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Preface

It is somewhat presumptuous to produce yet another book on
relativity, despite the fact that the publishers are producing a new
series of texts on undergraduate physics. There is already a
number of excellent texts on the market which deal clearly with
many aspects of the subject. As always in this situation, the
author is reduced to justifying his efforts by claiming that he
hopes he has produced a new perspective on the subject. In my
case that perspective is not really a new one but goes back to the
arguments that were around at the beginning of this century.
Most texts at undergraduate level omit, or treat very scantily, the
role of electromagnetic theory in the development of special
relativity, and yet it played a central role.

I have tried in this book to present mechanics and electro-
magnetism in the context of special relativity, to explain, in turn,
the problems that arose when the principle of relativity was
applied to each of them and how Einstein showed that, once the
leap in imagination was made, the solution was relatively simple.
It is an exciting story and 1 hope that the book conveys, if only
in parts, that excitement. But above all | hope that undergraduates
will enjoy reading it, for physics is an enjoyable subject to try
to understand.

The reader should have had a good grounding in Newton’s
equations of motion and an understanding of electromagnetism
up to Maxwell’s equations and their plane-wave solutions. Quan-
tum mechanics is mentioned but the reader is only required to
know the Planck and de Broglie relations. Some readers may find
Chapter 7 hard going. The chapter is there for three reasons.
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First, it brings together the two subjects that dominate this book,
mechanics and electromagnetism. Second, relativistic equations
of motion can be writtén down (despite the subsequent difficulties
that they lead to) and very rarely are. Finally I hope it will
encourage the interested student to go on and pursue the subject
further.

Notation is very important in producing a clear presentation.
I have steered away from tensor notation because, elegant though
the equations look in this form, I believe that in a first reading it
obscures the physics. Ordinary three-vectors are denoted as usual
in bold type and their magnitude in normal type. Four-vectors are
the same except they are distinguished by an arrow above them.
Thus for example, the three-momentum is denoted by p and its
magnitude by p. The four-momentum or energy-momentum
four-vector by P and its ‘magnitude’ by 7.

Finally I should like to thank my colleagues in the physics
division for the many questions that I have put to them over the
years that I have given a course on this subject at the University
of Sussex. This particularly applies to Drs G. Barton, J. Byrne and
J. Plaskett who have tolerated my pestering with good humour.
Any mistakes are of course my own.
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1.1

Chapter 1 .
The principle of relativity

Introduction

There are very few discoveries that can be said, unequivocally, to
have changed radically the course of human progress. In evaluating
the importance of the subject of this book it is possible to go
even further and say that the formulation of special relativigy, at
the beginning of this century, was the most significant event in
the history of mankind. The reasons for this are seen in the simple,
and probably the most publicized, scientific formula

E = mc? f1.1]
which shows the equivalence of energy, E, and mass, m, their
values being related by the square of the velocity of light, c.
From this apparently innocent-looking result, modern technology
has developed the seeds of mankind’s own destruction, a fact that
was graphically and cruelly illustrated at Hiroshima and Nagasaki.
The enormous amount of energy that is released in the atomic
bomb is due to the factor c?, since c is a very large number,
3X10°ms™ . Thus a mass of 1kg is equivalent to 9 X 10 J of
energy. (Compare this with the annual output of a 500 MW
power station, 3 typical size for the UK which is equal to
5X10% X (60)’)‘(,“. 4X 365 = 1.6 X10']J.)
" Although equmtion [1.1] is the most quoted result from
special relativity, its derivation by Einstein in 1905 was not the

- most surprising or the most contentious result for the then

contemporary physicists. As early as 1881 Sir J. J. Thomson
considered a model of the electron which consisted of a uniform
chargé distributed over the surface of a sphere. The electrostatic
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energy of the electron is then
E = e*/8meqa

where e is the total electron charge and a is the radius of the
sphere. He further observed that for a charge e moving with a
uniform velocity v the energy of its field is ey, ©?/2, where the
electromagnetic ‘mass’ is Mgy = €2/6meoca. Combining this
result with the expression for the energy gives

3

E = —Mgmc?
4

(For a detailed discussion of these results see Feynman, vol. II.
For a description of other theories linking energy and mass see
Whittaker, vol. 2.)

Another feature of the Einstein theory, namely that the length
of an object is not the same when measured by a stationary
observer as when measured by a moving observer, was also fore-
shadowed by Lorentz and FitzGerald. This phenomenon is still
known as the Lorentz-FitzGerald ~ontraction.

Despite these precursors, Einstein’s theory provoked consider-
able controversy when it was published. The reasons for this will,
I hope, emerge in the course of reading this book. The presentation
given here will not be an historical one for three reasons. First, no
physical theory proceeds smoothly from one development to the
next—many blind and unprofitable alleys are followed. Second,
many of the significant historical landmarks are lost in the mists
of time. For example, whether Einstein knew of a critical experi-
ment—the Michelson-Morley experiment —is a matter of contro-
versy. (This controversy may have been resolved; see Physics
Today, vol.35,no.8, Aug. 1982 .) Thirdly, an excellent and highly
readable account is given in Whittaker’s classic work A History
of the Theories of Aether and Electricity (see the bibliography).
Despite forgoing the strictly historical approach, however, some
of the original chronology will inevitably be followed, not only
because this is the logical description but also because, hopefully,
some of the original excitement will be conveyed.

As we 'shall see, special relativity is not a theory in the same

sense as solid state physics or electromagnetism. What relativity
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—or, more precisely, the principle of relativity —is, is 2 kind of
‘check’ on the validity of other theories. Crudely speaking the
principle of relativity says that the laws of physics are the same
for a stationary observer as they are for an observer moving with
a constant velocity with respect to the first. Thus we can apply
the principle of relativity to any physical theory and see if it is
satisfied. If it is not, then we assert that the theory cannot be
wholly correct but, at the best, can only be an approximation to
a correct, relativistically invariant theory. (The precise meaning of
the phrase ‘relativistically invariant’ will be given later. Here it
may be taken to mean ‘satisfies the principle of relativity”.) In fact
for over two centuries it was believed that Newton’s equations
gave a correct description of the motion of material bodies.
Following Einstein’s discoveries, however, they were found not
to satisfy the principle of relativity. Given their experimental
verification, the conclusion to be drawn (and this also followed
from the mathematics) was that in some sense Newton’s equations
were only valid as an approximation. The approximation was that
the velocities of all the particles should be small compared with
the velocity of light, a condition well satisfied by the motion of
the planets. The Earth’s velocity around the Sun, for example, is
approximately 3 X10%ms™" and the velocity of light is 3 X10%ms™!,
so Newton’s solution for the motion of the Earth should be

-accurate to one part in 10%. (In fact it is the square of the velocity

ratioc which is important, so that the limit of validity is even
better —one part in 10%.)

Finally in this introduction a comment on the use of the word
‘relativistic’. We are using it combined with the word ‘invariant’ to
mean a theory which satisfies the principle of relativity. It is
common these days, however, to refer to ‘relativistic expressions’
for some physical quantity, e.g. momentum. What this really
means is that the expression so referred to is consistent with the
principle of relativity. This is a little misleading, since Newton’s
expression for momentum, for example, is approximately com-
patible (see the discussion above) with the principle of relativity
but is not described as relativistic. Probably the more correct way
to describe the expressions derived by Einstein and others is ‘fully
relativistic’, as opposed to the Newtonian expressions which are

Y
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1.2

only ‘approximately relat1v1st1c We shall try to avoid the adjective
‘relativistic’,

This book is about a number of branches of physics (mainly
two) in which the correct application of the principle of relativity
(as realized by Einstein) radically altered their development. It
may thus be reasonably labelled ‘Relativity Physics’.

Reference systems

Physics is about measurement and the relationship of one measure-
ment to another. Even in the most primitive societies there are
two concepts which are intuitively obvious and present no.
difficulty in understanding. These two concepts are space and
time. Furthermore, these two concepts are uncluttered, not being
endowed with mystical or magical qualities. Very early on in his
development man put these concepts on a quantitative basis: He
used the rotation of the Earth as his clock and introduced an
arbitrary length against which all other lengths were to be com-

~ pared. For each of these measurements he chose a unit. For time

the unit eventually became the second, defined until relatively
recently (the modern definition will be given later) as (1/24) X
(1/60) X (1/60) of the period of rotation of the Earth. For
distance the arbitrary length has varied from culture to culture,
e.g. the idyllic-sounding rod, pole or perch and the rather dull-
sounding metre.

If we are concerned with measuring distance—for example,

the distance travelled by a particle—then this is most easily done--

by setting up a coordinate system or reference frame. The simplest
such reference frame is a Cartesian one, which consists of th-ee
axes at right angles, labelled x, y and z. The position of any event
is then given by specifying the coordinates (x,y,z), i.e. the distance
one has to move along the X,-y and z axes to the point in space
where the event occurred. Figure 1.1 shows the trajectory of a
particle and (x4, y,, 2,) and (x,, ¥, 2,) are the coordinates of two
events, namely the particle passing two markers.

