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Preface

There exist several excellent books on linear and integer programming. Yet, I
did not feel it superfluous to write the present book. Most of the existing books
focus on the, very important, algorithmic side of linear and integer programming.
The emphasis of this book is on the more theoretical aspects, and it aims at
complementing the more practically oriented books.

Another reason for writing this book is that during the last few years several
interesting new results have been obtained, which are not yet all covered by
books: Lovasz’s basis reduction method, Khachiyan’s ellipsoid method and
Karmarkar’s method for linear programming, Borgwardt’s analysis of the
average speed of the simplex method, Tardos’ and Megiddo’s algorithms for
linear programming, Lenstra’s algorithm for integer linear programming,
Seymour’s decomposition theorem for totally unimodular matrices, and the
theory of total dual integrality.

Although the emphasis is on theory, this book does not exclude algorithms.
This is motivated not only by the practical importance of algorithms, but also
by the fact that the complexity analysis of problems and algorithms has become
more and more a theoretical topic as well. In particular, the study of polynomial-
time solvability has led to interesting theory. Often the polynomial-time
solvability of a certain problem can be shown theoretically (e.g. with the ellipsoid
method); such a proof next serves as a motivation for the design of a method
which is efficient in practice. Therefore we have included a survey of methods
known for linear and integer programming, together with a brief analysis of
their running time. Our descriptions are meant for a quick understanding of
the method, and might be, in many cases, less appropriate for a direct
implementation.

The book also arose as a prerequisite for the forthcoming book Polyhedral
Combinatorics, dealing with polyhedral (i.e. linear programming) methods in
combinatorial optimization. Dantzig, Edmonds, Ford, Fulkerson, and Hoffman
have pioneered the application of polyhedral methods to combinatorial optimiz-
ation, and now combinatorial optimization is dissolubly connected to (integer)
linear programming. The book Polyhedral Combinatorics describes these connec-
tions, which heavily lean on results and methods discussed in the present book.
For a better understanding, and to make this book self-contained, we have
illustrated some of the results by combinatorial applications.



vi Preface

Several friends and colleagues have helped and inspired me in preparing this
book. It was Cor Baayen who stimulated me to study discrete mathematics,
especially combinatorial optimization, and who advanced the idea of compiling
a monograph on polyhedral methods in combinatorial optimization. During
leaves of absence spent in Oxford and Szeged (Hungary) I enjoyed the hospitality
of Paul Seymour and Laci Lovasz. Their explanations and insights have helped
me considerably in understanding polyhedral combinatorics and integer linear
programming. Concurrently with the present book, I was involved with Martin
Grotschel and Laci Lovasz in writing the book The Ellipsoid Method and
Combinatorial Optimization (Springer-Verlag, Heidelberg). Although the plans
of the two books are distinct, there is some overlap, which has led to a certain
cross-fertilization. I owe much to the pleasant cooperation with my two co-
authors. Also Bob Bixby, Bill Cook, Bill Cunningham, Jack Edmonds, Werner
Fenchel, Bert Gerards, Alan Hoffman, Antoon Kolen, Jaap Ponstein, Andras
Sebd, Eva Tardos, Klaus Triimper and Laurence Wolsey have helped me by
pointing out to me information and ideas relevant to the book, or by reading
and criticizing parts of the manuscript. The assistance of the staff of the library
of the Mathematical Centre, in particular of Carin Klompen, was important in
collecting many ancient articles indispensable for composing the historical
surveys.

Thanks are due to all of them. I also acknowledge hospitality and/or financial
support given by the following institutions and organizations: the Mathematical
Centre/Centrum voor Wiskunde en Informatica, the Netherlands organization
for the advancement of pure research Z.W.O., the University of Technology
Eindhoven, the Bolyai Institute of the Attila Jozsef University in Szeged, the
University of Amsterdam, Tilburg University, and the Institut fiir Okonometrie
und Operations Research of the University of Bonn.

