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Preface

The main purpose of an organism’s existence is (of course)
to perpetuate its genetic material, and the properties of the
cellular structures by which this is achieved are the crux of
heredity. The basic question we wish to answer is: how
does a cell give rise to another cell of either identical or
different type? What role does the duplication and expres-
sion of the genetic material play, and what other factors
may be involved{ In molecular terms, we want to know
how macromolecular structures are assembled in situ.

We understand that nucleic acid (DNA or RNA) is
perpetuated by a duplicative process in which a parental
template is copied to give two identical replicas. By means
of the genetic code, the sequence of nucleic acid is
expressed in the form of protein; and, by implication, the
properties of the various protein products of any cell are
responsible for its phenotype, either directly, or indirectly
because they catalyze or otherwise participate in the
assembly of cellular structures. But to what degree are these
structures self-assembling from their components or to
what extent do they rely upon pre-existing structures to
provide templates?

One might describe the current paradigm of molecular
biology in simplistic terms as “DNA makes RNA makes
protein, which makes another DNA make RNA make
protein’—a cascade in which the expression of one gene
leads to expression of another gene. But we must wonder
whether this cycle is self-contained or whether it depends
upon additional information, for example, the position of
particular structures in a particular cell.

Since the original edition, the purpose of GENES has
been to explain heredity in terms of molecular structures.
Of course, by far the major part of any investigation of the
basis for inheritance must focus on the genetic material.
This edition shares this feature with its predecessors, but

makes more explicit a trend that has been implicit in
previous editions: we now begin more openly to consider
the stages that follow the direct conversion of genetic
information into RNA and protein products.

GENES IV rests upon the proposition that the role of
molecular biology is to explain in molecular terms the
entire series of events by which genotype is converted into
phenotype. We may consider the basis of inheritance in
terms of three broad questions:

e How is the genetic information carried in sequences of
DNA perpetuated and expressed?

e Are cellular structures self-assembled by means of infor-
mation inherent in the sequences of the proteins or other
components?

e What type of information is responsible for the develop-
ment of differences between cells during embryogenesis?

GENES IV considers the first of these issues in detail,
but at present we can touch only partially on the other
questions, although they remain in mind while we analyze
the regulation of gene expression. The expression of genes
in terms of proteins begins with the genetic code, but
includes the events responsible for timing of gene expres-
sion and for proper location of the protein in the cell. These
latter events may take us into ground more distant from the
processes involved in gene expression itself, such as the
assembly of cellular structures from their components, the
nature of positional information, and the establishment of
gradients.

If we could read the sequence of DNA of an organism,
and express it correctly in the right temporal order, could
we construct a living cell? Or is it possible to build certain
cellular structures only if we have a pre-existing example?
The answer is uncertain, but the perpetuation of cellular
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structures is undoubtedly a significant aspect of the rela-
tionship between genotype and phenotvpe.

The starting ground for considering macromolecular
assembly is the sorting of proteins into ditferent cellular
compartments, a process that depends on their sequences
as do their other functions, but which leads into the topic of
considering the basis for the construction ol compartments
A route toward analyzing the topography of gene expres-
sion may be provided by analyzing mutants that assemble
defective embryos. Together with the power of present
techniques for molecular analysis of gene expression, we
may begin to analyze the interactions between gene acti-
vation or repression and assembly of the overall cell or
multicellular structure.

It should scarcely be necessary to say that science is
about asking questions, but the common didactic teaching
of science makes it worth noting that often in this book it is
possible to pose questions that may be in the mind of the
researcher, but for which the answers are not (yet) evident.

Preface

The purpose of this book is to indicate the state of the art in
such terms as well as to summarize current knowledge.
Within this context, GENES [V analyzes gene expression
and regulation and considers their consequences for the
cell and the organism as a whole.

It is as always a pleasure to thank colleagues who
generously have reviewed chapters, and | am especially
grateful to Tania Baker, Michael Chamberlin, Ann Gane-
san, Alex Gann, Martin Gellert, Michael Green, Joel Hu-
berman, Alexander Johnson, Nancy Kleckner, Arthur Ko-
rnberg, Terry Platt, Mark Ptashne, James Rothman, Paul
Schimmel, Matthew Scott, Philip Sharp, Allen Smith, Rob-
ert Thach, Robert Tjian, Andrew Travers, Harold Varmus,
and Harold Weintraub. Michelle Hoffman read the entire
manuscript and suggested many editorial improvements.
And the production of this book became a family endeavor,
in which the efforts of my wife, Ann, were crucial.

Benjamin Lewin
Cembridge, Massachusetts
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