Assembly Language
Programming for
PDP l1and LSI 11 Computers

Edouard J Desautels

Assembly Language
Programming for
PDP 11 and LSI 11 Computers

an introduction to computer organization

Edouard J. Desautels
University of Wisconsin / Madison

s

m
ub

. C. Brown Company Publishers
uque, lowa

O

o¥siio

Wm. C. Brown Chairman of the Board
Mark C. Falb Executive Vice President

Book Team

Alan R. Apt Editor

Julie A. Kennedy Production Editor

James M. McNeil Designer

Kevin J. Pruessner Design Layout Assistant
Faye Schilling Visual Research Editor
Mavis M. Oeth Permissions Editor

wch
Wm. C. Brown Company Publishers, College Division

Lawrence E. Cremer President

David Wm. Smith Vice President/Marketing

David A. Corona Assistant Vice President/Production Development and Design
Marcia H. Stout Marketing Manager

Janis M. Machala Director of Marketing Research

William A. Moss Production Editorial Manager

Marilyn A. Phelps Manager of Design

Mary Heller Visual Research Manager

Copyright © 1982 by Wm. C. Brown Company Publishers

Library of Congress Catalog Card Number: 81-70686

ISBN: 0-697-08164-8

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any

means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Printed in the United States of America

Assembly Language
Programming for
PDP 11 and LSI 11 Computers

an introduction to computer organization

This book is dedicated to my
wife, Jeannine, and my children,
Francine, Nicole, and Philip, for

their help and encouragement.

preface

The goal of this book is to help readers who have some experience
using computers to develop a deeper understanding of how they compute.
The very popular PDP-11 computer (and its look-alike, the LSI-11) are
used to illustrate the concepts involved.

This is a very substantial book. Don’t let it overwhelm you. Among
other virtues, it is essentially self-contained. This means you do not have
to keep looking through the PDP-11 MACRO-11 reference manual (138
pages plus appendixes), or the PDP-11 Processor Handbook (468 pages
plus appendixes), or the PDP-11 Peripherals Handbook (435 pages), or
the PDP-11 Terminals and Communications Handbook (344 pages), to
understand the topic at hand. One of the major advantages of having all
this material integrated in one volume is that it can all be extensively
cross-referenced in the index. The index is one of the most important
parts of this book. The index is presented in four parts. The first two parts
provide a quick reference to the PDP-11 instructions and the MACRO-
11 directives. The third part consists of special character references, since
these often have a critical role in the writing of computer programs. The
fourth part consists of a standard but very comprehensive index. The
instructions and directives are repeated in the index for the benefit of the
readers may not yet appreciate these distinctions.

The material is sequenced so that the key topics can be studied even
in the shortest typical quarter. Each instructor or reader can then select
from among the many other topics for semester courses, honors courses,
and independent (self-study) courses. Some examples of course organi-
zation are as follows.

1. Short course covering only fundamentals:
chapters 1-9; 10 from beginning through Hard-Copy Terminals;
11; 12 (macros only); selected topics from other chapters, as de-
sired.

2. Course for those familiar with some other machine language:
chapters 1 (first two sections); 3—19.

3. Course emphasizing software concepts:
chapters 1-9; 10 and 11 (selected topics); 12; 14 and 15 (selected
topics); 18—19.

4. Course emphasizing hardware concepts:
chapters 1-11; 12 and 13 (selected topics); 14; 15 (selected topics);
16-19.

XV

xvi

Once the fundamentals have been covered, the instructor or reader can
pick and choose among many essentially independent topics. Thus, in
chapter 12 assembly-time conditional directives are treated independently
of macros, and vice versa. Chapter 14 first discusses high speed input and
output; the later sections on spooling, performance, analog data, processor
traps, etc., can be included or not, as desired. Chapter 15, “Selected
Topics” has a similar structure. Any of the topics may be included in a
course or not, as desired.

The programming examples in the text are supplemented by program-
ming examples in the solutions to the over 280 end-of-chapter exercises;
the selected solutions, at the end of the book, cover questions that range
from simple review exercises to thought-provoking problems.

We hope readers will find the bibliographic essay in the last chapter
more interesting and useful than a conventional annotated bibliography.

The goal of this text is not to make readers experts at PDP-11 pro-
gramming, but to lay the foundation that is essential for any one who
wishes to pursue the study of computer organization, computer architec-
ture, the design of compilers for high level languages, and many other
facets of computing. This foundation will be very helpful for those who
have personal computers of any kind and want to find out what makes
them tick.

