Database Machines
and Knowledge Base
Machines .

Edited by

Masaru Kitsuregawa
Hidehiko Tanaka

hd
()

Kluwer Academic Publishers

DATABASE MACHINES AND
KNOWLEDGE BASE MACHINES

edited by

Masaru Kitsuregawa
University of Tokyo
Hidehiko Tanaka
University of Tokyo

Ad

50

KLUWER ACADEMIC PUBLISHERS
Boston/Dordrecht/Lancaster

Distributors for North America:
Kluwer Academic Publishers

101 Philip Drive

Assinippi Park

Norwell, Massachusetts 02061 USA

Distributors for the UK and Ireland:
Kluwer Academic Publishers

MTP Press Limited

Falcon House, Queen Square

Lancaster LA1 1RN, UNITED KINGDOM

Distributors for all other countries:

Kluwer Academic Publishers Group
Distribution Centre

Post Office Box 322

3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

Database machines and knowledge base machines / edited by Masaru

Kitsuregawa.)

p. cm. — (The Kluwer international series in engineering and
computer science ; 43. Parallel processing and fifth generation
computing)

Contains papers presented at the Fifth International Workshop on
Database Machines.

ISBN 0-89838-257-2:

1. Electronic digital computers—Congresses. 2. Data base
management—Congresses. 3. Expert systems (Computer science)-
-Congresses. 1. Kitsuregawa, Masaru. II. Hidehiko Tanaka. III. International Workshop
on Database Machines (5th : 1987 : Tokyo, Japan) IV. Series:
Kluwer international series in engineering and computer science ;
SECS 43. V. Series: Kluwer international series in engineering and
computer science. Parallel processing and fifth generation

computing.
QA76.5.D2687 1988 87-29646
004—dc19 CIP

Copyright © 1988 by Kluwer Academic Publishers, Boston

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording, or other-
wise, without the prior written permission of the publisher, Kluwer Academic Publishers, 101
Philip Drive, Assinippi Park, Norwell, Massachusetts 02061.

Printed in the United States of America

DATABASE MACHINES AND
KNOWLEDGE BASE MACHINES

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

PARALLEL PROCESSING AND
FIFTH GENERATION COMPUTING

Consulting Editor

Doug DeGroot

Other books in the series:

PARALLEL EXECUTION OF LOGIC PROGRAMS
John S. Conery ISBN 0-89838-194-0

PARALLEL COMPUTATION AND COMPUTERS FOR
ARTIFICIAL INTELLIGENCE
Janusz S. Kowalik ISBN 0-89838-227-0

MEMORY STORAGE PATTERNS IN PARALLEL PROCESSING
Mary E. Mace ISBN 0-89838-239-4

SUPERCOMPUTER ARCHITECTURE
Paul B. Schneck ISBN 0-89838-234-4

ASSIGNMENT PROBLEMS IN
PARALLEL AND DISTRIBUTED COMPUTING
Shahid H. Bokhari ISBN 0-89838-240-8

MEMORY PERFORMANCE OF PROLOG ARCHITECTURES
Evan Tick ISBN 0-89838-254-8

PREFACE

This volume contains the papers presented at the Fifth International
Workshop on Database Machines. The papers cover a wide spectrum of
topics on Database Machines and Knowledge Base Machines. Reports of
major projects, ECRC, MCC, and ICOT are included. Topics on DBM
cover new database machine architectures based on vector processing and
hypercube parallel processing, VLSI oriented architecture, filter processor,
sorting machine, concurrency control mechanism for DBM, main memory
database, interconnection network for DBM, and performance evaluation.
In this workshop much more attention was given to knowledge base
management as compared to the previous four workshops. Many papers
discuss deductive database processing. Architectures for semantic network,
prolog, and production system were also proposed.