For the measurement of time we need a clock wluch with
reference to some arbitrary zero, will specify how many seconds
have elapsed before a particular event occurs. The instrument we

4 Relativity physicg
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Fig. 1.1 The trajectory (linear) of a particle that passes two markers with
coordinates (x,, ¥,,2,) and (x,,¥;, 2,).

use as a clock will be discussed in Chapter 3, but for the moment
a laboratory stopclock will suffice. Thus for the two events
illustrated in Fig. 1.1 we can add a fourth ‘coordinate’, time. The
particle passes the first marker at a position in space given by
(x1, ¥1, z1) and does so at time #;. We say it has the space-time -
coordinates (x;, ¥;, 21, t;). Similarly for event 2 we have the
space-time coordinates (x;, Y3, 23 ). Thus to specify the
coordinates of any event completely we need to know the three
spatial components and the time; if we use a vector notation, this
may be shortened to (r, t), where

r=ix+jy+kz . (1.2]

is the position vector.

."Now the absolute values of (r, f} cannot be important because
where we have the origin of the coordinate system is quite
arbitrary, as indeed was the choice of the zero of time. In fact we

<
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1.3

are only interested in relative positions. Thus we might wish to
know the time between the two events depicted in Fig. 1.1, i.e.

At = t2—t1

This is independent of the origin of time. This is because if we
shift the origin of time by an arbitrary amount, say t,, then the
new absolute times are ¢, = ¢, — to and ty =t,— tq, but the differ-
ence between the two, as we can see, remains the same. Similarly
the distance travelled by the particle is independent of the origin
of the reference frame. From Fig. 1.1 it is clear by simple geo-
metry that

P==x) + (-7 + @22, )? [1.3]

where [ is the distance travelled by the particle. Since this expres-
sion depends only upon the differences of the coordinates, by
arguments similar to those used for time a shift in the origin of all
or some of the spatial coordinates will not change the value of 1

The homogeneity and the isotropy of space

At and ! are examples of invariants. Formally, At is invariant
with respect to translations of the origin of time, whilst / is
invariant with respect to translations of the spatial origin. This
arbitrariness in the origin of both space ‘and time is sometimes
referred to as the homogeneity of space and time respectively.
That the length, /, is the same when measured in a coordinate
system which is rotated with respect to the first is easily proved
(see problem 1, Chapter.1). This leads to the conclusion that there
is no preferred direction in space. Space is also said, therefore, to
be isotropic. Actually we have really inverted the argument; the
physical assumption is that space is both homogeneous and iso-
tropic. Hence we can use Euclidean geometry to show that length
is an invariant. Similarly it is the physical assumption of the
homogeneity of time which leads to the time interval being an
invariant. However, the correctness of Euclidean geometry comes

more naturally to most people than the more abstract concepts of

homogeneity and isotropy of space.
The above discussion has gone into some detail to emphasize

6 Relativity physics
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that reference frames, on the assumptions of the homogeneity of
space and time and the isotropy of space, are arbitrary. It follows
therefore that any physical law must not depend upon the parti-
cular reference frame we have chosen to select. To give an example,
the equations of motion of two particles in one dimension acting
through a force Fixy, x3) are

d2x1
m, _d_;; = F(xy,Xx2)
B [1.4]
d’x, F( )
m = —H(X), X
2 yp 1 X2

where x, and x, are the coordinates of particles 1 and 2 in a
particular reference frame and m, and m, are their masses. Now
suppose we describe the same two particles by using a reference
frame whose origin is at X, in the original frame. Then if we call
the coordinates of the particles in the new frame x; and X5, then

Xy = X, +Xo and x; = X3 +Xo

Since x, is a constant, its derivative with respect to time is zero
and hence if we substitute these transformation equations into
the equations of motion (equations [1.4]) we get

‘ d2x1' ' ’
m, — = F(x,' + x0, x5 + o)
dr
dz.x:' ' ,
mj dt’ = —F(xl + X0, X2 + x°)

the equations of motion in the new reference frame.
Now there are two things wrong with this result.

1. The new equations depend upon the origin of the coordinate
system, x,, which clearly offends against the homogeneity of
space.

2. The force of interaction does not have the form F(x,, x3),
which it should if the equations are to have the same form as
in the original reference frame.

This latter point means that these equations of motion do not

The principle of relativity 7



satisfy the principle of relativity,

Now, earlier on we discussed the fact that, in going from one
frame to another with a different origin, the invariant was not the
absolute position of one event but the distance between two
events. This suggests that if the forces between two particles
always depended only upon the distance between the particles
then we would remove the difficulties discussed above. In fact we
find in nature that all forces between particles have this property.
(Strictly speaking, although the magnitude of forces in nature
depends upon their distance apart, their direction is not always
along the line of centres. These are known as non-central forces.)

