INTRODUCTION TO
PARALLEL COMPUTING

Ted G. Lewis
Hesham El-Rewini

INTRODUCTION TO
PARALLEL COMPUTING

Ted G. Lewis and Hesham El-Rewini
with In-Kyu Kim

5 L # R

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Lewis, T. G. (Theodore Gyle)
Introduction to parallel computing / by Ted G. Lewis & Hesham El-Rewini.
p- cm.
Includes index.
ISBN 0-13-498924-4

1. Parallel processing (Electronic computers) I. El1-Rewini,
Hesham. II. Title.

QA76,58.1L48 1992
004’ .35--dc20 91-395892
CIP

This book was acquired, developed, and produced by Manning Publications Co.

© 1992 by Prentice-Hall, Inc.
A Simon and Schuster Company
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of the theories and programs to
determine their effectiveness. The author and publisher make no warranty of any kind,
expressed or implied, with regrad to these programs or the documentation contained in this
book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these
programs.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-498924-U4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

1o Molly, Woofer, and Fuji
Ted Lewis

1o my mother, who taught me to give!
Hesham El-Rewini

Preface

Parallel computing is one of the most exciting technologies to achieve prominence
since the invention of electronic computers in the 1940s. The shift toward multiple
processing units per computer takes its place alongside other major shifts in comput-
ing since the Dawning Age of the 1950s; the Age of Mainframes in the 1960s; the Age
of Minis in the 1970s; the Age of Personal Computers in the 1980s; and finally, the
Age of Parallel Computers in the 1990s. With such a profound influence on all of
computing, it is important to understand the fundamentals of parallel computing,
and how it changes the way we think about computers. Fundamentals is what this
book is about.

New technologies go through several distinct stages on their way to mainstream
acceptance. First, there is the experimental stage, when researchers study ways to best
apply technology to certain problems. Then, there quickly follows an entrepreneurial
stage, when products are manufactured and sold to “early adopters.” In stage three, a
rapid climb up the logistics growth curve is experienced, while the new technology
moves into the mainstream. At the time of this writing, we are at the base of this
logistics curve. By the mid-1990s, we will reach its mid-point, and by the year 2000,
parallel computing will be as mainstream as personal computers were in 1989.

Information dissemination plays an important role in moving a new idea into the
mainstream. Research articles in journals are quickly followed by research mono-
graphs, of keen interest to a limited number of researchers. But, for the technology to
begin its climb along the logistics growth curve, readable explanations of the new
ideas must find their way into the hands of non-experts. Hopefully, this book will
serve that purpose.

This book is appropriate for a one-semester first course on parallel computing.
Each of the 12 chapters covers a different portion of parallel computing in approxi-
mately one week of class meetings. Exercises are given at the end of each chapter to
stimulate discussion, and a number of references are listed so the student can dig
deeper into each subject. In most American universities, this course will precede
other, more detailed courses on parallel processing, parallel programming, and
applications of parallel computers.

This book is also appropriate for an introduction to parallel computing for
practitioners—experts in the field of computing who are curious to learn more about
parallelism, but who do not want to plow through large volumes of research to extract
the basic ideas. In other words, this book is also written for the knowledgeable com-
puter engineer, scientist, and student who has not participated in the parallel comput-

ing revolution. For this group of people, we have tried to relate the ideas to specific
products and techniques thart existed in 1990. We have also attempted to survey the
emerging techniques and products that we think will become pivotal by the mid-
1990s. (As in any crystal ball exercise, we may be totally wrong in our estimation of
where parallel computing is headed.)

Our first goal in writing this book has been to provide a survey of all available
technologies for parallel computing and to relate them to applications. Therefore,
in Chapter 1, we cover the entire field of parallel computing at a very introductory
level. In the most succinct manner possible, we describe the different styles or para-
digms of parallel computing using several analogies. This establishes a common
terminology that we rely on throughout the book.