We would like to express our deep thanks to all those who contributed
to the success of the workshop. We would also like to express our apprecia-
tion for the valuable suggestions given to us by Prof. D. K. Hsiao, Prof. D.
J. DeWitt, and Dr. H. Boral. The workshop was sponsored by the Informa-
tion Processing Society of Japan and the Institute of New Generation Com-
puter Technology, with the support of Japan Electronic Industry Develop-
ment Association, in cooperation with the Association for Computing
Machinery, Japanese Society for Artificial Intelligence, and Japan Society
for Software Science and Technology. We would like to thank all those who
gave us their support, including many companies which supported us finan-
cially. We are grateful for the assistance we received from the Mampei
Hotel. We wish to thank Miss Y. Tasaku of Inter Group for taking care of
all the arrangements for the workshop and also Mr. D. Childress and Mr.
Y. Yamamoto of Kluwer Academic Publishers for publishing the proceed-
ings. We, on behalf of the program committee, wish to express our grati-
tude to the many others who contributed to the success of the workshop.

Program Chairman M. Kitsuregawa
General Chairman H. Tanaka

ix

CONTENTS

I Project Research for Knowledge Base Machines 1

ICM3: Design and Evaluation of an Inference Crunching Machine 3
Jacques Noyé, Jean Claude Syre, et al.

Knowledge Base Machine Based on Parallel Kernel Language 17
Hidenori Itoh, Toshiaki Takewaki

KEV-A Kernel for Bubba 31
W. Kevin Wilkinson, Haran Boral

II Database Machines 45

Hypercube and Vector Database Machines

IDP-A Main Storage Based Vector Database Processor 47
Keiji Kojima, Sun’ichi Torii, Seiichi Yoshizumi

Join on a Cube: Analysis, Simulation and Implementation 61
Chaitanya K. Baru, Ophir Frieder, Dilip Kandlur, Mark Segal

Design of a HyperKYKLOS-based Multiprocessor Architecture for
High-Performance Join Operations 75

B.L. Menezes, K. Thadani, A.G. Dale, R. Jenevein

Sorting Machines

Design and Implementation of High Speed Pipeline Merge Sorter with
Run Length Tuning Mechanism 89

M. Kitsuregawa, W. Yang, T. Suzuki, M. Takagi
Algorithms for Sorting and Sort-Based Database Operations Using a

Special-Function Unit 103
C. Lee, S.Y.W. Su, H. Lam
Parallel Partition Sort for Database Machines 117

Y. Yamane, R. Take

Concurrency Control

Distributing the Optimistic Multiversioning Page Manager in the JASMIN
Database Machine 131

Ming-Yee Lai, W. Kevin Wilkinson, Vladimir Lanin

v

vi
Multi-Wait Two-Phase Locking Mechanism and Its Hardware Implementation
K. Saisho, Y. Kambayashi

Performance Evaluation of Several Cautious Schedulers for Database
Concurrency Control

S. Nishio, M. Watanabe, Y. Ohiwa, T. Hasegawa

VLSI-based Database Machines
The Database Processor ‘RAPID’
Pascal Faudemay, Daniel Etiemble, Jean-Luc Bechennec, He He

A Bus Connected Cellular Array Processing Unit for Relational
Database Machines

M. Abdelguerfi, A.K. Sood
A Network Algorithm for Relational Database Operations
Takanobu Baba, Hideki Saito, S. Bing Yao

Parallel Execution and Control of Database Machines
The Impact of the Interconnecting Network on Parallel Database Computers
David K. Hsiao

Dynamically Partitionable Parallel Processors: The Key for Cost-Efficient
High Transaction Throughput

Alexandros C. Papachristidis
A High Speed Database Machine-HDM
Shun-ichiro Nakamura, Harumi Minemura, Tatsuo Minohara,
Kuniji Itakura, Masakazu Soga
Filter Processors
A High Performance VLSI Data Filter
K.C. Lee, Gary Herman

Design, Implementation, and Evaluation of a Relational Database Engine
for Variable Length Records

F. Itoh, K. Shimakawa, K. Togo, S. Matsuda, H. Itoh, M. Oba

A Filter Processor as Part of an Intelligent Disk Controller
J. Kreyssig, H. Schukat, H.C. Zeidler

Intelligent String Search Processor to Accelerate Text Information Retrieval
K. Takahashi, H. Yamada, H. Nagai, M. Hirata

Main Memory Database Machines
The Silicon Database Machine: Rationale, Design, and Results
Mary Diane Palmer Leland, William D. Roome

143

157

171

188

202

216

225

237

251

269

283

297

311

vii

MARS: The Design of a Main Memory Database Machine
Margaret H. Eich

MACH: Much Faster Associative Machine
Ryohei Nakano, Minoru Kiyama

A Distributed, Main-Memory Database Machine: Research Issues and a
Preliminary Architecture

Martin L. Kersten, Peter M.G. Apers, Maurice A.W. Houtsuma,
Eric J.A. van Kuyk, Rob L.W. van de Weg

Performance Evaluation

A Single User Evaluation of the Gamma Database Machine

David J. DeWitt, Shahram Ghandeharizadeh, Donovan Schneider,
Rajiv Jauhari, M. Muralikrishna, Anoop Sharma

Performance Projections for a Relational Query Processor
J.N. Kemeny, D.W. Lambert, F.J. Maryanski

Analytical Performance Evaluation of Relational Database Machines
J.S. Lie, G. Stiege

Algebra Operations on a Parallel Computer—Performance Evaluation
Kjell Bratbergsengen

Memory and Disk Management

Experiments with Data Access and Data Placement Strategies for Multi-
Computer Database Systems

J. Greg Hanson, Ali Orooji
Set-Oriented Memory Management in a Multiprocessor Database Machine
Ginter von.Bultzingsloewen, Rolf-Peter Liedtke, Klaus R. Dittrich
Parallel Execution Strategies for Declustered Databases
Setrag Khoshafian, Patrick Valduriez

IIl Knowledge Base Machines

Query Processing Strategy for Deductive Database Machines
A Stream-Oriented Approach to Parallel Processing for Deductive Databases
Yasushi Kiyoki, Kazuhiko Kato, Noboru Yamaguchi, Takashi Masuda
DDC: A Deductive Database Machine
R. Gonzalez-Rubio, J. Rohmer, A. Bradier, B. Bergsten

An Inference Model and a Tree-Structured Multicomputer System for
Large Data-Intensive Logic Bases

Ghassan Z. Qadah

325

339

353

370

387

401

415

429

443

458

473

475

489

503

AI Machines
A Shared Memory Architecture for MANJI Production System Machine
J. Miyazaki, H. Amano, K. Takeda, H. Aiso

A Real-Time Production System Architecture Using 3-D VLSI Technology

Satoshi Fujita, Reiji Aibara, Tadashi Ae

Architectural Evaluation of a Semantic Network Machine
Tatsumi Furuya, Tetsuya Higuchi, Hiroyuki Kusumoto,
Ken’ichi Hanada, Akio Kokubu

Architectural Support for Deductive Database Machines

An Architecture for Very Large Rule Bases Based on Surrogate Files
Donghoon Shin, P. Bruce Berra

A Superimposed Code Scheme for Deductive Databases

Mitsunori Wada, Yukihiro Morita, Haruaki Yamazaki,
Shouji Yamashita, Nobuyoshi Miyazaki, Hidenori Itoh

A Simulation Study of a Knowledge Base Machine Architecture
Hiroshi Sakai, Shigeki Shibayama

Prolog Machines
Implementing Parallel Prolog System on Multiprocessor System PARK
H. Matsuda, M. Kohata, T. Masuo, Y. Kaneda, S. Maekawa
Search Strategy for Prolog Data Bases
G. Berger Sabbatel, W. Dang
The Unification Processor by Pipeline Method
M. Tanabe, H. Aiso

Extended Model for Database and Knowledge Base

Knowledge-Based System for Conceptual Schema Design on a Multi-Model

Database Machine
Esen Ozkarahan, Aime Bayle

An Algebraic Deductive Database Managing a Mass of Rule Clauses
Tadashi Ohmori, Hideko Tanaka

An Approach for Customizing Services of Database Machines
S. Hikita, S. Kawakami, A. Sakamoto, Y. Matsushita

517

532

544

557

571

585

599

613

627

660

674

I Project Research

for
Knowledge Base Machines

ICM3: Design and evaluation of an
Inference Crunching Machine

Jacques Noyé, Jean-Claude Syre. et al.

