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Basic Notations

(2, F,P) probability space
R real line
C complex plane
14 indicator function of a set A
D[P] S
— convergence in distribution under the measure P
P § e
— convergence in probability P
a.s. [P] almost surely under the measure P
P-a.s. almost surely under the measure P
a, = o(by) %L — 0
a, = O(b,) ',',— is bounded
Xo=op(ba) =50
X, =0p(b,) % is stochastically bounded,

i.e., lim sup P{|X"‘| > A} =0

A—oo p b,,

0 end of a proof
A=B A is defined by B
A=:B B is defined by A
= identically equal
< absolute continuity of two measures
iid. independent and identically distributed
N(a,b) normal distribution with mean a and variance b
D(.) standard normal distribution function
X ~F X has the distribution F
w.r.t. with respect to
r.hus. right hand side
Lh.s. left hand side
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1

Parametric Stochastic Differential Equations

Stochastic differential equations (SDEs) are a natural choice to model the
time evolution of dynamic systems which are subject to random influences (cf.
Arnold (1974), Van Kampen (1981)). For example, in physics the dynamics
of ions in superionic conductors are modelled via Langevin equations (cf.
Dieterich et al. (1980)), and in engineering the dynamics of mechanical devices
are described by differential equations under the influence of process noise as
errors of measurement (cf. Gelb (1974)). Other applications are in biology (cf.
Jennrich and Bright (1976)), medicine (cf. Jones (1984)), econometrics (cf.
Bergstrom (1976, 1988)), finance (cf. Black and Scholes (1973)), geophysics
(cf. Arato (1982)) and oceanography (cf. Adler et al. (1996)).

It is natural that a model contains unknown parameters. We consider the
model as the parametric Ito stochastic differential equation

dXy = p (0, t, Xy)dt + o (0, t, Xy)dW,, t>0, Xo=¢

where {W;,t > 0} is a standard Wiener process, p : @ x [0,7] x R — R,
called the drift coefficient, and o : = x [0,7T] x R — R*, called the diffu-
sion coefficient, are known functions except the unknown parameters 6 and
¥, ©® CR, £ C R and E((?) < oo. The drift coefficient is also called the
trend coefficient or damping coefficient or translation coefficient. The diffu-
sion coefficient is also called wvolatility coefficient. Under local Lipschitz and
the linear growth conditions on the coefficients p and o, there exists a unique
strong solution of the above It6 SDE, called the diffusion process or simply a
diffusion, which is a continuous strong Markov semimartingale. The drift and
the diffusion coefficients are respectively the instantaneous mean and instan-
taneous standard deviation of the process. Note that the diffusion coefficient is
almost surely determined by the process, i.e., it can be estimated without any
error if observed continuously throughout a time interval (see Doob (1953),
Genon-Catalot and Jacod (1994)). We assume that the unknown parameter
in the diffusion coefficient 1 is known and for simplicity only we shall assume
that 0 = 1 and our aim is to estimate the unknown parameter 6.
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First we sketch some very popular SDE models.

Bachelier Model
(l)(t = /3 dt + (Tth

Black-Scholes Model
dX; = Xt dt + o X dWy
Ornstein-Uhlenbeck Model
dY; = X, dt + odW;
Feller Square root or Cox-Ingersoll-Ross Model
dX, = (a — BX;)dt + o/ X, dW,
Radial Ornstein-Uhlenbeck Process
dX; = (aX; ' = X;) dt + odW,
Squared Radial Ornstein-Uhlenbeck Process
dX, = (1+ 28X,) dt + 20/ X, dW,
Note that X; the square of the Ornstein-Uhlenbeck process Y;
dY; = Y, dt + odW,
Chan-Karloyi-Logstaff-Sanders Model
dX; = k(0 — X;) dt + o0 X, dW,

Hyperbolic Diffusion

X
dX; = L S R odW;

V1+ X?
Gompertz Diffusion
de = (C\/Xf — /)’Xt lOng) dt + (TXLth

Here X; is the tumor volume which is measured at discrete time, « is the
intrinsic growth rate of the tumor, 3 is the tumor growth acceleration factor,
and o is the diffusion coefficient.

