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PREFACE

The following pages deal with "processes’ on manifolds.

A process is a solution of differential equations. These equations
are supposed to depend on parameters, called control-variables, which
parameters control the process.

The main topic in the following pages is dealt with in Chapter II,
where a maximun—-principle, which has to be satisfied by the control
of an "optimal process” is established. This maximum-principle is of
the first importance since it reduces a problem of optimal control
to a problem of mathematical programming. For solving problems of
mathematical programming a lot of relevant work has been done.

A maximum-principle for processes described by ordinary differential
equations was proved by Pontryagin and his coworkerxs in 1958. There-
fore this principle is known as Pontryagin's maximum-principle, though
Hestenes proved this principle as early as 1950 in a report published
by Rand Corporation.

We shall follow a general approach by considering a set of differen-
tial equations on a manifold. Applying variational methods we arrive
at an expression where Stokes' theorem turns out to be pivotal.
Application of this theorem leads to the "adjoint equations". We then
obtain a fundamental inequality, from which we arrive at the maximum~
principle by introducing a boundary-condition, which essentially
implies a way for finding the appropriate additional conditions for
the "adjoint functions", satisfying the adjoint equations.

Chapter I is introductory; a summing up concerning linear alter-

nating functions, integration on manifolds and Stokes' theorem is
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given. For a more complete treatment we refer to the book "Analysis,
Manifolds and Physics", written by Yvonne Choquet-Bruhat, Cécile

de Witt-Morette and Margaret Dillard-Bleick (North Holland Publishing
Company, 1977).

In Chapter II processes defined by a set of differential equations
on amanifold are dealt with. By applying Stokes'theorem we obtain a
fundamental inequality, from which we start to find the maximum-
principle for an optimal process.

In the next three Chapters we specialize, after having made some
introductory observations, to ordinary differential equations and to
first and second order partial differential equations. Application
of the results of Chapter II requires verification of the assumption
concerning a "loeal variation”, made in the general approach. There-
fore the main problem in these Chapters is to examine the effect of

a local variation.
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I. INTRODUCTION

1. Manifolds.

a manifold may be considered as a generalization of a surface in eucli-

dean 3-space, which surface is represented locally bij a parametrization

X = x(vl,vz)

y = y(vl,vz)

N
[

z(vl'VZ)

depending on two parameters Vl'v2' The derivatives of these functions,
which functions are supposed to be sufficiently smooth, define two tan-
gent vectors B1 and BZ' If these vectors are independent at a point p
then the surface has at p locally the topology of euclidean 2-space,
which means that p has an environment on the surface, which environment
is homeomorphic to an open subset of euclidean 2-space.

Let X be a subset of euclidean n-space En' If each point p of X has a
(relatively open) neighbourhcod S in X, which neighbourhood is homeo-
morphic to an open subset U of euclidean m-space Em then X is called an

m-dimensional manifold. Notice that every point of X has a neighbourhood

in X, which neighbourhood is homeomorphic to Em.



So there exists a bijective cor-
respondence 1 between points
u € U and points x = t(u) € S.

Let x, ,x

1 s+ .+ ,X_denote
m

2
cobrdinates of a point u of U.
These codrdinates are called
local codrdinates of the point
X; the mapping T furnishes a parametrization of X.
We shall be concerned with differential manifolds, which means that Tt
. and its inverse T—l are both continuously differentiable. Therefore con-
tinuous linear mappings dt and dr_l exist such that
Il T(u+h) - t(u) - dthll = o(ilhil} , ueU,u+heU

and

e xen) - v ) - ar thil = o(lihll),  xeS,x+hes

where the norm denotes the euclidean norm. So

1im 41T (u+th) - T(u) - dth|| - ¢
TN n |l
and
. ILt —1(x+h) - T_l(x) - dT—lhll*
Lin el =0
[|h]{~0

= Such a mapping T is called a diffeomorphism.

ﬁ; Let el,e2,...,e denote a basis of Em. If 11,12,...,Tn denote the

m

codrdinates of x = 1(u) in En and if we put




m .
i .
T, (uth) - T, () = Z Bjhy + R, i=1,2,...,n

where z B%h. =dr.h
313 1

Ri is such that

z hjdriej, hj denoting components of h and where

o(lInih

R, 1l
i
then clearly

aT,
1

So the functions Ti have continuous partial derivatives. The vectors
Bj = drej with components B; in En constitute the columns of a matrix
B, which matrix represents the linear mapéing dTt. Because T is a dif-
feomorphism B has rank m. The vectors in Em’ which vectors are imagi-
ned tooriginate from the point u are mapped by dt onto vectors of the
tangentspace, denoted by Tx(X). The vectors B,+By,...,B form a basis
for this linear space. Therefore the dimension of the tangentspace

Tx(X) equals m.

Thusfar we considered manifolds without boundary. Let now X be a subset
of euclidean n-space En such that each point p of X has a neighbourhood
S in X, which neighbourhood is diffeomorphic to an open subset U of
euclidean halfspace Hm = {ueEmlmeO}. Then X is an m-dimensional mani-
fold with boundary dX. So to
every point u € U corresponds

I
bijectively a point m

x = t(u) € S. Since T is a P

diffeomorphism a continuous linear mapping di exists such that



lt(uth) = t(uw) - ath || = o(lIn}]) , ueyU, u+heu
By this mapping dt the vectors h in Em, which vectors are imagined to
originate from the point u are mapped onto the tangentspace TX(X). So
dt maps the vectors h of Em and is not restricted to vectors of H ,
even if u is a boundary-point ome-

A boundary-point of X is the image of a boundary-point of H . Soxisa

boundary-~point of X if x = 0. The boundary 3X of X, which boundary <is

an (m-1) - dimensional manifold consists of the boundary-points of X.

Let us consider an m-dimensional manifold X with boundary 38X and let
el,ez,...,em denote a basis of Em' to which basis we assign a positive
orientation. Another basis Ael,Aez,...,Aem of Em is said to be equi-
valently oriented if the determinant of the linear transformation A is
positive. So we distinguish two orientations, positive orientations and
negative orientations . Let
x = 1(u) be a point of X. So
X is a point of an open sub-

set S of X, which subset is

diffeomorphic to an open

subset U of Hm' By dt the

basis e,.e e is mapped

gree
onto a basis Bl’B2""'Bm of TX(X). Now suppose that x = t'(u'), where
1' is another diffeomorphism of the parametrization of X. By dt' the

basis el,ez,...,em is mapped onto a basis B',Bé,...,B$ of TX(X). If the
bases Bl’B2""'Bm and Bi,B',...,B& are equivalently oriented (for any
point x of X) then X is said to be oriented. This means that both bases

of TX(X) are connected bij a linear transformation with positive deter-

minant.



A manifold is orientable if it may be oriented. So a manifold is orien-—

table if it admits a parametrization such that on an intersection S n S'

a(xi,xé,...,xi)
the Jacobian determinant det is positive, where
2 (X1 ’XZ’ ... rxm)
xl,xz,...,xm are codrdinates on S and xi,xé,...x& are codrdinates on S°'.

Let x be a boundary-point of X. We distinguish two unit vectors in
TX(X), which vectors are

perpendicular to Tx(ax).
One of these unit vectors
. s -1,

is mapped bij dz into

H and the other of these
m n

unit vectors, which vector is called the outer normal n is mapped by
dr—l into - Hm. Now if we declare the orientation of a basis

bl'b2""'bm—1 of TX(BX) to have the same sign as the orientation of

the basis n, bl’b2""'bm—1 of TX(X) then an orientation of X clearly

induces an orientation of T _(3X), the "boundary-orientation”,

2. Linear Alternating Functions

Let Vm denote an m-dimensional linear space over the real numbers. On

Vm a function F is said to be a k-tensor, depending on k arguments

v, ¢ V ,v., €V ,...,v, € V , if F is a real valued function on
1 m’ 2 m k m
vk = v x V. X ... xV , which function is linear in each argument v,.
m m m m ]
So
F(vl,vz,...,vj+kwj,...,vk) = F(vl,vz,...,vj,...,vk)

+ XF(vl,vz,...,wj,...,vk),

where w, € Vm and where A denotes a real number.
J



A k-tensor F is said to be a k-form or form of degree k if it is alter-—

nating, which means that
F‘(vi 'V, ,...,vi ) = sgn(i) F(vl'VZ"°"vk)

where sgn(i) is the sign of the permutation il'i2""'i of the numbers

k
1,2,...,k. From this defirition it follows that if F is a k-form and if
ViV

y-..,v, are linearly dependent then F(vl'VZ""Vk) = 0. The space

2 k

k
of all k-forms is denoted by Q .

The sum F1 + F2 ot two k-forms Fl’ F2 is the k-form, defined by

(F1+F2)(v1,v2,-..,vk) = Fl(vl,vz,...,vk)

+ FZ(Vl'VZ""'vk)

The tensor—-product F) ® F, ofa k,-formF, and a k,-form F, is the

(k1+k2)—form, defined by

peeaV )
2 k1+k2

yeeqVe YF,(V vV
2 k1 2 k1+1 k2+2

F1 ] FZ(V1'V

= Fl(vl,v ooV

)

k1+k2

of'akffonnF and a k,-form F, is

Generally the tensor-product F1 2 F 1 5 5

2

not alternating. Therefore we make use of the product F, A F, ("wedge-

1

product”, "Grassmann-product') defined by

s ooV )
k1+k2

- 1 i
= KRy ! sgnd) Fy @ Fylv, v, ,...,v, )

1
2 1 2 kl+k2

F, A F2(v1,v

1 2

4



where sgn(i) is the sign of the permutation il’iz""'i and where

k1+k2
summation extends over all permutations of the numbers 1,2,...,k1 + k2.
This product is
- distributive over addition:
A = A
F (G1+G2) F G1 + F A G2
- not commutative:
F, ANF, = ( 1)k1k2 F, AF
1 2 2 1
- associative:
A A = A A
(F‘1 F2) F3 F1 (F2 F3)
Next we will consider special k-forms. Let ST YRR be a basis of

Vm and let v = z aiei be an element of Vm' We introduce the l1-forms ®i'

defined by
¢, : v >ao, , i=1,2,...,m

From these 1-forms we obtain k-forms by applying the wedge-product; by

where i denotes the index-sequence i ,i2,...,ik a k-form is defined,

1

which k-form vanishes if i contains two equal indices.

Now suppose F to be a k-form. Then F is uniquely expressed by



F = <i <i .
z ai¢i ’ 1 11<12<...<1k_m

where summation extends over all strictly increasing index-sequences

11,12,...,ik and where

k
The k-forms ¢i form a basis for the space Q@ . Therefore the dimension
k m k . . .
of ¥ equals x ) If k = m then I is a one dimensional space; an
m-form is the determinant of the matrix with rows vl,vz,...,vm except
for a scalar factor.

A transformation

]
[}

Ae ,

which cbnnects another basis ei,eé,...,eé denoted by e' with the ba-

sis el,ez,...,em denoted by e, causes a change of the components a,.

Let with respect to e'

o
il

I aje;

where

=3
I

Or A Gl A ... A

then



de!
a! = F(e! ,e! ,...,e' ) = Z a, —3%
I I Ik i3e,

7

de'
where ggl indicates the determinant of the matrix obtained from A by

omitting rows and columns that have numbers which are not contained in

j or i respectively.

3. Differential Forms

Let X be an m-dimensional manifold. If F is a function that assigns to
each point x of X a k-form on TX(X) then F is said to be a k=form on X.

A vector v of TX(X) is a linear combination Z thj of the basis vectors

B,,B,,...,B . If dx, denotes the 1~form
1772 m i
dxi : Vo) hi , i=1,2,...,m
then dx, A dx, A ... A dx, , where the index-sequence il'iz""’ik is
1 o) *k

strictly increasing, denotes a basis element of the space of all k~forms

on Tx(X)' Hence a k-form F is uniquely expressed by a linear combination

Ya (x) &, Adx, A ...Adx, , 1<i <i_<...< i <m
i i i, i 1 72

where summation ranges over all strictly increasing index-sequences
il,iz,...,ik, indicated by i. In view of this expression F is said to be
an (exterior) differential form of degree k. In fact such a form "pulls

back" the k-form F into Em. To make this clear we observe that by the

linear mapping dt a vector v = X thj = dt X hjej = dth of TX(X)
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corresponds to a vector

h in Em. So a k-form

* . . T

T F on U is defined by €—
*

T F (u,h) = F (x,v)

where x = 1(u) and where

v stands for vectors

vl,v pae eV indica-

, which vectors correspond to vectors h,,h.,...,h

2 k 1772

K
ted by h in Em. Thus a differential form T*F on U is induced from F by
T. The mapping ¥ is said to pull back the k-form F onto U.

Now suppose T' to be another diffeomorphism, which maps an open subset
U' of H onto a neighbourhood S' of x = 1'(u') in X. Let

[ I mpt = AT rat [
dxj : Z hiBi dt 2 hiei___a hj ,then

*
TVF = ) al(x)dx! A dx! A ... Adx! , 1S3 <3 <...<j <m
. ! 5 3, 3, 3 33, Iy

where
' de! 30X, vX; veeenx, )
' = _3_ 1 72 k
aj (x) Zai(x) vy Zai(x> det s TS
1 B PR Pt Iy
B(Xi ,xi Peeer Xy )
in which expression det a(x,l x,2 ) denotes Jacocbian determi-
. ’ . re**7 .
I 32 Ik
nants. Hence
‘ Bk, Xy yeeeix )
* - 1 2 k ,
= ax! A dx! A ... A dx!
T F = Z Z ai(X) det 3(x' ,Kx' ,...,x') le X32 N
3,03, Iy

which differential form is obtained from Z a.{x)dx Adx, A...Adx
i iy i, i

by substituting