We assume that readers have programmed some computer in some
high level language. This experience should include having used two-
dimensional arrays and procedures or subroutines. Readers are therefore
assumed to be familiar with the program development cycle: problem
definition, data definition, algorithm selection, implementation, documen-
tation, optimization, testing, and enhancement.

Readers must have access to a DEC PDP-11 or an LSI-11 or some
system which uses either CPU (any model will do) and which provides
some version of the MACRO-11 assembler. Some of the systems which
could be used, besides those sold directly by DEC, include the Heath/
Zenith H11 and the Terak 8510. We are convinced that merely reading
about using machine language and assembly language is not a substitute
for writing and running programs at this language level.

The exercises at the end of most chapters are important. Readers
should take the time to at least think through an approach to solving the
more demanding problems if time does not permit writing out and possibly
programming the solutions. Some of the exercises introduce new ideas,
new terms, new tools, and useful algorithms.

Material is presented in a carefully thought-out sequence. Readers are
presented with relevant factual information and background, but not so
much as to overwhelm them. Learning the details of a computer’s instruc-
tion set can be as deadly as reading a dictionary if the presentation does
not take human nature into account. We have partitioned topics into
manageable units, interspersed with other topics, and we take advantage
of opportunities to use simpler concepts before proceeding to more ad-
vanced ones. The presentation is also enlivened by newspaper and mag-
azine articles on computer-based system malfunctions whose cause is very
likely to be related directly to the topic at hand. Some of the articles
discuss broader issues such as the legal challenges facing the marriage of
computing and telecommunications services.

Preface

It is important to note that we first examine machine language before
we approach assembly language. We recognize that the assembler is a
very useful tool, and make extensive use of it in the text. But in the
beginning, the assembler and the assembly process obscure what is going
on at the machine level just as much as do high level languages. After a
brief but illuminating venture into absolute coding in machine language,
we can then appreciate and exploit symbolic programming as a means to
gaining more insight into computing.

We do not advocate using machine language or assembly language as
a general purpose problem-solving tool. These low level languages are like
the ancient Latin and Greek that people were supposed to study as a
means of gaining insight into the structure of contemporary English. For
instance, the text often uses octal memory dumps, and we expect readers
to be able to interpret these. These are just a means to an end—to un-
derstand what the computer was doing, stripped of all layers of software.
Anyone who concludes that octal memory dumps are an efficient tool for
debugging programs written in a high level language has missed the point.

Learning about computing can be enjoyable and addictive, particularly
if you have sufficiently ready access to a computer so you can try all the
“what if’ situations that should be popping through your mind as you
proceed.

Notes to the Instructor

Our practice has been to assign computer exercises beginning with the
first week of class and to have one assignment immediately follow another
continuously throughout the semester. Depending on the class size, the
computing resources available, the magnitude of the assigned work, and
the assistance provided in grading the programs in a timely fashion, from
four to eight programming assignments are made in a 13-16 week se-
mester.

Typically, the first assignment involves finding the laboratory, verifying
that one can log in, that one can create and modify a small file using the
on-line editor. This course has been conducted in batch-processing mode
(using a self-service PDP-11); it has also been run with RT-11, RSTS,
and UNIX. In those cases it is advisable to also have a bare PDP-11 for
one-at-a-time hands-on use, if the multi-user system cannot be taken off
the air.

A typical second assignment has students design and implement a small
machine-language program, coded in absolute octal. The students use the
instruction subset of chapter 2 and installation-specific instructions on
loading and running this program. If a hands-on machine is available,
then it can be keyed in at the console and run. For many students this
may be the only chance they will ever have to completely control a
computer, and this experience gives them a great deal of confidence.

The next assignment has students use a few of the PDP-11 addressing
modes while writing their first MACRO-11 program. They are generally
given a file with instructions on assembling, linking, and executing it.
Then they are told to replace the innards with their own code and repeat
the process. This is a painless way to get them introduced to seeing and

Preface

xvii

xviii

using tools such as a contingency post-mortem dump, a memory dump,
and a register dump, with the setup required for their use (e.g., . MCALLs,
.GLOBLs, invocations, etc.).

The next assignments can involve number representation transforma-
tions—say, in implementing a very simple two-function decimal calcu-
lator. Students may be asked to implement it using ASCII string-to-
binary conversion or programmed BCD arithmetic. The more ambitious
students might be asked to write the machine-language loading program
(in assembly language) and to propose and implement extensions to it.
Similarly, all of the other tools used in the class could themselves be the
subject of assignments: students take pride in constructing their own
dump programs. Many students have a mental block regarding the trans-
formations from bits in a memory to octal digits on paper. Having them
write a dump routine, perhaps adding ASCII interpretations to it, is very
salutary. It further develops self-confidence and a sense of knowing what
is going on, knowing that you could build up a usable system even if you
had nothing but a bare machine. If hands-on access is possible, it is very
instructive for students to estimate (by hand) what their program exe-
cution time should be, then devise an experiment to actually measure this
time.

For the assignment just described, students would need to have access
to the appropriate PDP-11 or LSI-11 Processor Handbook, or at least to
the relevant instruction timing information. This textbook is otherwise
sufficiently self-contained that it should not be necessary for students to
buy either the Processor Handbook or the MACRO-11 Reference Man-
ual. However, copies should be made available as references. Many of the
problems given at the end of each chapter could be used as the basis for
programming assignments.

Instructors sometimes regard teaching a course such as this as a way
to give students an opportunity to work on very large projects. We think
it is entirely inappropriate to assign large projects to be programmed in
assembly language. That is the kind of experience students should be
getting when using high level languages. The point of writing programs
in machine and assembly language in this course should be to develop
understanding of some fundamental ideas: indexing, indirection, manip-
ulation of a stack, mastering the overflow bit, fielding an interrupt, etc.
These objectives are more likely to be realized by assignment of smaller,
more narrowly focussed problems, and more of them.

Careful readers will appreciate that by the time they reach the end of
the text they will know how to design and implement each of the basic
tools they have been using from the beginning. This should help dispel
much of the mystery that shrouds computing.

I would like to thank the following reviewers for their constructive
suggestions: William Bregar, Oregon State University; Linda Eshleman,
Western Maryland College; Gordon Fish, Bucks County Community
College; Bryan Hansche, Arizona State University; Alex Nichols, Cleve-
land State Community College; Michael Schneider, University of Min-
nesota; Abraham Silbershatz, University of Texas at Austin; and Larry
Symes, University of Regina.

Edouard J. Desautels

Preface

contenis

Preface xv

1 The Computing Context 1
Introduction 3
Software 3
Computers 4
Naked Computers 4
Multi-User Systems 5§
Host and Target Computers 5
Computing Machines 6
Bits 11
Binary Codes 12
Teletype TTY 13
ASCII 14
Programmable Calculators 16
Analog and Hybrid Computers 16
Summary 18
Exercises 18

2 A Simple Hypothetical Cemputer 21
The Instruction-Fetch-Execute Cycle 24
The First Machine-Language Program 27
IPL and Boot 29
Program Execution 29
Program Loops 30
Self-Modifying Programs 33
Consequences of Stored Programs 35
Speed in Perspective 36
Summary 37
Exercises 38

3 Machine-Language Programming for a Real Computer 41

A Machine-Language Program 43

More About Binary 44

Octal Numbers 46
A Model for the PDP-11 48

Control Unit 48

PDP-11 Instruction Subset 51
Sample Machine-Language Programs 52
A Program-Loading Program 52
Common Errors 57
Instruction Formats 58
PDP-11 Instruction Summary 60
Summary 61
Exercises 62

4 A Better Way: Assembly Language 65
MACRO-11 Source Statements 68
Complete Source Programs 70
Reading an Assembly Listing 72
After Assembling, Then What Do You Do? 74
Operating Systems Considerations 74

Using RT-11 74

Running on a Multi-User System 76
Machine Language Revisited 77
System Services 77

.MCALL 78
Summary 79
Exercises 80

5 More Hardware 83
Registers 85
An Exception 86
Renaming Registers and Other Things 86
Bytes 87
Character Codes 87
Byte Manipulations 88
More Byte Instructions 89
Single Operand Instructions 90
CLR, CLRB 90
INC, INCB 90
DEC, DECB 91
NEG, NEGB 91
Byte-Oriented Assembler Directives 91
.BYTE 91
.EVEN 92
.BLKB, .ASCII, .ASCIZ 93
Bytes and Registers 94
Conditional Branch Instructions 95
Offsets 95
Conditional Branch Subset 96
Summary 97
Exercises 98

