each service. Also, it is
responsible for certifying the service code, for publishing its interface, and for

4 M. Bartoletti, P. Degano, and G.L. Ferrari

guaranteeing that services will not arbitrarily change their code on the fly: when
this happens, services need to be certified again.

When an application is injected in the network, the orchestrator provides it
with a viable plan (if any), constructed by composing and analysing the certified
interfaces of the available services. The trustworthiness of the orchestrator relies
upon formal grounds. We proved the soundness of our type and effect system,
and the correctness of the static analysis and model-checking technique that
infers viable plans.

The orchestrator constructs the plans for a client, by considering the view of
the network at the moment the application is injected. To be more dynamic, one
would like to manage the discovering of new services, as well as the case when
existing ones are no longer available.

Both these problems require a special treatment. Multi-choice plans are a first
solution to deal with disappearing services, because they offer many choices for
the same request. Publication of new services poses instead a major problem.
To cope with that, one has to reconfigure plans at run-time, by exploiting the
new interfaces. However, incrementally checking viability of plans is an open
problem. A possible solution is to enrich history expressions with hooks where
new services can be attached. The orchestrator then needs to check the validity
of the newly discovered plans, hopefully in an incremental manner.

1.5 Related Work

The secure composition of components underlies the design of Sewell and Vitek’s
box-m [33], an extension of the 7-calculus that allows for expressing safety poli-
cies in the form of security wrappers. These are programs that encapsulate a
component to control the interactions with other (possibly untrusted) compo-
nents. A type system that statically captures the allowed causal information
flows between components. Our safety framings are closely related to wrappers.

Gorla, Hennessy and Sassone [23] consider a calculus for agents which may
migrate between sites in a controlled manner. Each site has a membrane, repre-
senting both a security policy and a classification of the levels of trust of external
sites. A membrane guards the incoming agents before allowing them to execute.

Recently, increasing attention has been devoted to express service contracts
as behavioural (or session) types. These synthetise the essential aspects of the
interaction behaviour of services, while allowing efficient static verification of
properties of composed systems. Session types [24] have been exploited to for-
malize compatibility of components [37] and to describe adaptation of web ser-
vices [16]. Security issues have been recently considered in terms of session types,
e.g. in [13], which proves the decidability of type-checking in an extension of the
m-calculus with session types and correspondence assertions [40).

Other works have proposed type-based methodologies to check security prop-
erties of distributed systems. For instance, Gordon and Jeffrey [22] use a type
and effect system to prove authenticity properties of security protocols. Web ser-
vice authentication has been recently modelled and analysed in (11,12] through
a process calculus enriched with cryptographic primitives.

Security Issues in Service Composition 5

The problem of discovering and composing Web Services by taking advan-
tage of semantic information has been the subject of a considerable amount of
research and development, [2,17,27,29, 32, 36] to cite a few. The idea is to ex-
tend the primitives of service description languages with basic constructs for
specifying properties of the published interface. We can distinguish between
semantic-web descriptions [2, 29, 32, 36] in which service interfaces are annotated
with parameter ontologies, and behavioural description [17,27] in which the an-
notation details the ordering of service actions. A different solution to planning
service composition has been proposed in [26], where the problem of composing
services in order to achieve a given goal is expressed as a constraint satisfaction
problem. Our approach extends and complements those based on behavioral de-
scriptions, with an eye to security. Indeed, our methodology fully automates the
process of discovering services and planning their composition in a secure way.

2 Planning Secure Service Compositions

To illustrate our approach, consider the scenario in the figure below. The boxes
model services, distributed over a network. Each box encloses the service code,
and is decorated with the location ¢; where the service is published.

Assume that the client at site £y is a device with limited computational ca-
pabilities, wanting to execute some code downloaded from the network. To do
that, the client issues two requests in sequence. The request labelled r, asks for a
piece of mobile code (e.g. an applet), and it can be served by two code providers
at ¢; and ¢5. The request type 7 — (7 — 7) means that, upon receiving a value
of type 7 (which can be an arbitrary base type, immaterial here) the invoked
service replies with a function from 7 to 7, with no security constraints.

£o b
Az. plop; -]
f=req 7 — (1 —7) 2
P
3
ac; @' [f()] -+
(req,,(r—7) > 1) f Uy
o i) e

Fig. 1. One client (£o), two code providers (¢1,2), and two code executers (3, £4)

6 M. Bartoletti, P. Degano, and G.L. Ferrari

The service at £, returns a function that protects itself with a policy ¢,
permitting its use in certified sites only (modelled by the event a.). Within the
function body, the only security-relevant operation is a read o, on the file system
where the delivered code is run. The code provided by /¢5 first reads (o) some
local data, and eventually writes them () back to 4.

Since £p has a limited computational power, the code f obtained by the request
71 is passed as a parameter to the service invoked by the request r2. This request
can be served by /3 and ¢4. The service at ¢5 is certified (ac), and runs the
provided code f under a “Chinese Wall” security policy ¢’, requiring that no
data can be written () after reading them (a,). The service at £, is not
certified, and it simply runs f.

2.1 Programming Model

Clients and services are modelled as expressions in a A-calculus enriched with
primitives for security and service requests. Security-relevant operations are ren-
dered as side-effects in the calculus, and they are called access events (e.g.
Qe, r,). A security policy is a regular property over a sequence 1 of access
events, namely a history. A piece of code e framed within a policy ¢ (written
ple]) must respect ¢ at each step of its execution. A service request has the
form req,p. The label 7 uniquely identifies the request, while the request type

p is the query pattern to be matched by the invoked service. For instance, the

request type 7 2, 7' matches services with functional type 7 — 7/, and whose

behaviour respects the policy ¢. The abstract syntax of services follows.

Syntax of Services

e,e/ = g variable
« access event
if btheneelsee conditional
ALT. e named abstraction
ee application
©le] safety framing
req,p service request
wait / wait reply

L |

The stand-alone evaluation of a service is much alike the call-by-value se-
mantics of the A-calculus; additionally, it enforces all the policies within their
framings. More precisely, assume that, starting from the current history 7, an
expression e may evolve to ¢/ and extend the history to 7. Then, a framing
¢le] may evolve to ple’] if i’ satisfies ¢ — otherwise the evaluation gets stuck.
Eventually, values leave the scope of framings.

When a service is plugged into a network, a plan is used to resolve the requests
therein, acting as an orchestrator. For brevity, we consider here only the case of
simple plans, that have the following syntax:

