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Preface

This volume contains the proceedings of the 8th IFIP International Confer-
ence on Formal Methods for Open Object-based Distributed Systems (FMOODS
2006). The conference was held in Bologna, Italy, 14-16 June 2006, as part of
the federated multiconference DisCoTec (Distributed Computing Techniques),
together with the 8th International Conference on Coordination Models and
Languages (COORDINATION) and the 6th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS). DisCoTec was
organized by the Department of Computer Science of the University of Bologna.

Established in 1996, the FMOODS series of conferences aims to provide an
integrated forum for research on formal aspects of open object-based distributed
systems. The FMOODS 2006 especially attracted novel contributions reflecting
recent developments in the area, such as component- and model-based design,
service-oriented computing, and software quality. Some more specific topics of
interest were: semantics and implementation of object-oriented programming
and (visual) modelling languages; formal techniques for specification, design,
analysis, verification, validation and testing; formal methods for service-oriented
computing; and integration of quality of service requirements into formal models.

These proceedings contain a selection of 16 research contributions, out of
51 submissions, which went through a rigorous review process by international
reviewers. We therefore owe special thanks to all members of the Program Com-
mittee, and their sub-referees, for the excellent work they have done in the short
time they had.

Additionally, these proceedings include three invited papers by Pierpaolo
Degano (University of Pisa), José Luiz Fiadeiro (University of Leicester) and
Davide Sangiorgi (University of Bologna).

Finally, our thanks go to the Organizing Committee of the DisCoTec fed-
erated conference, chaired by Gianluigi Zavattaro, for the excellent work done
and for the support they gave in managing the submission system by Philippe
Rigaux. We also gratefully acknowledge the financial support of the Department
of Computer Science of the University of Bologna and from the EU-project
SENSORIA.

June 2006 Roberto Gorrieri
Heike Wehrheim
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Security Issues in Service Composition

Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari

Dipartimento di Informatica, Universita di Pisa, Italy
{bartolet, degano, giangi}@di.unipi.it

Abstract. We use a distributed, enriched A-calculus for describing net-
works of services. Both services and their clients can protect themselves,
by imposing security constraints on each other’s behaviour. Then, ser-
vice interaction results in a call-by-property mechanism, that matches
the client requests with service’s. A static approach is also described,
that determines how to compose services while guaranteeing that their
execution is always secure, without resorting to any dynamic check.

1 Introduction

Service-oriented computing (SOC) is an emerging paradigm to design distributed
applications [31, 30, 19]. In this paradigm, applications are built by assembling
together independent computational units, called services. A service is a stand-
alone component distributed over a network, and made available through stan-
dard interaction mechanisms. An important aspect is that services are open, in
that they are built with little or no knowledge about their operating environ-
ment, their clients, and further services therein invoked. Composition of ser-
vices may require peculiar mechanisms to handle complex interaction patterns
(e.g. to implement transactions), while enforcing non-functional requirements
on the system behaviour (e.g. security and service level agreement). Web Ser-
vices [3, 34, 38] built upon XML technologies are possibly the most illustrative
and well developed example of the SOC paradigm. Indeed, a variety of XML-
based technologies already exists for describing, discovering and invoking web
services [18, 14, 5, 39]. There are also several standards for defining and enforcing
non-functional requirements of services, e.g. WS-Security [6], WS-Trust [4] and
WS-Policy [15] among the others.

1.1 Security and Service Composition

The orchestration of services consists of their composition and coordination.
Languages for that have been recently proposed, e.g. BPELAWS [5, 25]. Service
composition heavily depends on which information about a service is made pub-
lic, on how to choose those services that match the user’s requirements, and
on their actual run-time behaviour. Security makes service composition even
harder. Services may be offered by different providers, which only partially trust
each other. On the one hand, providers have to guarantee the delivered ser-
vice to respect a given security policy, in any interaction with the operational

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 1-16, 2006.
© IFIP International Federation for Information Processing 2006



2 M. Bartoletti, P. Degano, and G.L. Ferrari

environment, and regardless of who actually called the service. On the other
hand, clients may want to protect their sensible data from the services invoked.

A typical approach consists in endowing the network infrastructure with au-
thentication mechanisms, so to certify the identity of services. However, security
may be breached even by trusted services, either because of unintentional be-
haviour (e.g. bugs), or because the composition of the client and the services
exhibits some behaviour unwanted by the client (e.g. leakage of information).

We have addressed the problem of security in a linguistic framework. In our
approach, clients may protect from their callers by wrapping security-critical por-
tions of their own code into safety framings. These framings enforce the given
security policy on the execution of the wrapped piece of code, aborting it when-
ever about to violate the policy, thus offering additional flexibility with respect
to monolithic global policies, and relieving the programmer of guarding each use
of security-critical resources.