Finally, T am indebted to all involved in the production of this book. It has
been a pleasure to work with Ian McIntosh and his colleagues of John Wiley &
Sons Limited. In checking the galley proofs, Theo Beekman, Jeroen van den Berg,
Bert Gerards, Stan van Hoesel, Cor Hurkens, Hans Kremers, Fred Nieuwland,
Henk Oosterhout, Joke Sterringa, Marno Verbeek, Hein van den Wildenberg,
and Chris Wildhagen were of great assistance, and they certainly cannot be
blamed for any surviving errors.

ALEXANDER SCHRIJVER
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1

Introduction and preliminaries

After the introduction in Section 1.1, we discuss general preliminaries (Section 1.2),
preliminaries on linear algebra, matrix theory and Euclidean geometry (Section 1.3), and

on graph theory (Section 1.4).

1.1. INTRODUCTION

The structure of the theory discussed in this book, and of the book itself,
may be explained by the following diagram.

Part I
Linear Algebra
linear equations

T

Part IL Part IIT
Integer Linear Algebra Linear Programming
lineor diophantine squations linear inequalities
Polynomial-time
NP -complete
Part IV

Integer Linear Programming
/rinear diophantine inequalities

In Part I, ‘Linear Algebra’, we discuss the theory of linear spaces and of
systems of linear equations, and the complexity of solving these systems. The
theory and methods here are to a large extent standard, and therefore we do
not give an extensive treatment. We focus on some less standard results, such
as sizes of solutions and the running time of the Gaussian elimination method.
It is shown that this method is a polynomial-time method, i.e. its running time
is bounded by a polynomial in the size of the input data.
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In Part I1, ‘Lattices and Linear Diophantine Equations’, our main problem is
to solve systems of linear diophantine equations, i.e. to solve systems of linear
equations in integer variables. The corresponding geometric notion is that of
a lattice. The existence of solutions here is characterized with the help of the
Hermite normal form. One linear diophantine equation can be solved in poly-
nomial time with the classical Euclidean algorithm. More generally, also systems
of linear diophantine equations can be solved in polynomial time, with methods
due to Frumkin and Votyakov, von zur Gathen and Sieveking, and Kannan and
Bachem.

Also in Part II we discuss the problem of diophantine approximation. The
continued fraction method approximates a real number by a rational number
with low denominator, and is related to the Euclidean algorithm. Its extension
to more dimensions, i.e. approximating a real vector by a rational vector whose
entries have one common low denominator, can be done with Lovasz’s basis
reduction method for lattices. These techniques are also useful in linear and
integer programming, as we shall see in Parts IIT and IV.

In Part III, ‘Polyhedra, Linear Inequalities, and Linear Programming’, our
main problems are the following:

(1) — solving systems of linear inequalities;
— solving systems of linear equations in nonnegative variables;
— solving linear programming problems.

These three problems are equivalent in the sense that any method for one of
them directly yields methods for the other two. The geometric notion corres-
ponding to the problems is that of a polyhedron. Solutions of the problems (1)
are characterized by Farkas’ lemma and by the Duality theorem of linear
programming.

The simplex method is the famous method for solving problems (1); it is fast
in practice, and polynomial-time ‘on the average’, but no version of it could be
proved to have polynomially bounded running time also in the worst case. It
was for some time an open problem whether the problems (1) can be solved in
polynomial time, until in 1979 Khachiyan showed that this is possible with the
ellipsoid method. Although it does not seem to be a practical method, we spend
some time on this method, as it has applications in combinatorial optimization.
We also discuss briefly another polynomial-time method, due to Karmarkar.

The problems discussed in Parts I-IIT being solvable in polynomial time, in
Part IV ‘Integer Linear Programming’ we come to a field where the problems
in general are less tractable, and are A ?-complete. It is a general belief that
these problems are not solvable in polynomial time. The problems in question
are:

) —solving systems of linear diophantine inequalities, i.e. solving linear
inequalities in integers;
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— solving systems of linear equations in nonnegative integer variables;
— solving integer linear programming problems.

