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preface

The goal of this book is to help readers who have some experience
using computers to develop a deeper understanding of how they compute.
The very popular PDP-11 computer (and its look-alike, the LSI-11) are
used to illustrate the concepts involved.

This is a very substantial book. Don’t let it overwhelm you. Among
other virtues, it is essentially self-contained. This means you do not have
to keep looking through the PDP-11 MACRO-11 reference manual (138
pages plus appendixes), or the PDP-11 Processor Handbook (468 pages
plus appendixes), or the PDP-11 Peripherals Handbook (435 pages), or
the PDP-11 Terminals and Communications Handbook (344 pages), to
understand the topic at hand. One of the major advantages of having all
this material integrated in one volume is that it can all be extensively
cross-referenced in the index. The index is one of the most important
parts of this book. The index is presented in four parts. The first two parts
provide a quick reference to the PDP-11 instructions and the MACRO-
11 directives. The third part consists of special character references, since
these often have a critical role in the writing of computer programs. The
fourth part consists of a standard but very comprehensive index. The
instructions and directives are repeated in the index for the benefit of the
readers may not yet appreciate these distinctions.

The material is sequenced so that the key topics can be studied even
in the shortest typical quarter. Each instructor or reader can then select
from among the many other topics for semester courses, honors courses,
and independent (self-study) courses. Some examples of course organi-
zation are as follows.

1. Short course covering only fundamentals:
chapters 1-9; 10 from beginning through Hard-Copy Terminals;
11; 12 (macros only); selected topics from other chapters, as de-
sired.

2. Course for those familiar with some other machine language:
chapters 1 (first two sections); 3—19.

3. Course emphasizing software concepts:
chapters 1-9; 10 and 11 (selected topics); 12; 14 and 15 (selected
topics); 18—19.

4. Course emphasizing hardware concepts:
chapters 1-11; 12 and 13 (selected topics); 14; 15 (selected topics);
16-19.
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Once the fundamentals have been covered, the instructor or reader can
pick and choose among many essentially independent topics. Thus, in
chapter 12 assembly-time conditional directives are treated independently
of macros, and vice versa. Chapter 14 first discusses high speed input and
output; the later sections on spooling, performance, analog data, processor
traps, etc., can be included or not, as desired. Chapter 15, “Selected
Topics” has a similar structure. Any of the topics may be included in a
course or not, as desired.

The programming examples in the text are supplemented by program-
ming examples in the solutions to the over 280 end-of-chapter exercises;
the selected solutions, at the end of the book, cover questions that range
from simple review exercises to thought-provoking problems.

We hope readers will find the bibliographic essay in the last chapter
more interesting and useful than a conventional annotated bibliography.

The goal of this text is not to make readers experts at PDP-11 pro-
gramming, but to lay the foundation that is essential for any one who
wishes to pursue the study of computer organization, computer architec-
ture, the design of compilers for high level languages, and many other
facets of computing. This foundation will be very helpful for those who
have personal computers of any kind and want to find out what makes
them tick.

We assume that readers have programmed some computer in some
high level language. This experience should include having used two-
dimensional arrays and procedures or subroutines. Readers are therefore
assumed to be familiar with the program development cycle: problem
definition, data definition, algorithm selection, implementation, documen-
tation, optimization, testing, and enhancement.

Readers must have access to a DEC PDP-11 or an LSI-11 or some
system which uses either CPU (any model will do) and which provides
some version of the MACRO-11 assembler. Some of the systems which
could be used, besides those sold directly by DEC, include the Heath/
Zenith H11 and the Terak 8510. We are convinced that merely reading
about using machine language and assembly language is not a substitute
for writing and running programs at this language level.

The exercises at the end of most chapters are important. Readers
should take the time to at least think through an approach to solving the
more demanding problems if time does not permit writing out and possibly
programming the solutions. Some of the exercises introduce new ideas,
new terms, new tools, and useful algorithms.

Material is presented in a carefully thought-out sequence. Readers are
presented with relevant factual information and background, but not so
much as to overwhelm them. Learning the details of a computer’s instruc-
tion set can be as deadly as reading a dictionary if the presentation does
not take human nature into account. We have partitioned topics into
manageable units, interspersed with other topics, and we take advantage
of opportunities to use simpler concepts before proceeding to more ad-
vanced ones. The presentation is also enlivened by newspaper and mag-
azine articles on computer-based system malfunctions whose cause is very
likely to be related directly to the topic at hand. Some of the articles
discuss broader issues such as the legal challenges facing the marriage of
computing and telecommunications services.
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It is important to note that we first examine machine language before
we approach assembly language. We recognize that the assembler is a
very useful tool, and make extensive use of it in the text. But in the
beginning, the assembler and the assembly process obscure what is going
on at the machine level just as much as do high level languages. After a
brief but illuminating venture into absolute coding in machine language,
we can then appreciate and exploit symbolic programming as a means to
gaining more insight into computing.