Parallelism has been touted as a solution to the problem of making computers
faster and faster. Indeed, it would seem that there is no limit to the performance of
electronic devices as we hear about increases in speed on a daily basis. But, in fact,
there are physical limits to switching speeds of components. Sooner or later, these
limits will be reached, and parallelism will be the only recourse. However, even
before the speed limit is reached, there is an economic motivation to use parallel pro-
cessing in place of faster and more expensive single-processor systems. Indeed, the
economic advantage of low-cost, multiple processing systems was realized in the
mid-1980s. Hence, the 1990s were poised for the decade of parallelism simply due
to economic forces. But, what do we mean by “performance” Chapter 2 develops
both theoretical and practical measures of performance and shows that there is more
to measured performance than raw MFLOPS (million floating point operations per
second).

This book is not about parallel processing hardware—the application of parallel
hardware to construct parallel computers—but instead, on the essence of parallel
computing: hardware plus software plus applications. To gain a solid understanding
of the hardware devices used in parallel computing, we provide an overview of paral-
lel processors in Chapter 3. This survey describes the many ways to connect multiple
processors together, and shows how each might be used to solve certain problems.

We are especially concerned with the paradigm shift that takes place in software
when the target machine is a parallel processor. The traditional programming style
and way of thinking about a problem no longer works when the solution can be com-
puted by a collection of parallel parts all cooperating to achieve a final result. Paral-
lel computing is an opportunity to rethink programming from an entirely fresh
perspective. Such “new perspectives” are called paradigms. In Chapters 4 through 8,
we elaborate on a number of paradigms and show how parallelism is employed in a
variety of programming styles. The shared-memory paradigm is perhaps most like
traditional programming; the distributed-memory paradigm introduces the concept
of message passing; the object-oriented paradigm introduces the concept of a server;
the data parallel paradigm relies on the single-instruction-multiple-data (SIMD)
model; and the functional dataflow paradigm introduces the concept of a side-effect-
free MIMD (multiple-instruction-multiple-data) model.

X Preface

One of the major differences between serial computing and parallel computing
is the notion of optimal resource allocation. In a parallel computer, multiple pro-
cessors are resources to be carefully allocated and used to advantage. A poorly
designed parallel computer application may run slower in parallel than on a serial
machine! Thus, careful planning and design are needed to utilize the processors in
the most efficient and “optimal” manner. Chapter 9 develops the theory of optimal
processor utilization more fully. This is the general problem of scheduling parts of
a parallel program onto the processors in such a pattern that the application runs as
fast as possible. Chapter 10 continues along this line of reasoning by concentrating
on perhaps the greatest opportunity for parallelism—Iloops. Loops consume much
time in serial processing, so they naturally become targets for parallelization.

Facing the prospect of converting billions of lines of serial program code into par-
allel code has deterred many from using parallel computing technology. Unfortu-
nately, it is not possible to gain the maximal benefit of parallelism without major
restructuring of existing software. Chapter 11 describes the technology of program
restructuring and parallelization. This difficult problem remains stuck in the world
of research, but some progress has been made. Chapter 11 discusses both theory and
practical tools for conversion of serial programs into parallel equivalents.

Finally, we would like to combine all that we know about parallelism into one
“dream environment” that makes application development simple and easy. Such a
parallel programming environment does not exist, but progress is being made along
several fronts. Chapter 12 surveys what has been done, what is available, and what is
still needed in this vital area.

We have attempted to provide a complete reference to the field of parallel com-
puting without overly burdening the reader with details. Large pieces of parallel pro-
gram code, benchmarks, and other derails are placed in the appendices.

We owe much to the people who have contributed to this work. In particular, to
Inkyu Kim, who wrote Chapter 11 and provided many suggestions for other chapters.
Youfeng Wu, Shala Arshi, Gary Graunke, Mike Quinn, and others provided sample
programs. Norris Smith, Marjan Bace, Mike Evangelist, Bruce Shriver, David
Padua, Doug DeGroot, Janice Cuny, John Gustafson, Bruce Boghosian, Shreekant
Thakkar, Gregory Riccardi, and Marilynn Livingston all contributed to many
improvements in the original manuscript. We are indebted to them for many sugges-
tions and insightful conversations. Responsibility for errors and inconsistencies rests
with us.

Ted Lewsis, lewis@cs.orst.edu
Hesham El-Rewini, rewini@unocss.unomaha.edu

Preface xi

Contents

Preface xiii

1 What Is Parallel Computing?1

1.1
1.2
1.3
1.4

THE NEXT REVOLUTION IN COMPUTING 2
THE PARALLEL WAVE 3

FLYNN’S HARDWARE TAXONOMY 18

GRAND CHALLENGES 22

PROBLEMS FOR DISCUSSION AND SOLUTION 24

2 Measures of Performance 27

2.1
2.2
2.3
2.4

FASTER THAN THE SPEED OF LIGHT 28
CHARACTERIZING PARALLEL PROGRAMS 34
OTHER PERFORMANCE MEASURES 42
BENCHMARK PERFORMANCE 44

PROBLEMS FOR DISCUSSION AND SOLUTION 54

3 Parallel Processors 57

3.1
3.2
3.3

A TAXONOMY OF TOPOLOGIES 58
DISTRIBUTED-MEMORY NETWORKS 73
DYNAMIC INTERCONNECTION NETWORKS 86
PROBLEMS FOR DISCUSSION AND SOLUTION 90

4 Shared-Memory Parallel Programming 93

4.1
4.2
4.3

A SHARED-MEMORY PROCESS MODEL 93

ANALYSIS TECHNIQUES 101

SHARED-MEMORY MULTIPROCESSOR SYSTEMS 119
PROBLEMS FOR DISCUSSION AND SOLUTION 120

5 Distributed-Memory Parallel Programming 123

5.1
5.2
5.3
5.4
5.5
5.6

MODELS FOR DISTRIBUTED-MEMORY PROGRAMMING 124
FAST FOURIER TRANSFORM ON TRANSPUTERS 132
PROGRAMMING HYPERCUBES 135

COMPUTER VISION APPLICATION ON HYPERCUBE 143
PROGRAMMING EXAMPLES 145

SUMMARY 151

PROBLEMS FOR DISCUSSION AND SOLUTION 151

6 Object-Oriented Parallel Programming 155

6.1
6.2
6.4
6.5

CONCEPTS OF OBJECT PROGRAMMING 156

OBJECT PROGRAMMING, PARALLELISM, AND C++ 161
APPLICATION TO SIMULATION 179

OTHER PARALLEL OBJECT LANGUAGES 183
PROBLEMS FOR DISCUSSION AND SOLUTION 184

7 Data Parallel Programming 189

8

71
7.2
7.3
7.4
75
7.6
77

THE DATA PARALLEL PARADIGM 189

THE CONNECTION MACHINE 190

DATA PARALLEL PROGRAMMING LANGUAGES 194

DATA PARALLEL ALGORITHMS 200

APPLICATIONS OF DATA PARALLELISM 204

DATA PARALLEL PROGRAMMING ON MIMD COMPUTERS 210
SUMMARY 212

PROBLEMS FOR DISCUSSION AND SOLUTION 213

Functional Dataflow Programming 215

8.1
8.2
8.3
8.4

vi

A DUALITY PRINCIPLE 216

THE FUNCTIONAL PROGRAMMING PARADIGM 221
DESIGNING FUNCTIONAL PROGRAMS 231

AN APPLICATION IN STRANDS8 233

PROBLEMS FOR DISCUSSION AND SOLUTION 243

Contents

9 Scheduling Parallel Programs 245

9.1
9.2
2.5
9.4
9.5
9.6
- g
9.8

THE SCHEDULING PROBLEM 246

SCHEDULING TAXONOMY 246

AN ALTERNATE SCHEDULING TAXONOMY 248
STATIC SCHEDULING 249

OPTIMAL SCHEDULING ALGORITHMS 253
SCHEDULING HEURISTICS 257

EXAMPLE: ATMOSPHERIC SCIENCE APPLICATION 271
TASK GRAPHER: A PRACTICAL SCHEDULING TOOL 273
PROBLEMS FOR DISCUSSION AND SOLUTION 280

10 Loop Scheduling 283

10.1
10.2
10.3
10.4
10.5

DATA DEPENDENCE IN LOOPS 284

SCHEDULING LOOP ITERATIONS 284

LOOP SPREADING 287

LOOP UNROLLING 296

SUMMARY 308

PROBLEMS FOR DISCUSSION AND SOLUTION 309

11 Parallelizing Serial Programs 313

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

LOOP PARALLELIZATION TECHNIQUES 314

FORMAL DEFINITION OF DATA DEPENDENCE 316
REPRESENTATIONS OF DATA DEPENDENCE 317
OTHER DEPENDENCES 321

DATA DEPENDENCE TESTS 322

PARALLEL LOOP NOTATION 329

PARALLELIZATION OPTIMIZATION TECHNIQUES 331
CODE GENERATION 338

PARALLELIZING TOOLS 343

PROBLEMS FOR DISCUSSION AND SOLUTION 343

Contents vii

12 Parallel Programming Support Environments 347
12.1 PARALLEL CASE 347
12.2 OTHER TOOLBOX SYSTEMS 357
12.3 CODE/ROPE 366
12.4 FULL LIFE CYCLE ENVIRONMENTS 369
PROBLEMS FOR DISCUSSION AND SOLUTION 381

Appendix A SLALOM Benchmark 387

Appendix B DataParallel C Implementation of Gaussian Ellimination 413
Appendix C PPSE Solution to 7t Calculation 416

Index 429

viii

Contents

Chapter 1
What Is Parallel Computing?

In the first computing wave, scientific and business computers were more or less iden-
tical—big and slow. This was the “prehistory of computing,” where computing had
to be employed at any cost. And, even if early electronic computers were not very
fast, they achieved speeds that easily exceeded human computers.

The second and third waves brought on mainframes, minis, and finally micros.
This diversity of computing caused a number of niches to develop which broadened
and deepened the computer industry. Scientific and business computing went their
separate ways, and there seemed to be a computer in just about everyone’s price range.

But the original power users who pioneered computing continued to emphasize
speed above all else. Single-processor supercomputers achieved unheard of speeds
beyond 100 million instructions per second, and pushed hardware technology to the
physical limits of chip building. But soon this trend will come to an end, because
there are physical and architectural bounds which limit the computational power
that can be achieved with a single-processor system.

We are now enjoying the Parallel Wave of computing, where performance is
enhanced by using multiple processors. What is parallel computing and how does it
work? In this chapter we survey the (somewhat overlapping) paradigms of parallel
computing, touching on synchronous versus asynchronous, SIMD, MIMD, SPMD,
vector/array, systolic array, and dataflow. In each case, a fundamental parallel com-
puting paradigm is illustrated using a hypothetical bank as an analogy with a parallel
computer (tellers are parallel processors and customer transactions are tasks to be
performed).

Finally, we show that MIMD is the most general form of parallel computing, but
that there are certain performance advantages to each of the other forms. As a conse-
quence, it is important to know when and why to apply each one. SIMD and SPMD
forms of parallelism appear to be very good at scientific problem solving where
speed can be achieved because the data are regular and the calculations are uniform
and repetitious. MIMD appears to be appropriate for medium-grained parallelism
where communication overhead is not too great. While some scientific computing
may benefit from the MIMD style of parallelism, medium-grain problems are typ-
ical of business transaction processing applications.

1.1 THE NEXT REVOLUTION IN COMPUTING

Modern society is particularly susceptible to changes in computer technology. The
insurance and banking industries were forever changed by the mainframe data process-
ing computer; science and engineering will never be the same after the impact of
minicomputers and workstations; and our personal lives have been enriched by per-
sonal computers. Computers, and the advances they make, affect everyone. So revolu-
tions in computing make front-page news.

To determine the next step in computing, we must look to the past, because, like
most progress in technology, computing evolves through time in an orderly fashion.
Once we understand the pattern, we can extrapolate to surmise what will most likely
happen in the future.

1.1.1 Modern Prehistory

The Alwac 3E computer was typical of the state of computing in 1963. It could store
32,000 numbers, each with 32 bits, and read punched paper tape at an unheard of 100
frames per second. The Alwac was less powerful than a 1980 personal computer, but
it was operated by one person at a time much like a personal computer.

Early computers such as the Alwac had one major disadvantage compared with
personal computers: they were expensive. Because of high hardware costs, the first
generation of computers had to be shared by a lot of users to justify their cost. It
would take 20 years before these simple, easy-to-use machines were to reappear as
inexpensive alternatives to centralized computing.

1.1.2 The Age of Dinosaurs

By 1965 the Alwac “personal computer” and its contemporaries had been pushed
aside by the radically new IBM System/360 mainframe. Mainframes boosted IBM
from medium-sized office equipment manufacturer to global master of the comput-
ing industry, and established large centralized computers as the standard form of
computing for decades.

The IBM System/360 was the right computer in the right place at the right time.
It was in harmony with the instincts of most programmers of the mid-1960s and
early 1970s. It had a real operating system, multiple programming languages, and
incredibly large disks capable of 10 megabytes of storage! This was the first wave of
modern computing, and the world quickly jumped on the mainframe bandwagon (see
Figure 1.1). '

The System/360 filled a room with boxes and people to run them. Its transistor
circuits were reasonably fast. Power users could order magnetic core memories with
up to one megabyte of 32-bit words. This machine was large enough and expensive
enough to support many programs in memory at the same time, even though the cen-
tral processing unit had to switch from program to program as if it were juggling
balls in a circus. It quickly became the workhorse of business and made “IBM” a
household word for “computer.”

2 What Is Parallel Computing? Chapter1

1.1.3 The Second Wave

The mainframes of the first wave were firmly established by the late 1960s when
advances in semiconductor technology made the solid state memory and integrated
circuit feasible. These advances in hardware technology spawned the minicomputer
era. They were small, fast, and inexpensive enough to distribute throughout the com-
pany. Minicomputers made by DEC, Prime, and Data General led the way in defin-
ing a new kind of computing: departmental.

By the 1970s it was clear that there existed two kinds of commercial or business
computing: (1) centralized data processing mainframes, and (2) decentralized trans-
action processing minicomputers. The minis expanded the usefulness of computing
into engineering, scientific, and non-data processing applications. Computing got
broader, and in the process, touched more people’s lives (see Figure 1.2).

1.1.4 The Third Wave

When personal computers were introduced in 1977 by Altair, Processor Technology,
North Star, Tandy, Commodore, Apple, and many others, they were largely
ignored. But then a strange program called VisiCalc suddenly catapulted the origi-
nal “personal” computing idea of the 1960s into orbit. By 1981, personal computing
was becoming so pervasive that IBM entered the “billion dollar baby” market.

Personal computers enhanced the productivity of individuals, and in turn depart-
ments. Because big companies are made up of individuals, the productivity improve-
ments of individuals using stand-alone computers was too compelling to ignore. PCs
soon became pervasive (see Figure 1.3).

Networks of powerful personal computers and workstations began to replace
mainframes and minis by 1990. The power of the most capable “big” machine could
be had in a desktop model for one-tenth the cost. But, these individual desktop com-
puters were soon to be connected into larger complexes of computing by networking.

One of the clear trends in computing is the gradual substitution of networks in
place of central computers. These networks connect inexpensive, powerful desktop
machines to one another to form unequaled computing power. Networks are an early
form of parallel computing.

Clearly, there is a limit to the power of a single computer. Even networking has
limitations. Within the decade of the 1990s, the maximum switching speed of sili-
con will be reached and the rapid progress in achieving greater computing speed will

level off.

1.2 THE PARALLEL WAVE
What is the next wave of computing? How can machines continue to operate faster and

faster in the face of fundamental limits to the hardware? Parallel computing is the
answer to both of these questions. The 1990 decade is to parallel computing what the

1.2 THE PARALLEL WAVE 3

Business

Annual Scientific
Revenue
$1 B

$0.1B

Business

Applications — »
> S 1.000 10,000
Scientific 10 100

Unit Cost x $1,000

Figure 1.1 Profile of computing circa 1960. Annual revenues vs. unit cost, application type

Mainframe
$100 B - Mini
$10B -)
\
! I.
$1 B - A [/ '.r‘\‘
Personal AN ////y}{"!.".ﬁ\\
0.1B - AL /i'
s » i‘goo/////'} Super

