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Preface

Eigenvectors of graph Laplacians are a rather esoteric topic for a book. In
fact, we are not aware of even a single review or survey article dedicated to
this topic. We have, however, two excuses: (1) There are fascinating subtle
differences between the properties of solutions of Schrodinger equations on
manifolds on the one hand, and their discrete analogs on graphs. (2) “Geo-
metric” properties of (cost) functions defined on the vertex sets of graphs
are of practical interest for heuristic optimization algorithms. Lov Grover’s
observation that the cost functions of quite a few of the well-studied combi-
natorial optimization problems are eigenvector of associated graph Laplacians
prompted us to investigate such eigenvectors more systematically.

The book in essence covers two topics: Nodal domain theorems which give
bounds on the number of connected subgraphs on which an eigenvector does
not change sign, and Faber-Krahn-type inequalities which are concerned with
the shape of domains (i.e.. graphs in our setting) with fixed volume that
minimize the first Dirichlet eigenvalue. The connecting theme between these
two topics is focus on local and global properties of the eigenvectors (rather
than eigenvalues) and convenience of the Rayleigh quotient in the proofs.

The mindful reader will find that more often than not a simple star graph
already provides a counterexample for “obvious™ conjectures. In fact. we used
the Petersen graph just because it seems against tradition to write about
graph theory without using the Petersen graph as a counterexample at least
once. The simplicity of the counterexamples highlights how little we know
about the universe of graph Laplacian eigenvectors (and fitness landscapes in
general), and how misguided an intuition trained on well-behaved manifolds
can be in this realm: even small moves frequently causes a broken nose caused
by some unexpected wall.

The history of this monograph goes back more than a decade and has its
roots in the interdisciplinary research environment at the Department of The-
oretical Chemistry at the University of Vienna, Austria. A collaboration with
Brian Davies during his stay at the Erwin Schrodinger Institute in Vienna
in 1995 stimulated our interest in Laplacian eigenvectors and eventually
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resulted in a research grant from the Austrian Fonds zur Forderung der Wis-
senschaftlichen Forschung (project no. 14094-MAT) to investigate this topic in
a more systematic way. Over the years. many colleagues contributed through
helpful discussions, among them Wim Hordijk, Jirgen Jost. Bojan NMohar.
Tomaz Pisanski. Dan Rockmore. and Gerhard Woginger. We also thank the
Max Planck Institute for Mathematics in the Sciences in Leipzig for their
hospitality and for providing a fruitful scientific working for one of us (TB).

Leipzig, Tiirker Bupkoglu
Wien, Josef Leydold
May 2006 Peter F. Stadler
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1

Introduction

The foundations of spectral graph theory were laid in the fifties and sixties
of the 20th century. The eigenvalues of graphs, most often defined as the
eigenvalues of the adjacency matrix, have since then received much attention
as a means of characterizing classes of graphs and for obtaining bounds on
properties such as the diameter, girth, chromatic number, connectivity [14,
17, 45, 46, 83, 85]. The interest has since then shifted somewhat from the
adjacency spectrum to the spectrum of the closely related graph Laplacian
[14, 35, 41, 85, 88, 137, 139]. In particular, Laplacian graph spectra are being
investigated as a means of characterizing large “small world networks” and
random graphs, see e.g. [33, 34, 119] for a few examples. For the most part,
the theory is still concerned with the eigenvalues.

The eigenvectors of graphs, on the other hand, have received only sporadic
attention on their own, e.g. [134]. Even the book FEigenspaces of Graphs by
Cvetkovi¢ et al. [47] contains only a few pages on the geometric properties of
the eigenvectors which are mostly used as a convenient proof technique.

In this book we will focus on mostly geometric properties of the eigenvec-
tors themselves. The motivation for this topic is twofold. As we shall see in this
first introductory chapter, these objects arise in very diverse applications, from
mathematical biology to combinatorial optimization. The Laplacian eigenvec-
tors are used as tools in heuristics to solve combinatorial problems on given
graphs, usually without a thorough understanding why they work so well.
From a more formal point of view, Laplacian eigenvectors are the natural
discretization of eigenfunctions of Laplace-Beltrami operators on manifolds.
Surprisingly, some of their properties in the discrete case are reminiscent of
corresponding results in the continuous setting, but often there are subtle
differences which we found interesting enough to explore in some detail.

We should, at this point, warn the reader: this book collects a number
of interesting facets of our topic, enough as we hope to stimulate further
research, but it cannot provide a coherent theoretical framework or a powerful
machinery to tackle the properties of Laplacian eigenfunctions in generality.



2 1 Introduction

1.1 Matrix Representations of a Graph

There are two obvious ways of specifying a simple! graph G(V, E) with vertex
set V.= {1,...,n} and edge set E by means of a matrix: the adjacency matrix
and the incidence matrix. The adjacency matriz A has entries A,, = 1 if
ry € F and A,, = 0 otherwise: In order to specify the incidence matrix v
we need an arbitrary but fixed orientation (direction) for each edge e = xy.
Then V is a (|E| x |[V]) matrix and has entries V., = —1 if @ is the initial
vertex of edge e, V., = 1 if x is the terminal vertex of edge ¢, and V., =0
otherwise, i.e., if x is not in e.

Let us now consider a real-valued function f over V, f: V — R. This is
simply a vector indexed by the vertices of GG. In this book we prefer to use a
“functional” notation that emphasizes the similarities between the situation of
graphs and manifolds. Obviously the set of such functions forms a vector space
which is isomorphic to R™ (and thus we will — by abuse of notation — simply
denote this vector space by R™). Similarly there exists a set of real-valued
functions over E. The map f +— V f is known as the co-boundary mapping of
the graph G. Tts value (V f)(e) at a given edge ¢ is the difference of the values
of [ at the two end-points of the edge e (considering orientation). Therefore
the incidence matrix V is a kind of difference or “discrete differential” operator
on G.

Let us now consider an Eulerian graph G. Recall that G is Eulerian if
and only if G is connected and all vertices have even degree. Let C' be an
(arbitrary) Eulerian cycle in G (i.e., a closed walk that traverses each edge
exactly once) and fix an orientation of G such that C' is properly oriented in
the sense that all edge point “forward” along C'. The cycle C' may pass through
each vertex @ multiple times; the incoming edge of the i-th pass is ¢/ = (y!, x),
the outgoing edge is €/ = (x,y!"). We can now define “2nd derivatives” along
C:

(2N (a) == (V) ) (V)
[f Q) = f@)] = [ () = F ()]
2f

:f(!/,)+.f(!/,) () :

I

Note that (2., f)(x) is independent of the orientation on G. Interpreting each
pass of C' tluough x as a different “dimension” it seems natural to consider
the sum over these “2nd derivatives” as a “Laplace-Beltrami operator”

(Af)(x) = > (02../)(x)

passes ¢ of ' through x

d(x)/2
ST+ ) = 2f (@) =D [fy) = f(x)]
1=1

Yy~

" For basic definitions and results the reader is referred to Appendix A.
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which is independent of the choice of the Eulerian cycle €' and the orientation
on (. Naturally, one generalizes this definition of A to arbitrary graphs.

In the graph theory literature, however, it is customary to define the Lapla-
cian operator (map) £: RVl — RVl with the opposite sign:

(L)) = (=Af) (@) =D _[f@) = ()] . (1.1)

Yy~

From an algebraic point of view it appears more natural to define
L=V'Vv 1.2
— (1.2)

which is known as the Laplacian (matriz) of G. We have

-1 if ry € I,
Liy=Y VerVey = d(x) ifx=y, (1.3)
eck 0 otherwise,

where d(x) = |{e € E|o € ¢}| is the degree of the vertex . It is important to
note that L,, in (1.3) is independent of the orientation of the edges. Clearly,
we have the identity (Lf)(x) = (Lf)(x).

Defining the diagonal matrix D with entries D,, = d(x), called the de-
gree matriz, we obtain a simple connection between the Laplacian and the
adjacency matrix of a graph,

L-D A. (1.4)

The Laplacian L therefore uniquely determines its graph through its off-
diagonal entries.