The knowledge of the distribution of the estimator may be applied to
evaluate the distribution of other important growing parameters used to access
tumor treatment modalities. Some of these parameters are the plateau of the
model X, = exp(%), tumor growth decay, and the first time the growth curve
of the model reaches X .
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Logistic Diffusion
Consider the stochastic analogue of the logistic growth model

dX; = (aX; — BX?) dt + o X, dW,;

This diffusion is useful for modeling the growth of populations.
Kessler-Sgrensen Model

dX; = —0tan(Xy) dt + odW,

By applying It6 formula, a diffusion process with some diffusion coeflicient
can be reduced to one with unit diffusion coefficient.
Following are most popular short term interest rate models.

Vasicek Model
dX; = (o + pXy)dt + odW,

Cox-Ingersoll-Ross Model
dX; = (a+ pXy)dt + o/ X dWy

Dothan Model
dX; = (a + Xy)dt + o X dW,

Black-Derman-Toy Model
dX; = pB(t) Xpdt + o (t) X dW,
Black-Karasinksi Model
d(log Xt) = (a(t) + B(t) log Xy )dt + o dW;

Ho-Lee Model
dX, = a(t)dt + ocdW}

Hull-White (Extended Vasicek) Model
dX; = (a(t) + (t)Xy)dt + o dWy
Hull-White (Extended CIR) Model
dX; = (a(t) + B(t) X )dt + op/ X dW,
Cox-Ingersoll-Ross 1.5 model
dX, = o X2 dW,
Inverse Square Root Model or Ahn-Gao Model

dX, = B(p — Xo) Xedt + o X2/ 2dW,
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Ait-Sahalia Model
dX; = (a+ BX: + X, ' + 6X2)dt + o X dW,

This a nonlinear interest rate model.

For existence and uniqueness of solutions of finite dimensional stochas-
tic differential equations, properties of stochastic integrals, and diffusion and
diffusion type processes see e.g., the books by McKean (1969), Gikhman and
Skorohod (1972), It6 and McKean (1974), McShane (1974), Arnold (1974),
Friedman (1975), Stroock and Varadhan (1979), Elliot (1982), Ikeda and
Watanabe (1989), Rogers and Williams (1987), Karatzas and Shreve (1987),
Liptser and Shiryayev (1977, 1989), Kunita (1990), Protter (1990), Revuz and
Yor (1991), Oksendal (1995), Krylov (1995), Mao (1997). For numerical analy-
sis and approximations of SDEs see the books by Gard (1988), Kloeden, Platen
and Schurz (1994). Kloeden and Platen (1995) and Milshtein (1995). For ex-
istence, uniqueness of solutions and other properties of infinite dimensional
SDEs see the books by Curtain and Pritchard (1978), Metivier and Pellaumail
(1980), Ito (1984), Walsh (1986) and Kallianpur and Xiong (1995).

The asymptotic approach to statistical estimation is frequently adopted
because of its general applicability and relative simplicity. In this monograph
we study the asymptotic behaviour of several estimators of the unknown para-
meter f appearing in the drift coefficient based on observations of the diffusion
process {X;,t > 0} on a time interval [0, 7']. Note that the observation of dif-
fusion can be continuous or discrete. Continuous observation of diffusion is a
mathematical idealization and has a very rich theory, for example Ito stochas-
tic calculus, stochastic filtering, inference for continuously observed diffusions
and much more behind it. But the path of the diffusion process is very kinky
and no measuring device can follow a diffusion trajectory continuously. Hence
the observation is always discrete in practice. Research on discretely observed
diffusions is growing recently with a powerful theory of simulation schemes
and numerical analysis of SDEs behind it.

The asymptotic estimation of €, based on continuous observation of {X;}
on [0, 7] can be studied by different limits, for example, T — oo, o(J,t, X;)—0,
w(f,t, Xt) — oo, or any combination of these conditions that provide the in-
crease of the integrals fOT[,u(H, t, X¢)o 1 (9,t, X;)]2dt and fOT[/L'(b‘. t, X))o~ 1(9,
t. X¢))2dt, where prime denotes derivative with respect to 6. Parameter esti-
mation in SDE was first studied by Arato, Kolmogorov and Sinai (1962) who
applied it to a geophysical problem. For long time asymptotics (T — o0)
of parameter estimation in stochastic differential equations see the books by
Liptser and Shiryayev (1978), Basawa and Prakasa Rao (1980), Arato (1982),
Linkov (1993), Kiichler and Serensen (1997), Prakasa Rao (1999) and Ku-
toyants (1999). For small noise asymptotics (¢ — 0) of parameter estimation
see the books by Ibragimov and Khasminskii (1981) and Kutoyants (1984a,
1994a).
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If {X;} is observed at 0 = tg < t; < ty < ... < t, = T with A, =

max |f; — t;—1| the asymptotic estimation of ¢ can be studied by different
1<i<n

limits, for example, A,, — 0,n — o0 and T" — o0 (or 0 — 0) or A,, = A
remaining fixed and n — oo. See Genon-Catalot (1987).

In the infinite dimensional diffusion models there are even different as-
ymptotic frameworks. For example, in a stochastic partial differential equa-
tion, based on continuous observation, asymptotics can also be obtained when
the intensity of noise and the observation time length remain fixed, but the
number of Fourier coeflicients in the expansion of the solution random field
increases to infinity. Based on discrete observations, asymptotics can be ob-
tained by this condition along with some sampling design conditions of discrete
observations as in the finite dimensional case.

Our asymptotic framework in this monograph is long time for continuous
observation and decreasing lag time along with increasing observation time
for discrete observations.

The monograph is broadly divided into two parts. The first part
(Chapters 2-6) deals with the estimation of the drift parameter when the diffu-
sion process is observed continuously throughout a time interval. The second
part (Chapters 7-10) is concerned with the estimation of the drift parameter
when the diffusion process is observed at a set of discrete time points.

Asymptotic properties such as weak or strong consistency, asymptotic nor-
mality, asymptotic efficiency ete. of various estimators of drift parameter of 1to
SDEs when observed continuously throughout a time interval, has been stud-
ied extensively during the last three decades. In linear homogeneous SDEs,
maximum likelihood estimation was studied by Taraskin (1974), Brown and
Hewitt (1975a), Kulinich (1975), Lee and Kozin (1977), Feigin (1976, 1979),
Le Breton (1977), Tsitovich (1977), Arato (1978), Bellach (1980, 1983), Le
Breton and Musiela (1984), Musiela (1976, 1984), Serensen (1992), Kiichler
and Serensen (1994a.,b), Jankunas and Khasminskii (1997) and Khasminskii
et al. (1999). In nonlinear homogeneous SDEs maximum likelihood estima-
tion was studied by Kutoyants (1977), Bauer (1980), Prakasa Rao and Rubin
(1981), Bose (1983a, 1986b), Bayes estimation was studied by Kutoyants
(1977), Bauer (1980), Bose (1983b, 1986b), maximum probability estimation
was studied by Prakasa Rao (1982), minimum contrast estimation was stud-
ied by Lanska (1979), M-estimation was studied by Yoshida (1988, 1990),
minimum distance estimation was studied by Dietz and Kutoyants (1997). In
nonlinear nonhomogeneous SDEs maximum likelihood estimation was studied
by Kutoyants (1978, 1984a), Borkar and Bagchi (1982), Mishra and Prakasa
Rao (1985), Dietz (1989) and Levanony, Shwartz and Zeitouni (1993, 1994),
Bayes estimation was studied by Kutoyants (1978, 1984a). For survey of work
in continuously observed diffusions, see Bergstrom (1976), Prakasa Rao (1985),
Barndorff-Neilson and Serensen (1994) and Prakasa Rao (1999). The following
is a summary of Chapters 1-5.
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In Chapter 2 we start with the historically oldest example of stochastic dif-
ferential equation called the Langevin equation and whose solution is called
the Ornstein-Uhlenbeck (O-U) process. In this case u(0,t,X) = 0X;. The
first order theory like consistency, asymptotic normality etc. is well known
for this case, see Le Breton (1977), Liptser and Shiryayev (1978). We study
the rate of convergence in consistency and asymptotic normality via the large
deviations probability bound and the Berry-Esseen bound for the minimum
contrast estimator (MCE) of the drift parameter when the process is observed
continuously over [0,7]. Then we study more general nonlinear ergodic dif-
fusion model and study the Berry-Esseen bound for Bayes estimators. We
also posterior large deviations and posterior Berry-Esseen bound. Mishra and
Prakasa Rao (1985a) obtained O(T~'/%) Berry-Esseen bound and O(T~1/%)
large deviation probability bound for the MLE for the Ornstein-Uhlenbeck
model. For the MLE, Bose (1986a) improved the Berry-Esseen bound to
O(T~"%(log T')?). (The main result in Bose (1986a) has a misprint and gives
the rate as O(T~'/2), but by following the proof given there it is clear that
the rate is O(T~?(log T)?).) Bose (1985) obtained the rate O(T~/21og T).
Bishwal and Bose (1995) improved this rate to O(T~/2(log T')'/?). For the
MLE, Bishwal (2000a) obtained O(T~') bound on the large deviation prob-
ability and the Berry-Esseen bound of the order O(T~1/2) using nonrandom
norming. This bound is consistent with the classical i.i.d. situation. Next we
consider nonlinear diffusion model and obtain exponential rate of concentra-
tion of the posterior distribution, suitably normalized and centered at the
MLE, around the true value of the parameter and also O(T~1/?) rate of con-
vergence of posterior distribution to normal distribution. We then establish
o(T~'/?) bound on the equivalence of the MLE and the Bayes estimator,
thereby improving the O(7~3/2°) bound in Mishra and Prakasa Rao (1991).
We obtain O(T~'/2) Berry-Esseen bound and O(T~!) bound on the large de-
viation probability of the BEs. This chapter is adapted from Bishwal (2004a)
and Bishwal (2005a).

In Chapter 3 we deal with estimation in nonlinear SDE with the parame-
ter appearing nonlinearly in the drift coefficient, based on continuous obser-
vation of the corresponding diffusion process over an interval [0,7]. In this
case u(0,t, X;) = f(0,X;). We obtain exponential bounds on large deviation
probability for the MLE and regular BEs. The method of proof is due to Ibrag-
imov and Khasminskii (1981). Some examples are presented. This chapter is
adapted from Bishwal (1999a).

In Chapter 4 we study the asymptotic properties of various estimators of
the parameter appearing nonlinearly in the nonhomogeneous drift coefficient
of a functional stochastic differential equation when the corresponding solution
process, called the diffusion type process, is observed over a continuous time
interval [0,7]. We show that the maximum likelihood estimator, maximum
probability estimator and regular Bayes estimators are strongly consistent
and when suitably normalised, converge to a mixture of normal distribution
and are locally asymptotically minimax in the Hajek-Le Cam sense as T' — oo
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under some regularity conditions. Also we show that posterior distributions,
suitably normalised and centered at the maximum likelihood estimator, con-
verge to a mixture of normal distribution. Further, the maximum likelihood
estimator and the regular Bayes estimators are asymptotically equivalent as
T — o0o. We illustrate the results through the exponential memory Ornstein-
Uhlenbeck process, the nonhomogeneous Ornstein-Uhlenbeck process and the
Kalman-Bucy filter model where the limit distribution of the above estima-
tors and the posteriors is shown to be Cauchy. This chapter is adapted from
Bishwal (2004b).

In Chapter 5 we study estimation of a real valued parameter in infinite
dimensional SDEs based on continuous observation of the diffusion. This area
is relatively young and in our opinion is exciting and difficult. A few contri-
butions in the existing literature are devoted to parameter (finite or infinite
dimensional) estimation in infinite dimensional SDEs see, e.g., Aihara (1992,
1994, 1995), Aihara and Bagchi (1988, 1989, 1991), Bagchi and Borkar (1984),
Loges (1984), Koski and Loges (1985, 1986), Huebner, Khasminskii, Rozovskii
(1992), Huebner (1993), Huebner and Rozovskii (1995), Kim (1996). We con-
sider the drift coefficient as # AX; with A being the infinitesimal generator of
a strongly continuous semigroup acting on a real separable Hilbert space H
and 6 real valued. We obtain the Bernstein-von Mises theorem concerning the
normal convergence of the posterior distributions and and strong consistency
and asymptotic normality of the BEs of a parameter appearing linearly in the
drift coefficient of Hilbert space valued SDE when the solution is observed con-
tinuously throughout a time interval [0,7] and 7' — oo. It is also shown that
BEs, for smooth priors and loss functions, are asymptotically equivalent to
the MLE as T" — oco. Finally, the properties of sequential maximum likelihood
estimate of 6 are studied when the corresponding diffusion process is observed
until the observed Fisher information of the process exceeds a predetermined
level of precision. In particular, it is shown that the estimate is unbiased,
uniformly normally distributed and efficient. This chapter is adapted from
Bishwal (1999b) and Bishwal (2002a).