6 Key Addressing Modes 101
Indexing 103
Using Indexing 104
Mode and Register Fields 104
Index Mode 106
Indexing and Offsets 106
Deferred Addressing 107
Auto-Increment Mode 108
Stepping 108
Why So Many Variations? 109
.WORD and .BYTE Revisited 111
Copying 111
Odds and Ends 112
Decimal Operands 112
.RADIX 113
Immediate Operands 113
Addressing Mode Summary 114
Exercises 115

viii Contents

7 Computer Arithmetic 121
Negative Numbers 123
Sign Magnitude Representation 123
Two’s-Complement Representation 123
Different Orderings Apply 125
Lack of Symmetry 125
Pseudo Sign Bit 125
One’s-Complement Representation 126
Arithmetic Using Two’s-Complement Numbers 127
Addition 127
Carry and Overflow 128
Signed Numbers 128
BVS, BVC 129
Subtraction and Comparisons 132
MOVB Revisited 132
Caution Regarding the C Bit 133
BCS, BCC, ADC, SBC 133
Sign Extension SXT 135
Dealing with Unsigned Numbers 135
All Branches for Unsigned Numbers 137
SOB 138
Comparing Signed Numbers 139
Signed and Unsigned Conditional Branches 140
TST and Testing 141
Which Branch Should I Use? 141
Summary 142
Exercises 143

8 Subroutines and Stacks 153
Subroutines, or Necessity Is the Mother of Invention 155
Deferred-Address Addressing Modes 158
Program Counter Addressing 160
Relative Addresses 160
Immediate Operands 161
Relative Deferred Addressing 161
Deferred Indexing 162
Absolute Addressing 162
Relocation 163
Stacks 164
Stacks in Computers 165
The System Stack Pointer SP 166
How Does the System Share the Stack? 171
Rules for Using the System Stack 172
Recycling Memory with Stacks 172
Subroutines and Stacks 174
JSR PC,sub; RTS PC 174
Passing Parameters 176
Passing Values as Parameters 176
Passing Addresses as Parameters 177
More General Parameter Passing Techniques 178
Passing Arguments in the Stack 179
JSR R,sub; RTS R 180
Which Linkage Register Should I Use? 182
Suggestions for Subroutine Design 182

Contents ix

Internal versus External Subroutines 182
.GLOBL 183
Linking Externally Defined Subroutines 184
Transparency 185
Subroutine Nesting 185
What Can Go Wrong? 188
Stack Overflow 188
Stack Underflow 188
Making the Stack Deeper 188
Summary 189
Exercises 190

9 The Remaining General-Purpose Instructions 199
Format Classification 201
Classification by Function 201
Logical Operations 209

NOT, COM 209
AND, BIT 209
OR, BIS 210
Bit Clear BIC 210
EXCLUSIVE-OR, XOR 211
Rotate Instructions 212
ROR and ROL 212
Condition Code Instructions 213
MFPS, MTPS 214
Arithmetic Shifts 215
ASR 215
ASL 215
Multiplication, MUL 216
Processing Numeric Data 217
Decimal-to-Binary Conversion 218
BCD Arithmetic 218
Division, DIV 221
Long Shifts; ASH, ASHC 222
ASH 223
ASHC 223
Summary 224
Exercises 224
Case Study 227

1 0 Keyboards, Codes, and Terminals 235
Punched Cards and Paper Tape 237
Glass Teletypes 237

Keyboards 238
CRT Displays 239
Hard-Copy Terminals 240
Intelligent Terminals 241
Parity Selection 242
Half-Duplex Communication 243
Full-Duplex Communication 243
Binary Transmission Codes 245
Baud and Bits/Second 247
Summary 248
Exercises 248

x Contents

1 1 Character-Oriented Input and Output 251
Data Registers, Control and Status Registers 254
Input/Output Instructions 255
I/O without I/O Instructions 256
Control and Status Bits 259
Overlapped I/O and Processing 259
Interrupt Handling 261

Processing an Interrupt 261
Interrupt Priorities 263
Single-Level Hardware Priority 263
Interrupt Handlers; RTI 264
Multi-Level Priorities 264
Clock Interrupt Handler 267
CRT Input-Interrupt Handler 267
Summary 268
Exercises 269

1 2 The Assembler Revisited 271

Housekeeping Directives 273
Documentation Support 273
.LIST, .NLIST 274

Conditional Assembly 275
When Do Things Happen? Assembly Time versus Run Time 275
Debugging Statements 276
Include/Exclude at Assembly Time 277
IF and .ENDC 277
JF Conditions 278

Reusing Labels 279

Assembler Location Counter 280
.ASECT 282

Immediate ASCII Constants 282

Simple Macros 283
Macro Definitions 283
Processing Macros 284
.MCALL Revisited 285

Macros with Arguments 286
Macro Arguments 286
Nested Macro Use 288

What Can Go Wrong? 289

Summary 290

Exercises 291

1 3 Solving Real World Problems 293
Floating-Point Numbers 297
PDP-11 Floating-Point Representation 299
Floating-Point Arithmetic 301
Comparing Floating-Point Numbers 302
What Can Go Wrong? 302
Double-Precision Floating-Point Arithmetic 303
Converting Fractions 303
Software and Hardware Support for Floating Point 306
Floating-Point Traps 308
Feldstein’s Computer Error 309