NZ

LA
[4

Business

Applications

Scientific 10 100

Unit Cost x $1,000
Figure 1.2 Profile of computing circa 1977

Mini Mainframe
Personal
$100B
$10B A ‘; (e
|
$1B 1 ,’{’/f,}‘
Y
Business$ ‘ i,’ ~" S
{"::’f_/:,’/,,,["“"
Applications

1 10

Unit Cost x $1,000

Figure 1.3 Profile of computing circa 1987

4 What Is Parallel Computing?

Chapter1

1980 decade was to personal computing. But we must first define parallel computing
and explore its capabilities.

Parallelism is the process of performing tasks concurrently. To get a better feel for
parallel computing, we need to study a number of parallel paradigms. Then we can
classify these paradigms in some reasonable way, and use the classification as a basis
for an informal theory. This informal theory will be of immense value in determin-
ing what approach is best to use in each application we want to put on a parallel com-
puter.

1.2.1 Paradigms of Parallelism

The definition of paradigm has taken on a specific meaning among computer
experts. A paradigm is a model of the world that is used to formulate a computer solu-
tion to some problem. Paradigms give us a context in which to understand and then
solve a real-world problem. Because a paradigm is a model, it abstracts the details of
the problem from the reality, and in doing so, makes it easier to solve. However, like
all abstractions, the model may be inaccurate because it is only an approximation to
the real world.

Paradigms are especially important in parallel computing, because we need some-
thing to anchor our thoughts when thinking about concurrent processing. In particular,
we need a clear way to think about parallelism so we can control the complexity of
details that tends to overwhelm parallel programmers.

Some of the more popular paradigms for thinking about parallel computing are
shown in Figure 1.4. This is not a complete classification system, but one that
includes the major approaches taken by scientists, engineers, and researchers in a vari-
ety of fields, who apply parallel computing.

To understand Figure 1.4, we fabricate a purposely contrived example to illus-
trate the unique and similar features of each paradigm. To the author’s knowledge,
no real bank operates this way.

Parallel Computer

Synchronous

Asynchronous

Reduction

Systolic

Figure 1.4 Taxonomy of parallel computing paradigms

1.2 THE PARALLEL WAVE) 5

A banking analogy

We make an analogy between a bank and a parallel computing system (see Figure 1.5).
The bank tellers are like computer processors, and customers play the role of pro-
gram tasks that need to be executed. Having only #» =1 teller to help customers is
analogous to a uniprocessor system where program tasks are executed serially, one
after another. When the number of available tellers is greater than one, the bank oper-
ates somewhat like a multiprocessor system.

Suppose there are 7 customers each waiting to perform a transaction that takes #;
units of time for a single teller to process. If there is only one teller, the customers
m
are served sequentially so the time to serve all customersis)’ z,.
i=1

Now suppose additional tellers return from their break and begin serving more
than one customer at a time. If the number of working tellers is equal to the number of
customers, 7 = m, then each teller can serve exactly one customer. In this case, the
masx = Max(2y, 1y, ...t;p).

Of course this is the best case because all customers are served concurrently. We
call this form of parallelism #rivially parallel, because it is trivial to find and use the
parallelism intrinsic to the problem. In general, parallelism is much more difficult
to exploit than we have indicated in this simple example.

If the number of tellers happens to be less than the number of customers, n < m, then
some customers end up waiting on others to finish. Suppose for simplicity that there
are twice as many customers as there are tellers. Each teller would, on the average,
serve two customers. In general, it may be necessary for one teller to do more work
than the others. Clearly, if all tellers work at the same rate, then it is best to spread the
work evenly across all tellers. Sharing the burden equally is a form of load balanc-
ing—one of the goals of a well-tuned parallel processor system.

time for serving all customers is ¢

Honest Abe National Bank

THOMHMHOMTHM RIUHLIHOR

H

Teller #1 Teller #2 Teller #3 Teller #4

Figure 1.5 The bank analogy: Tellers are like parallel processors, customers are like
tasks, transactions are like operations, and accounts are like data in a parallel computer

6 What Is Parallel Computing? Chapter1