The close relation between V and L on the one hand, and their differential
operator counterparts on the other hand, is exemplified by the following dis-
crete version of Green’s formula, which is easily verified by direct computation
[159]:

Proposition 1.1. Let f: V — R and g : V — R be two arbitrary functions.
Then

> f@) (L)) = > gla) (L)) =D (V) (Vg)(e).

eV reV ecE

Using angular brackets (-, ) to denote the usual scalar product of two vectors
in R™ and the symbol —A for L we can formulate Green’s formula in a more
familiar form as

—(f,Ag) =—(Af.9) =(V[.Vyg) .

The Laplacian L can thus be viewed as a proper discretization of the usual
Laplace-Beltrami differential operator.
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1.2 Finite Differences

Partial elliptic differential equations play an important role in mathematical
physics. Examples are the Poisson equation

Au=f on {2
with given domain 2 C R* and f € CY({2), the eigenvalue problem
—Au=Au on 2

or Schrodinger’s equation. Here A denotes the classical Laplace operator given
as Au=3;_ | Uz,z,-

Computing solutions of such differential equations is a challenging task
in numerical mathematics. An old and popular method is based on finite
differences: A grid or mesh is used to divide R* into small hyper-rectangles or
simplices. At the nodes of the grid the Laplace operator A is approximated
by a difference operator. For 2 C R? and a square mesh of width h we get
the so called Five-Point Formula

Apu(r,y) = [u(x+h,y)+u(r,y+h)+u(z—hy)+u(x,y—h)—4u(r, g/)]/112 .

From a graph theoretical point of view the square mesh is the Cartesian
product of two paths of proper lengths, Py, (0P, C Z?%, and 4, is the graph
Laplacian L(Py, (OPy,) times the constant —1/h?. Thus the graph Laplacian
arises in a quite natural way. For details about finite differences (and other
methods for solving elliptic partial differential equations) the interested reader
is referred to [92], or to [120] for the special case of Laplacian eigenvalues.

1.3 Landscapes on Graphs

Maybe the most direct interest in the structure of the eigenfunctions of graph
Laplacians comes from the theory of fitness landscapes, see [149] for a review.
Evolution theory has as its cornerstone the concept of fitness. Fitness is tradi-
tionally defined as the relative reproductive success of a genotype as measured
by survival, fecundity or other life history parameters [27, 96, 165]. The key
principle of Darwinian evolutionary theory is that natural selection acts so as
to (locally) maximize the fitness of a species or population. The concept of a
fitness landscape originated in the 1930s in theoretical biology [177. 178] as
a means of visualizing this kind evolutionary adaptation: A fitness landscape
is a kind of “potential function™ on which a population moves uphill due to
the combined effects of mutation and selection. Thus, natural selection can be
viewed as a type of “hill climbing” on the topography implied by the fitness
function.

Models of disordered systems, in particular spin glasses, naturally led to
the notion of landscapes [18, 135]: Each spin configuration is assigned an
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energy by virtue of the Hamiltonian that specifies the model. In the simplest
case so-called Ising spins are considered, which can only take two values: up
(0 = +1) and down (0 = —1). The Hamiltonian of the system typically
considers the interactions between neighboring spins, in the simplest case

floy=">  o0;.

neighbors 2. )

There is also a close conceptual similarity of the landscapes in biology and spin
glass physics with the potential energy surfaces (PES) of theoretical chemistry
(95, 136].

In combinatorial optimization the fitness function f is usually referred to as
the cost function on a search space X [80]. The Traveling Salesman Problem
(TSP) is probably the most frequently studied combinatorial optimization
problem. The ingredients of the TSP are simple enough: The configurations
are the n! permutations of the n locations, usually called a “tour”. We write
m = (m(1),...,m(n)) for the order in which they are visited. Given the travel
distance (or cost) C'y; from city [ to city k we can write down the cost function

in the form
n—1

f(m) = Z Criit1).n(iy + Cr1)m(n) »
i=1
where the last term describes returning to the point of origin.
In formal terms, a landscape is a triple (X, X, f) consisting of:

1. A set X of configurations,
2. a notion X of neighborhood, nearness, distance, or accessibility on X, and
3. a fitness function f: X — R.

The set X together with the “structure” X forms the configuration space. In
the simplest case, X' describes which configurations can be obtained from a
given one by means of basic “moves” or transformations. Examples of such
moves are the flipping of a single spin. the exchange of a single letter by
another one in a genetic sequence, or the transposition of two cities along the
salesman’s tour. Usually the move-set is constructed in a symmetric way, so
that the configuration space (X, X’) becomes an undirected finite graph G.
More general classes of configuration spaces are discussed e.g. in [156].

Let us consider the function f given by f(z) = f(x) — f, where f =
ﬁ > rex f(x) is the average cost of an arbitrary configuration. Grover and
others [37, 90, 157] observed that f is in many cases an eigenfunction of the
Laplacian L of the graph representing the configuration space (X, X). These
landscapes have been termed elementary in [157]. Some examples are collected
in Table 1.1.

Lov Grover [90] showed that, if f is an elementary landscape, then

f(j'miu) 5 f < ./'(-i'mux)



6 1 Introduction

Table 1.1. Examples of Elementary Landscapes

Problem Graph degree A Order Reference
p-spin glass Q5 n 2p P definition
NAES Ql n 1 2 [90]
Weight Partitioning Qh n 1 2 (90, 157]
GBP (constrained) Q4 n 1 2 (2]
Max Cut Q) n | 2 2]
Graph a-Coloring Q. (o —1)n 20 2 [157]
XY-spin glass Qo (. — 1)n 20 2 [79]
for o > 2: G2 2 Ssin*(m/a) 2 [79]
Linear Assignment res.,.7T) n 1 [151]
TSP symmetric resS..7) nn—-1)/2 2n-1) 2 [37.90]
reS,.7) n(n-1)/2 n 2 [37. 90]
antisymmetric rS..7T) nn—1)/2 2n 3 (11, 157]
S, J) nn—1)/2 nn+1)/2 O(n) [LL, 157
Graph Matching reS,.T) nn—=1)/2 2n-1) 2 (157]
Graph Bipartitioning J(n,n/2) n*/4 2(n —1) 2 (90, 161. 162]

Here Q!! is a Hamming graphs, i.e.. the n-fold Cartesian product of the complete
egraph K., I'(A, §2) is the Cayley graph of the group A with generating set {2, where
S, and A, denotes the symmetric and alternating groups, resp., 7, J, and Cy are
the transpositions, reversals, and permutations defined by a cycle of length 3, resp.
J(p,q) is a Johnson graph. The order of eigenvalue A is its position in the spectrum
of L without counting multiplicities and defining the order of A = 0 as 0.

where i and . are arbitrary local minima and maxima, respectively.
This mazimum principle shows that elementary landscapes are well-behaved:
There are no local optima with worse than average fitness f.

Many of the examples in Table 1.1 belong to the first few eigenvalues of
L. A simple relationship between A and the autocorrelation function of f of
(X.X). see e.g. [157], suggests furthermore that the “ruggedness™ [72. 173]
of an elementary landscape. and hence its difficulty for evolutionary adapta-
tion. should be related to its corresponding eigenvalue A of L. Furthermore,
a Fourier-decomposition-like formalism was developed that decomposes arbi-
trary landscapes into their elementary components [98. 151, 174]:

f=a0+ Z ap fr (1.5)

where the fi form an orthonormal system of eigenfunction of the graph Lapla-
cian, Lfi, = A\ fi, and ag = f' is the average value of the function f. Let us
denote the distinet eigenvalues of L by A, sorted in increasing order starting
with A\g = Ao = 0. We call p the order of the eigenvalue ;\,,. The amplitude
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=1

spectrum of f: V — R is defined by

By, = la| /Z |ak|” . (1.6)
)\, =X

k: k>0

By definition, B, > 0 and Zp B, = 1. The amplitudes measures the relative
contribution of the eigenspace of the eigenvalue with order p to the function
f. Of course, a landscape is elementary if and only if 3, = 1 for a single order

and 0 for all others.

1.4 Related Matrices

Let us briefly mention a few matrices that are closely related to L. Sometimes
a normalized version L* representing the average difference between a and its
neighbors is used:

(L f)(x) AE

Yy~

This definition is quite similar to (1.1). In fact for graphs without isolated
vertices we have

L'=D 'L=I-D'A.

This version is used e.g. by Grover [90] and Barnes and coworkers [12, 155].
The first nontrivial eigenvalue of L plays an important role for synchroniza-
tion in coupled map lattices [5, 105].

Chung [35] defined a general and normalized form of the Laplacian matrix,
which is consistent with the eigenvalues in spectral geometry and in stochastic
processes:

1 if ¥ =y and d(x) > 0,
Ly =} —1/\/d(x)d(y) if zy € E,
0 otherwise.
In matrix form we have L = D Y2LD~'/2 for graphs without isolated

vertices. L and Lf are similar for graphs without isolated vertices: L* =
D~1/2LDI/2_

Another associated matrix is the transition operator T = AD™! of an
unbiased random walk on G?. We have therefore

L=1-T" and hence (L*)T =I-—-T

as the associated “Laplacian”. This version is used e.g. in [164]. The matrices
L and T are - in contrast to Chung’s Laplacian L - not symmetric unless

2 . . . . . .
“ Contrary to the convention in the Markov chain literature we treat the distribu-
tions as column vectors here, i.e., a step of the Markov chains reads p’ = Tp.
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the graph G is regular; hence they do not belong to the class of operators that
we will be concerned with in this book.

As an example for the application of the transition operator we briefly
continue our discussion of fitness landscapes of the previous section. Let GG
be a D-regular graph and let f: V — R be an arbitrary fitness function.
Weinberger [173] suggested to characterize a fitness landscape by means of
the autocorrelation function r of the values f(x) sampled along a random
walk on G. One easily verifies the following relation between r(s) and the
Laplacian spectrum [157]:

E[f(-"ws)f(-lft)] - E[.f(-771+s)]E[f('771)]
E[f(x¢)?] — E[f (x1)]?

r(s) =

= (£, Tf)/{f. f) (1.7)
=3 B, (1-)\/D)
p>0

Here, the expectation FEJ.] is taken over all random walks with transition
matrix T, all times ¢, and all initial conditions zg € V. The autocorrelation
function r(s) is therefore a superposition of exponential functions. It decays
more rapidly, when the amplitudes B, with large Laplacian eigenvalues \,
increase. A landscape is therefore elementary if and only if its autocorrelation
function decays exponentially. The correlation length

(=Y "r(s) =D B,/A, (1.8)
s=0 p>0

also reflects the fact that the “smoothness” or ruggedness of a fitness landscape
is directly related to the amplitude spectrum. The correlation length of an
elementary landscape is therefore determined by the order p of the associated
Laplacian eigenvalue.

1.5 Graphs with a Boundary: The Discrete Dirichlet
Problem

In 1966 Kac [106] asked whether it is possible to hear the shape of a drum.
A mathematical drum is a domain D with a boundary dD in some R™ (or
more generally in some manifold M). If small vibrations are induced in the
membrane, it is not unreasonable to expect a point on its surface to move
only vertically. In the absence of damping the motion of the point is given by
the wave equation

Au+du=0

with the constraint that u(x) = 0 for all x € 9D (the so-called Dirichlet
boundary condition). Here A denotes the Laplace-Beltrami operator. The so-
lution of a Dirichlet problem involves a countable sequence of eigenvalues (in
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this case the frequencies of the tones produced by the membrane). Kac’s ques-
tion thus can be rephrased in a more formal way: Can nonisometric drums D
afford the same set of eigenvalues? The answer was given in 1992: We cannot
hear the shape of a drum, i.e., there are nonisometric domains D that yield
the same spectrum [86).

Fisher [70] considered the discrete analog to Kac’s problem. In his model
the membrane consists of a set of atoms which in the equilibrium state lie on
the vertices of a regular lattice graph embedded in a plane. Each atom acts on
its neighboring atoms by elastic forces. The discretization of the vibration of
a membrane is the Laplacian matrix L of the graph G. The eigenvalues of L
again correspond to the frequencies of the membrane. We also can’t hear the
discrete shape of a drum, because the eigenvalues of a graph do not determine
the graph uniquely; see e.g. [45]. Nevertheless, in practice it is often possible
to obtain at least good approximations of a graph (in terms of the cardinality
of the symmetric difference between the true graph and its reconstruction)
from its spectrum [103].

We need a notion of a graph with boundary for defining discrete analogs
of Dirichlet boundary conditions. Of course, graphs do not have boundaries
by themselves. Starting from a graph G(V, E) we may, however, consider the
induced subgraph G[V9 on a subset V° C V, considering V' \ V° as the bound-
ary of G[V on which the constraint u(x) = 0 is enforced. We denote this
boundary by 0V. Formally we can define a graph with boundary as a graph
G(V°U OV, E°U JF) where V° denotes the set of interior vertices and OV
the set of boundary vertices. The set of edges between interior vertices are
called interior edges and denoted by E° edges between V°and 9V are called
boundary edges and denoted by OF. Edges between boundary vertices do not
make sense in our setting and are thus deleted. It must be noted here that a
graph with boundary is called connected if the graph induced by its interior
vertices, G[V'9, is connected. The partition into interior and boundary vertices
might be to some extend “arbitrary”. In the case of drums, however, we might
also choose to use a nail and fix the position of the membrane at an arbitrary
point, thereby adding an additional point to the boundary of the domain of
the corresponding Dirichlet problem. A more thorough discussion of Dirichlet
problems on graphs will be given in Chap. 6.

An interesting application of the first Dirichlet eigenvalue arises from a
combinatorial game called chip firing [23]: Every vertex of a connected graph
contains an integral number of chips. In each step of the game a vertex is
selected that has at least as many chips as its degree and one chip is moved
to each of its neighbors. The game can continue as long as there is a vertex
with sufficiently many chips on it. The game terminates when no vertex can
be selected. Chung and Ellis [32] considered a variant of this game, in which
chips are removed from the game when they are moved across a boundary
and gave an upper bound that depends on the first Dirichlet eigenvalue for
the number of steps until such a game terminates.
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If we restrict ourselves to solutions f of the Dirichlet problem on a graph
G(V°U OV, E°U0FE) with boundary we have to look for a function f which
vanishes on all boundary vertices, i.e. f(x) = 0 for 2z € 9V, and which satisfies
for all interior vertices x € V°

(L)@) =D _[f@) = f@) =D Layf () = Y Layf(y) = M(x)

Yy~ yev yeve

for some eigenvalue A. Thus the Dirichlet problem can be reduced to a matrix
eigenspace problem for G[V9. The corresponding Dirichlet matriz I(G) can
be derived from the graph Laplacian L(G) simply by deleting all rows and
columns that correspond to boundary vertices, i.e., by using the principal
submatrix corresponding to interior vertices. Compared to the “free” graph
Laplacian L(G[V9) on the graph induced by its interior vertices, G[V, the
Dirichlet matrix differs just by an additional “potential” p(x) in the diagonal
elements:

L(G) = L(G[VY) + P (1.9)

where P is a diagonal matrix whose entries are P,., = p(x) = |[{y: yr € OF}|.
For a more “natural” motivation of this definition we refer the interested
reader to [75] or Sect. 2.4.

1.6 Generalized Graph Laplacians

The Dirichlet operator and Chung’s Normalized Laplacian motivate the defi-
nition of a more general class of matrices associated with a graph G(V, E). We
call a symmetric matrix M a generalized Laplacian or discrete Schrodinger
operator of G if M,, < 0 whenever xy is an edge of GG and M, = 0 whenever
x and y are distinct and not adjacent. There are no constraints on the diagonal
entries of M. Fiedler [67] and Roth [152] call such matrices “essentially non-
positive”. The ordinary Laplacian L as well as the negative adjacency matrix
—A arc of course generalized Laplacians.

Such generalized graph Laplacians can be interpreted in two ways. First
the off-diagonal entries can be seen as coefficient of a discrete analog of an
elliptic operator which are used in mathematical physics to describe oscillation
in nonhomogeneous matter. On the other hand it could be seen as “ordinary”
Laplacian on a weighted graph. Then the weights w,, on an edge xy has to
taken into consideration. Thus we have a Hamiltonian operator H of the form

(Hf) ) =Y wey [f(x) = f()] +p() f(2) .

Yoo
The first part of the right hand side then represents the kinetic part while

p(r) represents some potential. This is the analogous expression to (1.1) of
some generalized Laplacian.