Contents

xi

Arrays 309
One-Dimensional Arrays 312
Two-Dimensional Arrays 313
N-Dimensional Arrays 315
Computing Array Displacements 316
In-Line Code 317
Dope Vectors 317
A Hybrid Approach 318
What Can Go Wrong? 319
Special Arrays 320
Summary 320
Exercises 321

1 4 High Speed I/O and Other Topics 323
Device Types 325
Block-Oriented Devices 326
Sequential Access Devices 326
Information Density 329
Tape Data-Transfer Speeds 330
Records and Files 330
Industry-Compatible Magnetic Tape 331
Binary Data 331
Tape Labels 332
Interrupts and DMA Transfers 332
Other Tape Devices 334
Cassette Tapes 334
Direct Access Devices; Disks 335
Disk Drives 335
Disk 1/O 339
Disk Capacity and Performance 340
Other Disks 342
Recording Media 342
Winchester Drives 343
Direct Access Storage Devices 343
Spooling 343
Performance 345
Turnaround Time 345
Throughput 346
Response Time 346
Blocking 347
RESET 348
WAIT 349
Bus Organized Computers 350
Stealing Memory Cycles 351
Analog Data 353
Digital I/O 354
Traps 355
Processor Traps 357
Trap Trace 357
Summary 358
Exercises 359

xii Contents

1 5 Selected Topics 361
Variable Length Macros 363
Other Assembler Features 371
Generated Labels 371
Temporary Radix Control 373
IRP 374
.REPT 376
Nested Macro Definitions 377
Tables, Lists, Queues, and Trees 380
Lists 381
Two-Dimensional Linked Lists 385
Recursion 386
Recursively Defined Macros 387
Using Trees 388
Another Example of Recursion 390
Cross Assembly 391
B and NB 394
Concatenation 395
Threaded Code 396
Speeding Up Programs 399
Faster Buses and Cache Memory 401
Cache Memory 402
On-Line, Real-Time Computing 404
Reentrant Code 406
Reentrancy on Large Systems 406
Reentrancy on a Dedicated Computer 408
Coroutines 409
Error Detection and Correction 411
Summary 414
Exercises 415
Case Study 423

16 Micros, Minis, Maxis 429
Common Features 431
Distinguishing Features 431
Micros 431
Minis 432
Maxis 433
Virtual Memory Revisited 434
What Do Computers Cost? 434
A Large PDP-11/70 System 435
Pricing Trends 437
Summary 439
Exercises 439

1 7 How Does the Hardware Work 441
Historical Evolution 443
Functional Elements of a Computer 445
Storing a Bit 446
Building an ALU 448
A Comparator 449
Performing Binary Arithmetic 449
Sequencing 450
From Relays to Tubes 451
Tubes to Transistors 452
Microprogramming 453
Telecommunications, Teleprocessing 454

Contents

Telephone Dial-up Access 454
Automatic Speed Detection 456
Leased Lines 457
Communication Interfaces 458
Modem Control 459
Networks 459
Packet Switching 459
Local Networks, Ethernet 461
Trends 461
Remote Diagnosis 463
Summary 465
Exercises 466

1 8 Beyond Machine and Assembly Language 469
Other Computer Languages 473
DBMS 474
Summary 477
Exercises 477

1 9 Selected Readings and Annotations to Bibliography 479
Vendor Publications 481
History and Evolution: the PDP-11 483
History and Evolution: Computing 483
Keeping Up 483
Other Periodicals 484
User Groups 485
Annotated Bibliography 485
Algorithms 486
Codes 486
Computer Hardware and Computer Organization 486
History 487
Magazines and Newspapers 487
Networks and Telecommunications 488
PDP-11 References 488
PDP-11 Textbooks 489
Programming Languages 489
System Software 490
Other Computers 490
Thought, Food for 491

Appendixes 493

Appendix 1: PDP-11 Instruction Set, MACRO-11 Syntax 495
Appendix 2: MACRO-11 Directives 505

Appendix 3: MACRO-11 Assembly-Time Diagnostic Error Codes 509
Appendix 4: ASCII Codes 513

Appendix 5: Using MACRO-11 with RT-11 517

Appendix 6: Using MACRO-11 with RSX-11 519

Appendix 7: Using MACRO-11 with RSTS 520

Appendix 8: Using MACRO-11 with UNIX 521

Index 563

xiv Contents