ECRC - European Computer-Industry Research Centre GmbH
Arabellastr. 17 D-8000 Muenchen 81 West Germany

ABSTRACT

The ICM (Inference Crunching Machines) Project is a research project conducted at
ECRC to design and evaluate the architectures of processors dedicated to Prolog.
Although there is a real trend in developing co-processors for Al, little has been done to
tailor the abstract Prolog machines known in the literature to the real features of existing
hardware. ICM3 is one example of such an effort to modify the software Prolog machine,
leading to a powerful and efficient implementation in hardware. After an introduction
giving the framework of the ICM Project, we describe the modified abstract machine,
then the architecture of ICM3, emphasizing its unique features (asynchronous prefetch
unit, dereferencing and unification unit). Some functional and gate level simulation results
follow. We conclude with comments on what we learned from ICM3, and introduce the

next project under way at ECRC, in the Computer Architecture Group.

INTRODUCTION

This paper presents the architecture and performance evaluation of ICM3 (Inference
Crunching Machine), a co-processor dedicated to Prolog. ICM3 is one output of the ICM
research project, begun at ECRC in 1985, which also involved H. Benker, T. Jeffré,
G. Watzlawik, A. Poehlmann, S. Schmitz, O. Thibault and B. Poterie as full time
researchers of the Computer Architecture Group.

When we started the ICM Project, several other important research studies were under
way at other places: the PSI 1 machine [12, 10 was starting running at a tremendous
speed of 100 Klips (Kilo logical inferences per second), peak rate, 30 in a sustained
regime, a major breakthrough compared to the conventional 1 to 3 Klips of current
interpreters. Then machines running compiled Prolog were introduced. The CHI
{7] machine was revealed with a peak performance of 280 Klips (OK, it was in ECL,
but an interesting milestone). At about the same time, the Berkeley Group with Al
Despain [5, 4] , and other people from California (Evan Tick [9]), were announcing an
incredible estimate of 450 Klips (still peak performance). Most of these machines
(including the more recent X-1 of Xenologic |8, 3|, and to some extent too, the PSI-II of
ICOT [6]) are more or less a direct mapping of the quasi ”standard” WAM (Warren
Abstract Machine) defined by David Warren in 1983 [11]. The achieved sustained
performance, in the order of 100 to 150 Klips (already 6 to 8 times better than pure
software Prolog systems), together with the idea that the hardware potentialities of the
WAM were still to be explored, motivated the ICM project.

The project started by investigating the various system architectures possible by

3

4

associating a hardwired engine and a software Prolog environment running on a

conventional Host system. We summarize below:

e In a back end processor system, the designer is free to define a format for a
machine word. On the other hand, he will have to implement a complete ad-hoc
software system to compile, emulate, and run the programs. While the
communication with the Host system is easy, it will not allow a tightly-coupled

execution (e.g. for data base or external language extensions).

e In a co-processor system, the constraints are different: the memory system being
shared, the designer is faced with terrible problems of pre-defined word lengths,
memory bus throughput, host compatibility, and will also face the operating system
to solve his problems of communication. The software effort can be small (if the
machine runs in a “one-shot” fashion, i.e. a single query is posed and completely
solved by the co-processor), or it can be high, if one allows a bidirectional control
of the program between the co-processor and the host system. A co-processor is
more attractive for flexibility and extensions.

The ICM3 machine [4] belongs to the second class (we have another design, called
ICM4 [1], corresponding to the first class of system architectures). Thus it is a co-
processor, sharing the memory system of a host machine, and running compiled Prolog
programs in a one-shot manner. The other requirements for [CM3 were the following:

e Achieve a peak performance of more than 400 Klips (rather easy), and a sustained
performance of more than 200 (this is less easy), by really tuning the hardware
design to the fundamental mechanisms involved in a Prolog execution.

e Be connectable to a 32-bit host processor, with the constraints this implies on word
format, memory, ...

e Use a conventional technology.

e Be a vehicle of research to learn lessons from various design choices. In fact some
of the choices were made to evaluate a feature, not really because the feature was
already proven excellent.

This paper is organized as follows: Section 2 describes the abstract machine, stressing
the differences with the conventional WAM where necessary. Section 3 introduces the
hardware architecture of ICM3. Section 4 focusses on the Tag Flag Calculator, an
important source of speed-up. Section 5 presents performance results, with comparisons,
where possible, with existing Prolog systems. Section 6 gives a qualitative evaluation of
ICM3, and section 7 concludes by introducing the future activities of the ICM research
team, part of the Computer Architecture Group of ECRC.

ABSTRACT MACHINE

The ICAM (ICM Abstract Machine) is based on the ideas initially presented by D.H.D.
Warren in ,20.. While preserving the main organization of the WAM, we modified it
along two different lines. First, it was completed and enhanced. taking into account the
experience of ECRC Prolog, a compiled Prolog system developed in the Logic
Programming Group [9, 17]. Second. it was finely tuned to a hardware implementation.
The following short description gives some examples of these two points.

Data formats

A Prolog term is represented by a 32-bit word composed of an 8-bit tag and a 24-bit
value. Within the tag, the type field (4 bits) gives the type of the object, the mark field
(4 bits) was reserved for future use (garbage collection).

Nine different Prolog types are defined: the bound and unbound variables, the
compound terms (lists and structures) and a number of constant types (atoms, functors,
16-bit short integers, 32-bit long integers and reals). A tenth type corresponds to
internally used data pointers (for instance tops of stacks).

Memory layout
The ICAM manages six memory areas:

e The Code Area statically stores compiled Prolog programs.

e The Local Stack stores the AND/OR tree corresponding to a Prolog execution,
which is represented by a stack of frames, the environment frames (AND-level) and
the choice point (or backtrack) frames (OR-level).

e According to the structure copy technique, the Global Stack mainly stores
compound terms created during unification for argument passing purposes.

e The Trail stores the addresses of the bindings which have to be reset on
backtracking.

e The Registers hold the current state of the computation (program pointers, tops of
stacks, pointers to the current choice point and environment frames...) and are used
for argument passing purposes. These Registers, which are the most frequently
accessed objects, are actually held in hardware registers. There are 16 Argument
Registers, and 9 State Registers. E points to the current environment frame, B to
the current backtrack frame, T to the top of the Local Stack, TG to the top of the
Global Stack, TT to the top of the Trail, GB to the Global Stack backtrack point.
P is the Program Pointer, CP (Continuation Program Pointer) points to the next
instruction when a clause is completed, BP points to the next instruction in case of
backtracking (Backtrack Program Pointer), and S is a Structure pointer to the
Global Stack used during unification.

e The PDL (Push-down List) is a small stack used by the general unification

6

procedure. It is always empty between two 1CAM instructions.

Generally, the Local and Global Stacks as well as the Trail expand towards higher
addresses, as more procedures are invoked, and contract on backtracking. In addition, the

Tail Recursion Optimization performs an early space recovery on the Local Stack.

Environment handling

In the WAM, when a clause comprises several goals, an environment is allocated before
head unification by setting the register E (current environment) to the top of the Local
Stack and pushing the continuation information (this information defines what to do next
if the current goal succeeds). The bindings of the permanent variables (i.e. the variables
which must survive the resolution of the first goal) are then stored in the second part of
the frame during unification.

This makes it possible, as an extension to the Tail Recursion Optimization, to trim the
environment. Let us suppose that a permanent variable occurs for the last time in the
second goal of a clause. This clause will be compiled such that this variable will be the
last one to be pushed on the Local Stack. If, before solving the second goal, this variable
is still at the top of the Local Stack, the corresponding location can be recovered.

These features bring a number of drawbacks. First, each time a location is trimmed,
the possibility of a dangling reference has to be checked, which is quite costly. Second,
the top of the Local Stack is computed dynamically, necessitating, in a deterministic
state, an access via the CP register (the continuation program pointer) to the Code Area.
In a hardware implementation, this access to the Code Area disturbs the process of
prefetching the next instructions. The difficulty can be circumvented, as in (7], by adding
a new register holding the dynamic size of the current environment. Unfortunately, this
must then be stored in the environment and choice point frames which may nullify the
expected memory gain.

To overcome these drawbacks, trimming has been abandoned. As in ECRC Prolog, E
points to the top of the environment frame, and T is always Max(E,B). Moreover, the
allocation of environments (i.e. pushing the continuation information and setting E, now
to the top of the Local Stack) can be delayed until unification has succeeded. In case of
failure, unnecessary work is avoided.

Choice point handling
Three refinements (the last two inspired by ECRC Prolog) have been brought to choice
point handling.

First, the backtrack program pointer BP becomes a State Register. In the same way
CP is saved in the environment frame (the AND frame), BP is saved in the choice point
frame (the OR frame). Additionally, both the BP and CP registers can be held in the
Prefetch Unit part of the machine. This results in a notable speedup in instruction fetch,
since these registers are now immediately available.

7

Secondly, we have introduced the management of shallow backiracking. When a clause
head unification may shallow backtrack (i.e. there 1= at least one alternative clause), the
compiler guarantees thal the argument registers are not modified. In case of failure,

neither the continuation (E and CP) nor the argument registers have to be restored.

The indexing scheme has been modified in order to eliminate the possibility of creating
two choice point frames for the same call. This scheme saves tjmg and speeds up cut

operations, too.

The instruction set

The kernel ICAM instruction set comprises 69 instrudiShs, inspired;. frfm Fthe WAM,
and mostly implemented on a 32-bit word. The AND-leve\ inssruttiofs are résponsible for
environment management and goal sequencing. The ORNevel instruc#ons deal with
choice point management and clause sequencing as well as with tN¢ cut operation. The
indexing instructions filter the candidate clauses using as a key a compiler determined
argument. The get instructions perform the head unification of non-nested terms. The put
instructions are responsible for argument passing of non-nested terms and the unify
instructions deal with nested term unification and argument passing.

Lastly, the built-in instructions implement most of the Prolog built-in predicates as
direct microcode calls. This allows register allocation optimization and extends the

effectiveness of shallow backtracking.

ARCHITECTURE OF ICM3

The functional architecture of ICM3 (figure 1) looks like a conventional computer: a
Prefetch Unit (PRU) is connected to a Code Cache (COCA), and an Execution Unit
(EXU), is connected to a Data Cache (DACA). Thus instructions and data are separately
accessed and managed, and the PRU is asynchronous to the EXU. Both units cooperate
using basically two flags: NIP (Next Instruction Please) informs the PRU that the EXU
has reached a point where the current instruction will run to its end without problems
(such as a fail operation), so that the PRU can supply the right next instruction.
PRURDY informs the EXU that this instruction is supplied in a decoded form directly
executable by the EXU. Both units are separately microprogrammed.

The Execution Unit

Beside the basic Register File and the ALU, there exists a number of specific boxes
dedicated to tasks involving specific Prolog operations, as shown in figure 2. The Tag
Flag Calculator is described in the next section.

The Register File. This is made of AMD29334 four-port 64x32-bit register chips,
and contains the Argument Registers (up to 16), the State Registers (E, B, T, TG, TT,
GB, S), a 32 word PDL (or bottom of the PDL), and intermediate or scratch registers
used by the microprograms.

The Register Address Control. This unit provides the register addresses for the