_ Thus we can write

F(xy, x3) = f(x1—x3)

and hence in the new reference frame the equations of motion
become

dix,’ ,
m =JXxX;y —x
i [l —x;)
d’xz' f( ,- ,) [15]
m = —J{xy —x
2 dtz 1 2

These equations are now independent of x, and have the same
form as the original equations.

The requirement that the equations of motion look the same
in all reference frames is known as requiring that they be form
invariant. Ensuring that this was so in the above example was in
fact applying the principle of relativity. However, before éxplicitly

. giving and explaining this principle, there is one other transform-

ation between coordinate systems that we should investigate.

Reference frames with a constant relative velocity

We have already agreed that space is homogenecous (as well as
isotropic), i.e. if we displace the origin of the reference frame it
should make no difference to any physical measurement or law.
What happens, however, if we have a frame that is moving with
respect to an original frame? Should length be an invariant and

8 Relativity physics
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should the laws of physics be form invariant?

Before examining these questions it will be helpful to derive
the transformation from the original reference frame to the
moving frame. For so<alled ‘special relativity’ we need only
concern ourselves with the case when the relative velocity of the
frames is constant. In particular, let the respective y and z axes of
the two frames be parallel (because of the assumed isotropy of
space we can always rotate one of the sets of axes to ensure that
this is so). Further, let the x’ axis of the second frame be moving
along the x axis of the first frame with a constant velocity, ».
We shall refer to the original frame as the K frame and the moving
frame as the K' frame. Alternatively, and somewhat more loosely,
we shall refer to the laboratory frame and the moving frame. The
corresponding situation in two dimensions is illustrated in Fig. 1.2.

4 . 4
e vt

- ———————

> ¥ : .
Fig. 1.2 The K' frame is travelling with a velocity along the x axis of the
K frame. The y and y' axes are parallel. It is assumed that at t = 0, the
origins are coincident and subsequently that time is the same in both
frames, i.e. t' = ¢t for all t. The point P has the coordinates x,y in the X
frame and x.%' in the K’ frame. Geometry clearly shows that ¥’ = y and
x'=x—-vt

The origins are coincident at ¢ = 0 and we make the further 4ssump-
tion that time is the same in K as X'. The equations of the trans-
formation, known as the Galilean transformation, are, fromFig. 1.2,

xX=x-vt Yy =y =2z [1.6]

The last of these equations comes from the analogy with y'=y,
ie. it is an axis at right angles to the direction of motion. It
follows immediately, by differentiating with respect to time, that
the equations for transforming the. velocities in the K frame to

The principle of relativfty 9
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their corresponding velocities in the K1 frame are
U = ux—v  uy) =u, u, = u, - 11.71

A second differentiation shows that the acceleration in the two
frames is equal (remember that v is a constant), i.e.

a, = ay a, = a, a, = a, [1.8]

Now the question is: Can we distinguish between these two
frames? We have already assumed that space is homogeneous
and, given this, it would seem that the frames K and XK' are
indistinguishable. All we can say is that they have a relative
velocity . This is equivalent to making a small displacement dx in
a time d¢. The K’ frame moving with a constant velocity v corres-
ponds to a series of displacements dx each in time dt, such that
dx = vdr. From this point of view the equivalence of K and K is
expressing nothing more than the homogeneity of space. However, -
this is not the whole story.

Suppose that in some sense space is absolute, i.e. it exists in
its own right, or, to put the proposition another way, an pbject
occupies a particular portion of space and if it is moved it no
longer occupies that piece of space but another and different
portion. Newton believed in such an absolute space and devised
several ingenious experiments to demonstrate its existence. Other
philosophers such as Leibniz and Mach denied the existence of
absolute space and preferred to think of space as a series of
relationships between objects. For the moment let us take
Newton’s side in the debate. Then it is clear that frames moving -
with a relative velocity can be distinguished, for there exists a
reference frame in which absolute space is at rest. All other
frames can be distinguished by their velocity with respect to the
absolute frame. So if we have two frames moving along the x axis
of the absolute frame with velocities o, and 7, + v, then their
relative velocity is v. Nevertheless, they can' be distinguished
because one has a velocity and the other v, + pwith respect to
absolute space. ‘

On the other hand, if we follow Leibniz and Mach and dispense
with absolute space, then all we can say is that the two frames
have a relative velocity, and whether one is moving and the other
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