On their side, callers may constrain the behaviour of the called services, by
supplying a security policy at the moment of invocation. We push further this
invocation mechanism, by allowing callers to request services that not only do
obey the imposed security constraints, but that also respect a given contract on
their functional behaviour. The implementation of this so-called call-by-property
invocation mechanism requires that services are published together with a cer-
tified abstraction of their behaviour.

1.2 The Planning Problem

Call-by-property invocation and safety framings make service composition se-
cure. A plan orchestrates the execution of a service-based application, by asso-
ciating the sequence of run-time service requests with a corresponding sequence
of selected services. A major problem is still left open: how to construct a plan
that guarantees no executions will abort because of some action attempting to
violate security.

Determining such a viable plan amounts to selecting from the network those
services that accomplish the requested task, while respecting the security con-
straints on demand. Those services that locally obey the property imposed by
a request are not always good candidates, because their behaviour may affect
security of the whole composition. For example, consider a device with a limited
computational power. Suppose it downloads an applet from the network, and
then delegates a remote service to run it. Although the contract between the
device and the code provider is fulfilled, the applet may violate a security policy
imposed by the executer. To determine the viable plans, one has to check the
effects of all the available applets against the security policies of all the remote
executers.

As a matter of fact, there might be several different kinds of plans, each with
a different expressive power. Among them, one may consider plans that attach
a selection of services to each program point representing a service request. The
expressive power varies according to the nature of the information associated
with each request. Simple plans associate a single service with each request,
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multi-choice plans map requests into sets of services, and dependent plans also
convey the dependence of a service selection with the choices made in the past (a
sort of continuation-passing plan). These kinds of plans have been studied in [9].
Dependent multi-choice plans are a mix of the last two kinds. Further expressive
power is gained when relaxing the assumption of associating service selections to
the program points where requests are made. Regular plans drive the execution
of a program, by providing it with the possible patterns of service selections, in
the form of a regular expression. Dynamic plans can be updated at run-time,
according to the evaluation of some conditions on the program execution (e.g.
boolean guards in conditionals, number of iterations in a loop, etc.).

1.3 A Static Approach to Secure Service Composition

We have proposed a solution to the planning problem, within a distributed frame-
work [10]. Services are functional units in an enriched A-calculus, they are ex-
plicitly located at network sites, and they have a published public interface.
Unlike standard syntactic signatures, this interface includes an abstraction of
the service behaviour, in the form of annotated types. To obtain a service with a
specific behaviour, a client queries the network for a published interface match-
ing the requirements. Security is implemented by wrapping the critical blocks
of code inside safety framings (with local scopes, possibly nested), that enforce
the relevant policies during the execution of the block. In the spirit of history-
based security [1], a security policy can inspect the whole execution history at
a given site. Since our framework is fully distributed, our policies cannot span
over multiple sites.

We have introduced a type and effect system for our calculus [21, 28, 35]. The
type of a service describes its functional behaviour, while the effect is a history
expression, representing those histories of events relevant to security. History
expressions extend regular expressions with information about the selection of
services, coupled with their corresponding effect.

We have then devised a way of extracting from a history expression all the
viable plans, i.e. those that successfully drive secure executions. This is a two-
stage construction. A first transformation of history expressions makes them
model-checkable for validity [7]. Valid history expressions guarantee that the
services they come from never go wrong at run-time. From valid histories it is
then immediate to obtain the viable plans, that make any execution monitor
unneeded.

1.4 Trusted Orchestration

Our planning technique acts as a trusted orchestrator of services. It provides
a client with the plans guaranteeing that the invoked services always respect
the required properties. Thus, in our framework the only trusted entity is the
orchestrator, and neither clients nor services need to be such. In particular, the
orchestrator infers functional and behavioural types of each service. Also, it is
responsible for certifying the service code, for publishing its interface, and for
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guaranteeing that services will not arbitrarily change their code on the fly: when
this happens, services need to be certified again.

When an application is injected in the network, the orchestrator provides it
with a viable plan (if any), constructed by composing and analysing the certified
interfaces of the available services. The trustworthiness of the orchestrator relies
upon formal grounds. We proved the soundness of our type and effect system,
and the correctness of the static analysis and model-checking technique that
infers viable plans.

The orchestrator constructs the plans for a client, by considering the view of
the network at the moment the application is injected. To be more dynamic, one
would like to manage the discovering of new services, as well as the case when
existing ones are no longer available.

Both these problems require a special treatment. Multi-choice plans are a first
solution to deal with disappearing services, because they offer many choices for
the same request. Publication of new services poses instead a major problem.
To cope with that, one has to reconfigure plans at run-time, by exploiting the
new interfaces. However, incrementally checking viability of plans is an open
problem. A possible solution is to enrich history expressions with hooks where
new services can be attached. The orchestrator then needs to check the validity
of the newly discovered plans, hopefully in an incremental manner.

1.5 Related Work

The secure composition of components underlies the design of Sewell and Vitek’s
box-m [33], an extension of the 7-calculus that allows for expressing safety poli-
cies in the form of security wrappers. These are programs that encapsulate a
component to control the interactions with other (possibly untrusted) compo-
nents. A type system that statically captures the allowed causal information
flows between components. Our safety framings are closely related to wrappers.