In Chapter 6 we consider non-Markovian non-semimartingale models.
Recently long memory processes or stochastic models having long range
dependence phenomena have been paid a lot of attention in view of their
applications in finance, hydrology and computer networks (see Beran (1994),
Mandelbrot (1997), Shiryaev (1999), Rogers (1997), Dhehiche and Eddahbi
(1999)). While parameter estimation in discrete time models having long-
range dependence like the autoregressive fractionally integrated moving aver-
age (ARFIMA) models have already been paid a lot of attention, this problem
for continuous time models is not well settled. Here we study estimation prob-
lem for continuous time long memory processes. This chapter is adapted from
Bishwal (2003a).

Parameter estimation in diffusion processes based on observations at dis-
crete time points is of much more practical importance due to the impossi-
bility of observing diffusions continuously throughout a time interval. Note
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that diffusion process can be observed either at deterministic or at random
sampling instants. For random sampling, e.g., from a point process, the sam-
pling process may be independent of the observation process or may be de-
pendent on it. Also in random sampling scheme, e.g., Poisson sampling (see
Duffie and Glynn (2004)) the inverse estimation problem arises i.e., the esti-
mation of the parameters of the sampling process when the parameters of the
observation process is known. For a survey of earlier works on inference in con-
tinuous time processes based on observations at random sampling schemes see
Stoyanov (1984). Jacod (1993) studied random sampling from a process with
independent increments. Later on this scheme was used by Genon-Catalot
and Jacod (1994) for the estimation of the parameter of the diffusion coeffi-
cient of a diffusion process. Duffie and Glynn (2004) studied the asymptotics
of generalized method of moments estimators for a continuous time Markov
process from observations at random sampling instants. In this monograph
we will only be dealing with deterministic sampling scheme. We assume that
the diffusion process { X (t)} is observed at {0 =ty < t; < ... < t, =T} with
ti—tioi=L=h—0i=12,...,n

Note that when one observes the process continuously throughout a time
interval the diffusion coefficient is almost surely determined by the process.
But when one has discrete observations, the problem of estimation of the dif-
fusion coeflicient also arises. Estimation of the parameter in the diffusion co-
efficient from discrete observations has been studied by Penev (1985), Dohnal
(1987), Genon-Catalot and Jacod (1993), Florens-Zmirou (1993), and others.
However, we will not deal with estimation of the diffusion coefficient in this
monograph.

Drift parameter estimation in diffusion processes based on discrete obser-
vations has been studied by many authors. Le Breton (1976) and Dorogovcev
(1976) appear to be the first persons to study estimation in discretely ob-
served diffusions. While Le Breton (1976) used approximate maximum likeli-
hood estimation, Dorogovcev (1976) used conditional least squares estimation.
Robinson (1977) studied exact maximum likelihood estimation in discretely
observed Ornstein-Uhlenbeck process. Other works on approximate maximum
likelihood estimation (where the continuous likelihood is approximated), also
called the maximum contrast estimation, are Bellach (1983), Genon-Catalot
(1987, 1990), Yoshida (1992), Bishwal and Mishra (1995), Harison (1996),
Clement (1993, 1995, 1997a,b) and Kessler (1997). Dacunha-Castelle and
Florens-Zmirou (1986) studied consistency and asymptotic normality of MLE
by using an expansion of the transition density of an ergodic diffusion. While
ideally one should of course use maximum likelihood, in practice it is difficult
because only in a few cases the transition densities are available. Pedersen
(1995a,b) used numerical approximations based on iterations of the Gaussian
transition densities emanating from the Fuler-Maruyama scheme and studied
approximate maximum likelihood estimation. Ait-Sahalia (2002) used Hermite
function expansion of the transition density giving an accurate theoretical ap-
proximation and studied approximate maximum likelihood estimation.



