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1. Introduction.

This lecture series will deal with sparse matrix techniques. For years (see Section
7.1), iterative methods have been used for the solution of large linear systems of
equations. The obvious advantage with iterative methods is that they usually demand a
minimum of storage: only non-zero coefficients of the given matrix have to be stored
plus the coefficients in one or a few vectors such as the solution vector and, for

example, the residual vector.

For certain classes of matrices, like diagonally dominant matrices, the simplest
methods such as the simultaneous iteration method and the successive overrelaxation
(SOR) method, with overrelaxation parameter 0 < w < 2, are convergent (see e.g. [11):
For faster convergence, the class ot matrices to be dealt with must possess further

properties.

For instance, a classical result for consistently ordered matrices (2-cyclic matrices,

see [1]) is that the convergence of the SOR method with optimal parameter is given

by the spectral radius p(Qﬂm) =2/[1 + V‘l-p(B)z] - 1 (cf. Section 5.4).

It is apparent that the more properties the class of matrices at hand satisfies, the
faster are the methods that can be developed taking'advantage of these properties.
Thus, for instance, for plane self-adjoint an order elliptic partial differential
equation problems, which after discretization by finite elements or finite differences
lead to a positive definite matrix A, the following qualitative figure can be given

(cf. Section 7.5).
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We have used the following notations:

N number of unknowns

FFT  fast Fourier transform technique

ADI alternating direction implicit method - theory applicable to commutative split-
tings of A or to separable problems

SSOR symmetric successive overrelaxation method

C.G. conjugate gradient method

Thus in order to prove useful results and to Be able to make comparisons between com-
monly used direct and iterative methods, we will here only deal with symmetric and
positive definite matrices. Furthermore, in order to prove the efficiency of (but not
to use) the SSOR preconditibning we will need that a further condition is satisfied.

This condition is satisfied in many finite element matrix problems (see Section 5.4).

For positive definite matrices A the conjugate gradient method has been used both as
a terminating (direct) method - theoretically at most N steps are necessary

- and as an iterative method. We will use the method as an iterative method and as
such the number of iterations to reach a given relative accuracy is directly propor-
tional to the square root of the spectral condition number, #(A), of A, the
'quotient between the largest and the smallest eigenvalue of A. For special clusterings

of the eigenvalues, we will prove that the method may converge faster, however.

The conjugate gradient method is perhaps best presented as an optimization method
which in fact is not only applicable to linear systems of equations but also to non-
linear systems of equations for which an appropriate corresponding functional to be
minimized 1s given (see:Section 2). As such, the method has been used by Hestenes [2],
.Hestenes and Stiefel [3], Fletcher and Reeves [4], Polak and Ribiére [5], Daniel [6]

and by Bartels and Daniel [7] among others.
For linear systems of equations, there are two conjugate gradient algorithms in use

(£) the above mentioned one-step optimization algorithm with updating of search
directions

(42)  the two-step algorithm

which both have orthogonal (or conjugately orthogonal) residuals.

- There is a relationship with the Chebyshev semi-iterative method which will be made

clear in Section 3.‘Actually, a bound on the the rate of convergence of ‘the conjugate

gradient method is easily proved using Cﬁebyshev min-max theory, both in the classical

case with eigenvalues considered in a single interval of the positive real axis and

in the more general case where two or more intervals are considered (see Section 4).



Motivated by the result on the rate of convergence, some so called preconditionings

of the matrix A will be mentioned. The term preconditioning inconnectionwith the
Chebyshev semi-iterative method was used by Evans [8]. The technique was used by
D'Yakonov [9] (1961), Habetler and Wachspress [10] (1961), Gunn tllj, Dupont et al.
[12] and also in connexion with the conjugate gradient method by Axelsson [13] (1972),
[14], [15] and [16]. Most of them have used a method similar to the SSOR method as a
preconditioning device. Young [17] also used the SSOR method for preconditioning. A
numerical comparison between the Chebyshev semi-iterative and the conjugate gradient
methods as accelerating devices, based on the (generalized) SSOR method, is made in
[13] and [15]. In Bartels and Daniel [7], the discretized Laplacian was used as a pre-
conditioning device (and the Laplacian was 'inverted' by FFT-techniques). Later Concus
et al. [51] have reviewed some different preconditioning techniques and they use the
term ''generalized conjugate gradient method''. In Section 5 a review of some precondi-
tioning techniques will be given and a simple theory for the SSOR preconditioning will

be presented.

iterative methods for some special matrices will be considered and in Section 7 a re-
view of iterative methods for the classical discretized second-order elliptic problem
is gfven as well as some more recent results for this problem. Finally some numerical

. results are presented.



2. The classical conjugate gradient algorithm.

Consider the problem of minimizing a functional f = f(u) of N variables, u € RV, Let

’ v P
g = g(u) = grad f(u) be the gradient and H = H(u) = [ 3%—%3— 1 be the Hessian matrix
=j :
of f. We suppose that H is uniformly positive definite. In order to minimize f, the
conjugate gradient method is applicable. In this method the search directions, along
which f is successively minimized, are chosen in such a way that they are mutually

and conjugately orthogonal (see below).

Before presenting the algorithm, let us mention that such problems are of great im=-
portance in physical and engineering sciences where elliptic partial differential

problems may be formulated as variational problems; i.e. where the minimal solution
of so called energy functionals, discretized with finite element approximations, is

to be calculated over the corresponding finite dimensional space SN.
Thus the energy functional usually has such a form that
grad f(u) = A(u)u - b(u),

where A = A(u) is the so called "stiffness" matrix given by

A= gjzj alu) Vo (x) T (x) dx .

a=a(u) >0 is a material coefficient (for instance the diffusion coefficient),

N
& o N
u = i§1ui 0, (), Sy.= SPAN {4, (x)};_q s,
¢i being the basis functions, and b = b(a) comes from the ''source-terms''. The equi-

librium is thus reached at a point where
A(u)u = b(u),

this being a necessary condition for extremum. This is in general a nonlinear system
of equations. Since the Hessian is supposed to be positive definite, it is also a

sufficient condition, and we have a unique solution.

In a linear problem, a is constant and thus A is a constant matrix, independent of
the solution vector. Furthermore b is constant. We will for simplicity assume that b
is constant in the following  but will occasionally make remarks on how to handle

problems with a non-constant matrix A.



In a linear problem, the corresponding functional is quadratic,

(22%) fu)o= % W au-18 4
and at the equilibrium point
(2:2) grad f(u) = Au-b=0.

This linear system of equations is the well known “2quilibrium' equations arising from

Finite elements applied to linear problems.

For various reasons it may be preferable to consider the problem of minimizing (2.1)
instead of ,considering the solution of (2.2) directly.
:',;1
One reason for dealing with the functional f is that one ¢an easily add penalty terms,
for instance taking care of some boundary constraints. Another reason is that when
using th%‘éonjugate gradient.method in order to minimize the functional, f(u) is
minimized in e@ch wrerative step using the information supplied so far during the
“iterations (namely the different gradients). This rather vague statement will become

« more cledr in the following.

@

2.la The conjugate gradient methoM as an optimization method.
< i i

We will thus now gerive the conjugate gradient algorithm from an optimization point

of view. However we will consider a somewhat more general functional, enabling us to

minimize for instance also the residuals.

Thus let

f(u) =€% uTAVy - ¥ oy : e rl;

{53

where v is a natural number. Then a(u) = grad f(u) = AVu - AV_1b = AV_1

r, where
r=Au-b is the residual. We observe that f(u) and g(u) are calculable for all such

values of v. We have
Flu) =3 (u- 0TA - 8) - 3 87AY%
where 0 = A" 'b is the solution.

Since the last term is constant, minimizing f(u) is equivalent to minimizing the error

functional

Tiy=2
r

(2:3) E(u) = % (u=-0)""u- 1) = %- TR o % g(u)TA-vg(u) .

For v = 2 we will thus minimize the Euclidian norm of the residual.



T k y 2 4
To minimize E (or f) we let {d }kzo be 'search directions and {Ak}kzo

of exact line search. From

0415000

ukﬂ = uk + Akdk i k =
we obtain immediately
rk+l work o A dk
Kk
T

Since the optimal value of Xk makes gk+1 orthogonal to dk we have

0= gk”Tdk = grad f(uX + Ahdk)Tdk = rk”T'A"'1dk
and hence
(2.4) A = - o g VA Tavdk .
We now lét

0 R 2 Bkdk , SRl e

the parameters

i.e.,we will in the foflowing conjugate gradient iterative step move along a plane

determined by the residual in the last point and the just used search direction. The

parameter B, will be determined later on.

Appareﬁtly, since d0 = -rD, we have

e & R R P

i.e., a linear combination of elements in the Krylov sequence ro,Ar AP

likewise

k+1* k+1 0
r- ro),

-€ SPAN {ro,...,A

Ak+1(0, and

Thus rk can be written as a polynomial of degree k in A times r0 (with constant

coefficient =. 1), i.e.
b il 1 4 Pk(A))ro 3

where Pk(o) =-0.-Thus

LT

i T
(2.5) W) = a2k o L 0w AR+ p ()



Introducing the norm {we observe that A is positive definite)

_ o
o o = A720) 12
A M

’
we have

(e(u*)) 172 -_/%[Lr° + Pk(A)r0||Av_2 :

Thus -Pk(A)ro, wﬁére Pk(O) = 0, can be considered as an approximation of r? with error

the error has to be orthogonal (with respect to the corresponding inner product

<u,v> = uTAv-zv)fto all functions (vectors) in the linear subspace of approximating

. To minimize this error, it is well known from Hilbert space theory that

functions 3 i.e.,
{[1'+ Pk(A)]ro}TAV-ZP](A)rO =0, 1<k

or equivalently’

o+, WM p @i =0, 1<k
Thus
rkTAY'1r' =0, ' Ls k1,
i.e. the residual vectors will be mutually orthogonal for v =1 and in general will

be conjugately orthogonal with respect to the matrix AV_1. We will now show that this

implies that the search directions will be conjugately orthogonal with respect to the

e
S R P\ S

Thus let 1 < k. Then

. .
dk Avdl O dk)TAv-1dl o) (rk+1 5 rk)TA\;-1dI
=
;) = B,_ e
3 (r_k+1 - PR 1("r‘ +:B. g! 1) LY o el
.7 i e

where we have used the conjugacy between the residual vectors. By induction,

8 1 3¢
kv ;_ (rk* o Ky Tv gl =..,.)l\.l (5 - TRe 7 g )
k

o

>

i k+l _ rk)TA\J-1dU

which is = 0, since do = - ro. From this conjugacy, we have in particular

(R gkdg)TAvdk S



T
rk+1 Avdk
BB gen ol
L A
d- A'd

Since due to exact line searches (which is achieved in a linear problem with the given

¥ " T
A, -value) we have dk gk+1 = rk+1 AY 1dk =

K 0; i.e.,with

k=1 k=1 )

s Bk_1(-r i e

it

k k
(276) d -r + Sk-id

we get

e : I =
) rk+1 " 1(rk+1 £} rk) ; BN 1(rk+1

T
k) rk A\)-1rk

rk)

d

T
k Av-1(rk+1 T

This formula with v =1 {(due to Polak, Ribiére [5]) is recommended by Powell [18]
for more general (non quadratic) optimization problems. For the above considered

quadratic problem it can further be simplified to

3 -
i rl'<+1 AV 1rk+1 gk+1 rk+1
. - T =
rk Av-1rk i

We observe that in the last expression, the Hessian is not needed. Furthermore, from
(2.6) we can simplify (2.4),

; 2 ) 7
Ak = gk rk/dk Avdk F

2.2. The conjugate gradient algorithm.

‘For an arbitrary initial approximation uo, the algorithm thus takes the following form: -

0
u;

L}

r:= Au - b; g:= Av-1r; d:= -r; 60:= gTr;

80/d AVd;’

=
>
(]

Cui= U 4+ Ad;

1

r:=Au - b; g:= AV r; . 1= QTr;

™
.
]

61/60; 60:= 61;

a
L]

-r + Bd;
i

| rTr > & THEN GOTO R;



10
For v = 1 we get the classical conjugate gradient algorithm (cf. [4]), and in varia;
tional formulation of elliptic partial differential equations (2.1) then represents
the energy in the given system. v = | is thus the appropriate choice. The stop-
ping criterion however ought perhaps be a test on a small enough change in f instead
of the test on the residuals. We also observe that g = r and rTr = 81 in that case,

so some simplifications are possible in the algorithm (see Section 5).
For v = 2 we will minimize the Euclidian norm of the residuals, and this may be more
natural in other applications than the one just mentioned. Then we also have a stop-

ping criterion in the iteration cycle of a quantity which is to be minimized.

Remark. Instead of calculating the residual according to the definifion as done above)

it is in a linear problem possible to use the recursion formula

r+AAd.

_|
]

In the case v = 1, this will decrease the number of matrix-vector multiplications at
each iterative step from 2.to 1 at the expense of having 'to store one extra vector,

'namely Ad.

Reid [19] has done a numerical comparison between these two approaches and found only
minor differences in the true residual and the one calculated by the recursion formula.
The number of vectors to be stored is 3 (u,r,d) compared to 4, (For further results

on the computational complexity see [19].)



3. The Chebyshév semi=iterative method.

In this section we will prove that the rate of convergence of the Chebyshev semi-ite-
rative method is determined by the spectral condition number AU/X], where A],AO are
the smallest and largest of the eigenvalues of A. This will then enable us to give

an upper bound on the number of iterations needed in the conjugate gradient method

(see ‘Section 4).

3.1. The one-step Chebyshev semi-iterative method.

Let us at first consider the following one-step iterative procedure

| = S sl S | ' =
(3.1) u = u T]+1(Au BY). 1 =.0,1,28.

for the solution of Au = b. Here {Tl} is a parameter set, the proper choice of which
gives a possible accelerated convergence over the simplest choice Tea T 1 =1,2,...
With 1 = 2/()\0 + A1) we then have the smallest spectral radius po(l = TA)
= (1. - A1/A0)/(1 + X1/A0). The relative error in the Euclidian norm is then decreased
to a numb?r at most € >0, If [(1 - A1/A0)/(1 + A1/AO)]p < €, and this inequality is
satisfied if 4

1 AO 1
P 2 3 _T In 3
The number of necessary iterations are thus in general directly proportional to the

spectral condition number of A.

To get an accelerated convergence, we choose a suitable set {Tl} in (3.1) in order to
minimize the corresponding iteration matrix achieved after p iterations. Then the

errors satisfy

Pogq (a)el
e Qp( )e
where
eP =P - u 4
() h ( )
=T = A
Qp i T

and Qp(A) is the corresponding matrix polynomial. We observe that Q (0) = 1. We
denote by ﬂ;,ﬂg the set of polynomials of degree at most p that are. =1 and = 0,

respectively, at the origin.



More generally, we would like to minimize the residual P = Al - b, or the error

ep = A_Irp, in the norm

(vT A_\)v)]/2 3 Vv an integer.

v,

Then we have

A

: 0
IePll o= NI Sl e oy o
ATV P _A_“ I A~V
where, as is easily dem~nstrated,
K = ma o v
He® 1l -, = max o 00|
which we thus want ;o minimize.
It is well known that the least maximum is achieved by the Chebyshev bolynomia1s,

P TN wAy <P =)
{3:2) min  max la (A)] =  max | p- v 1 0 I'

Y :
I P A9

TolQg + 27070 = 1y))

= I/Tp((A0 + 2700 = 1))
where

Tp(z) = % [(z+V zz-l)p + (z-V z?-l)p]

The optimal.choice of the parameters T, are thus given by the zeros of Tp’ Fe®sy

. Ay ) Tt )
1 0 055
T e and Wl sy Sk
where
e - e T
Bl » zp ’ 1 ’.1,2,...,p.

In practice, 'the smallest and largest eigenvalues are not known, so we need lower and

upper bounds,”a (a >0) and b, respectively. Then we have to use theé parameters

1 b-a b+a
Craeet s il o8

It is an easy matter to find that



. iy 1 P
1/T_((b + a)/(b = a)) i< 2(-‘———.-—3-/-2) ,
P 1+ Vasb
5o that if
142
P23 5 In -~ e>0
then

5 .
min ‘max |Qp(A)| <E

Q €ﬂ] a<i<b

pop oS

i.e. the relative error in the norm ||« || ., is at most e after a cycle of p itera-
A

tions, as given above.

We observe that in this process, which defines the classical Chebyshev semi-iterative
method or Richardson method (see [20]), we have to choose the value of p in advance.
Furthermore, it is easily seen that in the parameter set {T]} there is a non-empty
set for which the matrices | - TIA have spectral radius much larger than 1. This will
cause the process to be numerically unstable unless we use some particular permuta-
tions of the parameters (see [21]).

Both these disadvantages may be eliminated in the following way.

3.2. The two-step Chebyshev acceleration method.

Thus consider the’following two-step formula

(3.3) greng a‘u] + (1 - otl)u]-1 - Blr] 3 e e
g s 0
7 Bo"

aay

We will show how to choose the parameter set {al;B]} in order that this process apart
from rounding errors gives the same result as the one-step Chebyshev process for
every p. We have with the already introduced notations,

e' = o e
and observing that the recursion formula (3.3) is valid for all initial vectors, we
get

Q]+1(A) % alQ](A) " BIAQ](A) + (a] = 1)Q‘_1(A) =0, 1 =1,2,...

Comparing this with the recursion formula for the Chebyshev polynomials