Gorla, Hennessy and Sassone [23] consider a calculus for agents which may
migrate between sites in a controlled manner. Each site has a membrane, repre-
senting both a security policy and a classification of the levels of trust of external
sites. A membrane guards the incoming agents before allowing them to execute.

Recently, increasing attention has been devoted to express service contracts
as behavioural (or session) types. These synthetise the essential aspects of the
interaction behaviour of services, while allowing efficient static verification of
properties of composed systems. Session types [24] have been exploited to for-
malize compatibility of components [37] and to describe adaptation of web ser-
vices [16]. Security issues have been recently considered in terms of session types,
e.g. in [13], which proves the decidability of type-checking in an extension of the
m-calculus with session types and correspondence assertions [40).

Other works have proposed type-based methodologies to check security prop-
erties of distributed systems. For instance, Gordon and Jeffrey [22] use a type
and effect system to prove authenticity properties of security protocols. Web ser-
vice authentication has been recently modelled and analysed in (11,12] through
a process calculus enriched with cryptographic primitives.
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The problem of discovering and composing Web Services by taking advan-
tage of semantic information has been the subject of a considerable amount of
research and development, [2,17,27,29, 32, 36] to cite a few. The idea is to ex-
tend the primitives of service description languages with basic constructs for
specifying properties of the published interface. We can distinguish between
semantic-web descriptions [2, 29, 32, 36] in which service interfaces are annotated
with parameter ontologies, and behavioural description [17,27] in which the an-
notation details the ordering of service actions. A different solution to planning
service composition has been proposed in [26], where the problem of composing
services in order to achieve a given goal is expressed as a constraint satisfaction
problem. Our approach extends and complements those based on behavioral de-
scriptions, with an eye to security. Indeed, our methodology fully automates the
process of discovering services and planning their composition in a secure way.

2 Planning Secure Service Compositions

To illustrate our approach, consider the scenario in the figure below. The boxes
model services, distributed over a network. Each box encloses the service code,
and is decorated with the location ¢; where the service is published.

Assume that the client at site £y is a device with limited computational ca-
pabilities, wanting to execute some code downloaded from the network. To do
that, the client issues two requests in sequence. The request labelled r, asks for a
piece of mobile code (e.g. an applet), and it can be served by two code providers
at ¢; and ¢5. The request type 7 — (7 — 7) means that, upon receiving a value
of type 7 (which can be an arbitrary base type, immaterial here) the invoked
service replies with a function from 7 to 7, with no security constraints.

£o b
Az. plop; -]
f=req 7 — (1 —7) 2
P
3
ac; @' [f()] -+
(req,,(r—7) > 1) f Uy
o i) e

Fig. 1. One client (£o), two code providers (¢1,2), and two code executers (3, £4)
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The service at £, returns a function that protects itself with a policy ¢,
permitting its use in certified sites only (modelled by the event a.). Within the
function body, the only security-relevant operation is a read o, on the file system
where the delivered code is run. The code provided by /¢5 first reads (o) some
local data, and eventually writes them () back to 4.

Since £p has a limited computational power, the code f obtained by the request
71 is passed as a parameter to the service invoked by the request r2. This request
can be served by /3 and ¢4. The service at ¢5 is certified (ac), and runs the
provided code f under a “Chinese Wall” security policy ¢’, requiring that no
data can be written () after reading them (a,). The service at £, is not
certified, and it simply runs f.

2.1 Programming Model

Clients and services are modelled as expressions in a A-calculus enriched with
primitives for security and service requests. Security-relevant operations are ren-
dered as side-effects in the calculus, and they are called access events (e.g.
Qe, r, ). A security policy is a regular property over a sequence 1 of access
events, namely a history. A piece of code e framed within a policy ¢ (written
ple]) must respect ¢ at each step of its execution. A service request has the
form req,p. The label 7 uniquely identifies the request, while the request type

p is the query pattern to be matched by the invoked service. For instance, the

request type 7 2, 7' matches services with functional type 7 — 7/, and whose

behaviour respects the policy ¢. The abstract syntax of services follows.

Syntax of Services

e,e/ = g variable
« access event
if btheneelsee conditional
ALT. e named abstraction
ee application
©le] safety framing
req,p service request
wait / wait reply

L |

The stand-alone evaluation of a service is much alike the call-by-value se-
mantics of the A-calculus; additionally, it enforces all the policies within their
framings. More precisely, assume that, starting from the current history 7, an
expression e may evolve to ¢/ and extend the history to 7. Then, a framing
¢le] may evolve to ple’] if i’ satisfies ¢ — otherwise the evaluation gets stuck.
Eventually, values leave the scope of framings.

When a service is plugged into a network, a plan is used to resolve the requests
therein, acting as an orchestrator. For brevity, we consider here only the case of
simple plans, that have the following syntax:



