Programmable

okt
talculatory;

Henry Mullish and Stephen Kochan

Novus Mathematician PR . Sinclair Scientific Programmable
Hewlett-Packard 25 - Hewiett-Packard 25C - Hewlett-Packard 5!
Hewlett-Packard 65 « Hewlett-Packard 67 - Hewlett-Packard 19C

Hewlett-Packard 29C - Hewlett-Packard 33k

| \YDEN |

Programmable
Pocket Calculators

HENRY MULLISH and STEPHEN KOCHAN

H

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

Library of Congress Cataloging in Publication Data

Mullish, Henry.
Programmable pocket calculators.

SUMMARY: Examines in detail programmable pocket
calculators, pointing out their architecture, special features,
and programming techniques for the reader with no
previous knowledge of programming.

1. Programmable calculators. [1. Programmable

calculators. 2. Calculating machines] |. Kochan, Stephen,
joint author. Il. Title.
QA75.M79 001.64'2 80-11088

ISBN 0-8104-5175-1

Copyright © 1980 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any
form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor-
mation storage and retrieval system, without permission in writing from

the Publisher.
Printed in the United States of America

2 3 4 5 6 7 8 9 PRINTING

81 82 83 84 85 86 87 88 YEAR

Programmable
Pocket Calculators

PREFACE

A veritable calculator revolution erupted in 1971 when a million -
pocket calculators were sold in the United States alone. Overnight, the slide
rule became obsolete and gave way to these electronic marvels which, in
1971, could do no more than add, subtract, multiply, and divide—albeit
with phenomenal speed and accuracy.

Since then, the prices of pocket calculators have fallen from their
initial $400 to the low price of $10, which some four-function calculators
command today.

On the heels of the pocket calculator revolution now emerges yet
another revolution—the programmable pocket calculator.

The origin of the programmable pocket calculator revolution dates
back to December 1973 when Hewlett-Packard, a leading United States
computer and calculator manufacturer, introduced to the world its stunning
HP-65 ‘‘superstar’’ programmable calculator in pocket size. In addition to
its programmability, the HP-65 provided the user with almost all the
mathematical and scientific functions he could use. There were two reasons
this particular model had such an impact on the calculator world. It made
its mark in technological history by being the first pocket calculator
produced that was programmable. Secondly, it permitted the user to
record the program on a thin strip of metal-oxide coated plastic. Although
the HP-65 opened up a completely new market, it was restricted by its
somewhat prohibitive cost of $800, the price it commanded until the model
was finally superseded in 1976 by its successor, the HP-67.

Apparently in an effort to capture an even greater share of the
market, Hewlett-Packard introduced in December 1974 yet another
programmable pocket calculator, the HP-55. Though not nearly so versatile
as the HP-65, it was programmable and sold for half the price of the HP-65.

Inevitably, other leading manufacturers such as National Semi-
conductor entered the field of programmable pocket calculators and in
January 1975 announced four different models: the 4515, the
“Programmable Mathematician’’; the 4524, the “Programmable Scien-
tist”’; the 1625, the ‘‘Programmable Financier’’; and the 6035, the
“Programmable Statistician.”” Although these four Novus brand models
represented a somewhat lower level of sophistication than the Hewlett-
Packard or Texas Instruments machines of their day, their price range of

around $100 made them extremely attractive for students and professionals
in education, science, and business.

In June 1975, a British calculator manufacturer, Sinclair Radionics,
introduced its 19-key, 24-step scientific programmable calculator, selling
initially for $80.

Once again, in July 1975, Hewlett-Packard astounded the calculator
world with its introduction of the HP-25, a programmable pocket
calculator weighing a mere 6 ounces and selling initially for $195.

In July 1976, Hewlett-Packard announced a successor to its HP-65.
The name given to their new 224-step card-programmable calculator was
the HP-67. This feature-packed calculator was released with a price tag of
$450. At this time Hewlett-Packard also announced a novel improvement to
their highly popular HP-25. The model was called the HP-25C and it
distinguished itself by being the first programmable calculator with a
“‘continuous memory.”’

In December 1977, Hewlett-Packard introduced the HP-19C and the
HP-29C. The HP-19C was the first programmable pocket calculator to
become commercially available with a built-in thermal printer, which
partially accounted for its retail price of $325. Its companion model, the
HP-29C, similar in functions except for the printer, sold for $185.

At this point Hewlett-Packard changed gears slightly and made an
attempt to capture the lower end of the pocket calculator market. In April
1978 they released their Series E calculators. The HP-33E, retailing for
$100, and the HP-38E, retailing for $120, are the two programmable
models of this series.

The purpose of this book is to examine in detail these programmable
pocket calculators and to point out their architecture, special features, and
programming techniques designed to maximize their use. At no time will it
be assumed that the reader has any previous knowledge of programming,
since to do so would put him at the mercy of the calculator manuals that all
too often leave so much to be desired.

Today it is not unusual to find a wide range of assorted program-
mable and nonprogrammable calculators on sale. Making a sensible
selection is difficult because of the bewildering variety of calculator features
available. But this is only part of the problem—from the consumer’s
point of view. The salesman has his problems, too. He is expected to be
conversant on all the various models, many of which differ from each other
in subtle ways. How is he supposed to know the advantages and disad-
vantages of so many machines, particularly the programmable models,
since he probably has never had the training or experience necessary to
understand the principles of programmables, let alone to answer in-
telligently incisive questions on the subject?

It is an interesting commentary on our times that the state of the art
has progressed so far and so rapidly in so short a period of time that many
department store calculator counters now provide a free telephone con-

nection directly to the manufacturer, of whom technical questions may be
asked. ’

This book has been written to assist both the consumer and the
salesman. Every program for each calculator is incorporated in a schematic
showing precisely how to enter the program and to put the calculator to
work. In this way the salesman and consumer alike will be at liberty to key
in any program step by step, watch it calculate and display the final results
without having to get involved with the various programming philosophies,
logic, or the particular calculator architecture.

HEeNRY MULLISH
STEPHEN KOCHAN

CONTENTS

Chapter One

THE ART OF PROGRAMMING

Some Fundamental Programming Concepts 1
Flowcharting a Mathematical Problem 3§
Debugging and Editing Programs 5

Chapter Two

AN OVERVIEW OF PROGRAMMABLE
POCKET CALCULATORS

The Logic Used in Programmable Pocket Calculators 9
Calculator Displays 1/

Programmable Pocket Calculator Features 13

Chapter Three

THE ECONOMY-LEVEL PROGRAMMABLE'
POCKET CALCULATORS

The Novus Programmable Calculatots 19

The Sinclair Scientific Programmable iSL '

Chapter Four

THE HEWLETT-PACKARD PROGRAMMABLE
POCKET CALCULATORS

Features Common To All the Hewlett-Packard Models 39

Chapter Five

THE HEWLETT-PACKARD 25 AND 25C

The HP-25 51

The HP-25C 51

Manual Operation of the HP-25 and HP-25C 53
Programming the HP-25 and HP-25C 55

Debugging and Editing Programs on the HP-25 and HP-25C

81

19

39

51

Chapter Six

THE HP-55 PROGRAMMABLE SCIENTIFIC
POCKET CALCULATOR

Manual Operation of the HP-55 85

The Digital Timer 89

Programming the HP-55 93

Debugging and Editing Programs on the HP-55 106

Chapter Seven

THE PROGRAMMABLE HEWLETT-PACKARD 65
Manual Operation of the HP-65 108

Programming the HP-65 117

Debugging and Editing Programs on the HP-65 149

Chapter Eight

THE HEWLETT-PACKARD 67

Manual Operation of the HP-67 151

Programming the HP-67 160

Debugging and Editing Programs on the HP-67 200

Chapter Nine

THE HEWLETT-PACKARD 19C AND 29C
Programming the HP-19C/29C 203
*Debugging and Editing Programs on the HP-19C/29C 229

Chapter Ten

THE HEWLETT-PACKARD 33E

Programming the HP-33E 233

Debugging and Editing Programs on the HP-33E 248
PPC—Formerly the HP-65 Users Club 248

Chapter Eleven

IMPLICATIONS OF THE PROGRAMMABLE
POCKET CALCULATOR IN SCIENCE,
INDUSTRY, AND EDUCATION

INDEX

84

108

151

202

231

250

253

CHAPTER ONE

THE ART OF
PROGRAMMING

Computer programming is not only a well-paid profession demanding
considerable expertise of the individual but is also one of the most satisfying
and challenging of professions. The profession itself is a mere child in terms
of its beginning, but since the 1950s when computers came on the scene, it
has grown by leaps and bounds. Universities around the world now offer a
plethora of courses on the subject, and it is becoming increasingly common
for high schools to offer courses in computer languages such as
FORTRAN, ALGOL, PL/I, BASIC, COBOL, and so on.

Why are computers so much in demand? The reason is that for the
first time in our history we are able to solve problems with the speed of
electricity. These electronic marvels have no inherent intelligence of their
own. It is up to us to write appropriate instructions for them in order to
arrive at the solutions. Such a sequence of instructions is called a program
for the simple reason that the sequence is a planned one, exactly like a
theatrical dramatic presentation follows its program in terms of acts and
scenes.

Does one have to be a genius to be a programmer? Certainly not.
Anybody with a modicum of intelligence and a slight sense of logic can
program, without any previous training whatever. Of course, the greater
one’s sense of logic the easier it will be. It seems that certain people—
particularly those who excel at puzzle solving and game playing—prove to
be excellent programmers. What’s more, such people tend to get “‘turned
on’’ to programming almost with a passion. Programming is, like so many
other things in life, improved by success. Once one has written a program,
no matter how elementary it is, it seems to provide the kind of thrust to
propel one to greater heights. The success feeds on itself. For some people,
programming becomes a kind of addiction—happily one without any
known negative effects, however.

Some Fundamental Programming Concepts

One is often faced with the problem of evaluating a complicated,
perhaps lengthy mathematical expression using any one of the many
available calculators. A sequence of keystrokes is then decided upon, and

1

2 Programmable Pocket Calculators

each individual step is performed until the final solution is reached and
displayed. Now, if there is a need to evaluate the same mathematical
expression, one would have to physically repeat each one of the steps in the
sequence as used to find the first solution. If this whole sequence of
instructions must be repeated hundreds or even thousands of times, this
would become a formidable chore. Ideally one would want some method by
which the calculator could ‘‘remember’’ the sequence of instructions used in
evaluating the expression the first time, permitting the user to reinitiate the
sequence of instructions in the calculator’s ‘‘memory’’ for each new set of
data to be operated upon.

The basic feature of the modern programmable calculator provides
precisely this ability: to store and execute a sequence of instructions known
as a program in the calculator’s memory and to have those stored in-
structions process as many data sets as are necessary.

An important variation of this sequential operation is the ability to
automatically repeat a group of instructions when a particular part of the
program is reached. This provides what is known as a loop, one of the
fundamental properties of programming. This ability to alter normal

INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3

f<— 000 <

LAST
INSTRUCTION

Fig. 1-1 l SRS

The Art of Programming 3

gﬁ§ECAKE
OF
TAKE CAKE
OUT OF OVEN
OVEN
y
ICE THE
ICE THE CAKE
CAKE
BOX THE
BOX THE CAKE
CAKE
y
STORE CAKE
STORE CAKE IN FREEZER
IN FREEZER
Fig. 1-2 Fig. 1-3

sequential flow of a program is accomplished by what is referred to as an
unconditional jump, as illustrated in Fig. 1-1.

Another important dimension is added to this sequential operation
(Fig. 1-1) when a jump is made to another point in the program when a
special condition is met. This is known as a conditional jump and provides
the means for highly sophisticated decisions to be made within a program.

As an analogy to both these different types of situations, imagine that
a baker apprentice has a job of taking cakes out of the oven. He must then
ice the cake, place it in a box, and store it in the freezer. The individual steps
may be represented simply, as shown in Fig. 1-2.

Naturally there are many cakes that are produced by a bakery, and
our apprentice’s job is to repeat the same sequence of operations for each
cake.

This may be represented schematically, as shown in Fig. 1-3. Here we
have the concept of the loop connecting the end of the sequence of
operations with the beginning.

Suppose now that the apprentice ends his day at 5:00 p.m. and has no
wish to work overtime. After storing each cake in the freezer, he might ask
himself whether it is 5:00 p.m. yet. If it is, he puts on his coat and leaves
work. Otherwise he takes out the next cake, completing the sequence once

4 Programmable Pocket Calculators

TAKE CAKE
OuT OF
OVEN

ICE THE
CAKE

BOX THE
CAKE

STORE CAKE
IN FREEZER

NO

YES

PUT ON
COAT

QuUIT
WORK

Fig. 1-4

again. It will be noticed that in this situation a decision is being made each
time the process is executed; namely, is it quitting time or not? This may be
represented schematically, as shown in Fig. 1-4.

This kind of schematic is usually referred to in programming as a
Slowchart and can be an extremely useful method of indicating the flow of
control through a program.

Let us now amend our baker analogy so that we can illustrate further
important principles of programming. Let us assume that in accordance

The Art of Programming 5

with union rules our apprentice finishes his workday after he has processed
200 cakes, regardless of what time of the day it happens to be. If he finishes
at 3:00 p.M., then he leaves at 3:00 p.m., but if he does not finish until 7:00
p.M., then he works until 7:00 p.m. without further remuneration.

This new situation implies that a count of the number of cakes
processed must be kept throughout the working day. At the beginning of
the day, of course, this count is zero. As soon as a cake is stored in the
freezer, he adds one to the count. Since we may assume that he is anxious to
quit work as soon as possible, each time he adds a cake, he checks the count
to see whether it has yet reached 200. If it has, he puts on his coat and quits
work. If the count has not yet reached 200, he stays to process the next cake.
The flowchart in Fig. 1-5 represents this new situation.

The concept of keeping a counter is of primary importance in
programming. Here, the counter is the only means by which we know when
to exit from the loop. In other words, a critical decision is being made based
upon the value of the counter.

Notice that in Fig. 1-5 where the question, ‘‘Does count equal 200?”’
is asked (it is customary to write such questions within diamond-shaped
“‘decision’’ boxes) if the answer is NO we do not go back to the very
beginning, where the counter is set to zero, but rather to the following step.

Flowcharting a Mathematical Problem

Let us now take a simple problem in which a basic decision has to be
made. We shall examine a series of integer numbers and determine how
many of them are even and how many of them are odd.

By definition, an integer number is even if it is divisible by two with
no remainder. If there is a remainder, that number is considered to be odd.
In this particular problem there are two counters involved: one to keep
a tally of the even numbers and the other to count the number of odd
integers.

The input data to the flowchart in Fig. 1-6 are the individual numbers
themselves. Each number is examined to determine if it is odd or even, and
one is added to the appropriate counter. Once all the numbers have been
examined, the contents of the odd counter and that of the even counter are
displayed. This represents the output to the problem.

With few exceptions, the concepts of input and output are common to
all programs.

Debugging and Editing Programs

When examining programs such as those included in this book, one
should not be misled into thinking that they were written this way the first
time. Few programs work the first time. Moreover, even if a program
appears to be working the first time, the chances are that it will not work for

Fig.1-5

SET
COUNTER
TO ZERO

\

TAKE CAKE
OUT OF
OVEN

\

ICE THE
CAKE

BOX THE
CAKE

STORE CAKE
IN FREEZER

ADD 110
COUNTER

y

PUT ON
COAT

QuIT
WORK

YES

‘ START ,

SET ODD COUNT
TO ZERO

SET EVEN COUNT
TO ZERO

READ IN
NUMBER

DIVIDE
NUMBER
BY 2

IS
THERE A

ADD 1 TO
0DD COUNT

NO

REMA;NDER

ADD1TO
EVEN COUNT

ARE
THERE
ANY MORE

YES

NUMBERS TO
EXAMINE

NO

DISPLAY
0DD COUNT

DISPLAY
EVEN COUNT

‘ STOP ’

Fig.1-6

8 Programmable Pocket Calculators

all possible data. Programming can be—and often is—quite a frustrating
process. One needs to be proficient in the use of a particular machine and
have a clear understanding of the steps to solve a given problem (algorithm)
in order to arrive at the desired result.

To our knowledge the programmer is yet to be born who has not had
to suffer the frustration of having diligently and carefully written a program
that did not work the first time it was run. It seems to be a characteristic of
programming that errors are made either in writing the program—that is,
the program has an error of logic—or in entering the instructions into the
computer. These errors are traditionally known as bugs and the finding and
elimination of these bugs is known as debugging. Once having found the
bug, correcting and modifying the program is generally spoken of as
editing. In fact, the debugging and editing phase may take longer than the
writing phase!

Should it be necessary to modify a program once it has been written—
and this is almost always the case—it might be somewhat of a relief to the
programmer to know that it is not always necessary to rekey in the program
from the beginning, since much of the original program may be salvaged.

Before being convinced that a program is in perfect working con-
dition, one should check it out using sample data and compare the output
with known results, if this is at all possible. Naturally, if there is a conflict
between these results something is wrong, and the program has to be
suspect. The fault may lie in the incorrect keying in of the program, or there
may be an error of logic.

In the former case, a careful comparison of the keyed in program
against the original handwritten program will bring to light any in-
consistencies. In the latter case, where a logical error is suspected, the
following approaches are suggested:

1. Check the flowchart to insure that blocks are in logical sequence.

2. Compare the correspondence between the logic of the flowchart and
the program itself.

3. Be sure that the instructions behave in the manner planned. This may
mean going through the program on paper step-by-step, keeping track
of the contents of each of the registers used by the program.

4. Make use of any additional debugging aids available on the particular
calculator. This may include a single step key, which permits the user
to proceed through the program one instruction at a time; a pause key,
which halts the program temporarily to permit intermediate results to
be viewed; or take advantage of any listed features that may be
present.