We do not advocate using machine language or assembly language as
a general purpose problem-solving tool. These low level languages are like
the ancient Latin and Greek that people were supposed to study as a
means of gaining insight into the structure of contemporary English. For
instance, the text often uses octal memory dumps, and we expect readers
to be able to interpret these. These are just a means to an end—to un-
derstand what the computer was doing, stripped of all layers of software.
Anyone who concludes that octal memory dumps are an efficient tool for
debugging programs written in a high level language has missed the point.

Learning about computing can be enjoyable and addictive, particularly
if you have sufficiently ready access to a computer so you can try all the
“what if’ situations that should be popping through your mind as you
proceed.

Notes to the Instructor

Our practice has been to assign computer exercises beginning with the
first week of class and to have one assignment immediately follow another
continuously throughout the semester. Depending on the class size, the
computing resources available, the magnitude of the assigned work, and
the assistance provided in grading the programs in a timely fashion, from
four to eight programming assignments are made in a 13-16 week se-
mester.

Typically, the first assignment involves finding the laboratory, verifying
that one can log in, that one can create and modify a small file using the
on-line editor. This course has been conducted in batch-processing mode
(using a self-service PDP-11); it has also been run with RT-11, RSTS,
and UNIX. In those cases it is advisable to also have a bare PDP-11 for
one-at-a-time hands-on use, if the multi-user system cannot be taken off
the air.

A typical second assignment has students design and implement a small
machine-language program, coded in absolute octal. The students use the
instruction subset of chapter 2 and installation-specific instructions on
loading and running this program. If a hands-on machine is available,
then it can be keyed in at the console and run. For many students this
may be the only chance they will ever have to completely control a
computer, and this experience gives them a great deal of confidence.

The next assignment has students use a few of the PDP-11 addressing
modes while writing their first MACRO-11 program. They are generally
given a file with instructions on assembling, linking, and executing it.
Then they are told to replace the innards with their own code and repeat
the process. This is a painless way to get them introduced to seeing and
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using tools such as a contingency post-mortem dump, a memory dump,
and a register dump, with the setup required for their use (e.g., . MCALLs,
.GLOBLs, invocations, etc.).

The next assignments can involve number representation transforma-
tions—say, in implementing a very simple two-function decimal calcu-
lator. Students may be asked to implement it using ASCII string-to-
binary conversion or programmed BCD arithmetic. The more ambitious
students might be asked to write the machine-language loading program
(in assembly language) and to propose and implement extensions to it.
Similarly, all of the other tools used in the class could themselves be the
subject of assignments: students take pride in constructing their own
dump programs. Many students have a mental block regarding the trans-
formations from bits in a memory to octal digits on paper. Having them
write a dump routine, perhaps adding ASCII interpretations to it, is very
salutary. It further develops self-confidence and a sense of knowing what
is going on, knowing that you could build up a usable system even if you
had nothing but a bare machine. If hands-on access is possible, it is very
instructive for students to estimate (by hand) what their program exe-
cution time should be, then devise an experiment to actually measure this
time.

For the assignment just described, students would need to have access
to the appropriate PDP-11 or LSI-11 Processor Handbook, or at least to
the relevant instruction timing information. This textbook is otherwise
sufficiently self-contained that it should not be necessary for students to
buy either the Processor Handbook or the MACRO-11 Reference Man-
ual. However, copies should be made available as references. Many of the
problems given at the end of each chapter could be used as the basis for
programming assignments.

Instructors sometimes regard teaching a course such as this as a way
to give students an opportunity to work on very large projects. We think
it is entirely inappropriate to assign large projects to be programmed in
assembly language. That is the kind of experience students should be
getting when using high level languages. The point of writing programs
in machine and assembly language in this course should be to develop
understanding of some fundamental ideas: indexing, indirection, manip-
ulation of a stack, mastering the overflow bit, fielding an interrupt, etc.
These objectives are more likely to be realized by assignment of smaller,
more narrowly focussed problems, and more of them.

Careful readers will appreciate that by the time they reach the end of
the text they will know how to design and implement each of the basic
tools they have been using from the beginning. This should help dispel
much of the mystery that shrouds computing.

I would like to thank the following reviewers for their constructive
suggestions: William Bregar, Oregon State University; Linda Eshleman,
Western Maryland College; Gordon Fish, Bucks County Community
College; Bryan Hansche, Arizona State University; Alex Nichols, Cleve-
land State Community College; Michael Schneider, University of Min-
nesota; Abraham Silbershatz, University of Texas at Austin; and Larry
Symes, University of Regina.

Edouard J. Desautels
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