Again, these three problems are equivalent in the sense that any method for
one of them yields also methods for the other two. Geometrically, the problems
correspond to the intersection of a lattice and a polyhedron. So the problems
discussed in Parts II and III meet here.

The theory we shall discuss includes that of characterizing the convex hull
P, of the integral vectors in a polyhedron P. The case P = P, generally gives
rise to better-to-handle integer linear programming problems. This occurs when
P is defined by a totally unimodular matrix, or, more generally, by a totally dual
integral system of inequalities. Inter alia, we shall discuss (but not prove) a deep
theorem of Seymour characterizing total unimodularity.

If P is not-necessarily equal to P,, we can characterize P, with the cutting
plane method, founded by Gomory. This method is not a polynomial-time
method, but it yields some insight into integer linear programming. We also
discuss the result of Lenstra that for each fixed number of variables, the problems
(2) are solvable in polynomial time.

The theory discussed in Part IV is especially interesting for combinatorial
optimization.

Before Parts I-1V, we discuss in the present chapter some preliminaries, while
in Chapter 2 we briefly review the complexity theory of problems and algorithms.
In particular, we consider polynomiality as a complexity criterion.

1.2. GENERAL PRELIMINARIES

Some general notation and terminology is as follows. If « is a real number, then

(3 le] and [a]

denote the lower integer part and the upper integer part, respectively, of a.

The symbols Z,Q, and R denote the sets of integers, rationals, and real
numbers, respectively. Z_,,Q, and R, are the restrictions of these sets to the
nonnegatives. We denote, for real numbers a and S,

4) «|B if and only if a divides f, i.e. if and only if = A« for some integer A.

Moreover, a = ff(mod y) means y|(x — f3).

If ay,...,a, are rational numbers, not all equal to 0, then the largest rational
number y dividing each of a,,...,a, exists, and is called the greatest common
divisor or g.cd. of a,,...,a,, denoted by

(5) ged.{oy,...,a,}

(so the g.c.d. is always positive). The numbers «,,...,a, are relatively prime if
ged. {ay,...,0,} =1

We write f(x) = 0(g(x)) for real-valued functions f and g, if there exists a
constant C such that f(x) < Cg(x) for all x in the domain.
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If we consider an optimization problem like
(6) max { p(x)|xeA}

where A is a set and ¢@:4— R, then any element x of A4 is called a feasible
solution for the maximization problem. If 4 is nonempty, problem (6) is called
feasible, otherwise infeasible. Similarly, a set of conditions is feasible (or solvable)
if the conditions can be fulfilled all at the same time. Otherwise, they are called
infeasible (or unsolvable). Any instance satisfying the conditions is called a feasible
solution.

If the maximum (6) is attained, we say that the maximum exists, is finite, or
is bounded. A feasible solution attaining the maximum is called an optimum (or
optimal) solution. The maximum value then 1s the optimum value.

Similar terminology is used for minima.

A constraint is valid for a set S if each element in S satisfies this constraint.

‘Left-hand side’ and ‘right-hand side’ are sometimes abbreviated to LHS
and RHS.

1.3. PRELIMINARIES FROM LINEAR ALGEBRA, MATRIX THEORY,
AND EUCLIDEAN GEOMETRY

We assume familiarity of the reader with the elements of linear algebra, such
as linear (sub)space, linear (in)dependence, rank, determinant, matrix, non-
singular matrix, inverse, etc. As background references we mention Birkhoff
and Mac Lane [1977], Gantmacher [ 1959], Lancaster and Tismenetsky [1985],
Lang [1966a], Nering [1963], Strang [1980].

Ifa=(ay,...,x,) and b=(B,,...,f,) are row vectors, we write a < b if o; < f5;
for i=1,...,n. Similarly for column vectors. If 4 is a matrix, and x, b, y, and ¢
are vectors, then when using notation like

(7) Ax=b, Ax<b, yA=c

we implicitly assume compatibility of sizes of A, x, b, y, and ¢. So as for (7), if
A is an m x n-matrix, then x is a column vector of dimension n, b is a column
vector of dimension m, y is a row vector of dimension m, and c is a row vector
of dimension n.

Similarly, if ¢ and x are vectors, and if we use

(8) cx

then ¢ is a row vector and x is a column vector, with the same number of
components. So (8) can be considered as the inner product of ¢ and x.

An n-vector is an n-dimensional vector.

If a is a row vector and f is a real number, then ax = f§ and ax < f§ are called
a linear equation and a linear inequality, respectively. If vector x, satisfies a
linear inequality ax < f, then the inequality is called tight (for x,) if ax, = f.

If A is a matrix, and b is a column vector, we shall call 4x =5 a system of
linear equations, and Ax <b a system of linear inequalities. The matrix A4 is
called the constraint matrix of the system.
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A system of linear inequalities can have several alternative forms, like

9) Ax>2b (for(— A)x< —b)
Ax <b,Cx <d (forlié]xg(Z))
Ax=b (for Ax<b, — Ax< —b)

and so on.
If A'x < b’ arises from Ax < b by deleting some (or none) of the inequalities
in Ax <b, then A’x <b’ is called a subsystem of Ax < b. Similarly for systems

of linear equations.

The identity matrix is denoted by I, where the order usually is clear from
the context. If 4 is a real number, then an all-6 vector (all-6 matrix) is a vector
(matrix) with all entries equal to 8. So an all-zero and an all-one vector have
all their entries equal to 0 and 1, respectively. 0 and O stand for all-zero vectors
or matrices, and 1 stands for an all-one vector, all of appropriate dimension.

The transpose of a matrix 4 is denoted by A". We use ||| or |||, for the
Euclidean norm, i.e.

(10)  lxll=lxll2:= /x"x.

d(x,y) denotes the Euclidean distance of vectors x and y (i.e. d(x,y):= | x — y| 1),
and d(x,P) the Euclidean distance between x and a set P (ie. d(x, P):=

inf{d(x, y)|yeP}).
The ball with centre x and radius p is the set

(1) B(x,p)={yld(x,y) < p}.

A point xeR" is an internal point of S = R" if there exists an ¢ > 0 such that
(12) B(x,e) = S.
Other norms occurring in this text are the [,- and the [ -norms:

(13) Iy =181+ + (&l
“-x'|ac»:=max{|€1|s"'a|€n|}
for x=(&,,...,&,) or x=(&p,..., &)

An m x n-matrix A is said to have full row rank ( full column rank, respectively)
if rank A =m (rank A = n, respectively).

A row submatrix of a matrix 4 is a submatrix consisting of some rows of A.
Similarly, a column submatrix of A consists of some columns of A.

A matrix A = (a;;) is called upper triangular if o;; = 0 whenever i > j. It is lower
triangular if o;; = O whenever i > j. It is strictly upper triangular if o;;; = O whenever
i>j. It is strictly lower triangular if «;; =0 whenever i<j. It is a diagonal
matrix if a;; = 0 whenever i # j. The square diagonal matrix of order n, with the
numbers é,,...,d, on its main diagonal, is denoted by

(14)  diag(s,,...,5,)
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For any subset T of R, a vector (matrix) is called a T-vector (T-matrix) if its
entries all belong to T. A vector or matrix is called rational (integral, respectively)
if its entries all are rationals (integers, respectively).

A linear equation ax = f§ or a linear inequality ax < f is rational (integral) if
a and f are rational (integral). A system of linear equations Ax = b or inequalities
Ax < bisrational (integral) if A and b are rational (integral). A rational polyhedron
is a polyhedron determined by rational linear inequalities, i.e. itis {xeR"| Ax < b}
for some rational system Ax < b of linear inequalities.

Lattice point is sometimes used as a synonym for integral vector. A vector
or matrix is 1/k-integral if its entries all belong to (1/k)Z, i.e. if all entries are
integral multiples of 1/k.

Scaling a vector means multiplying the vector by a nonzero real number.

For any finite set S, we identify the function x:S — R with the corresponding
vector in RS. If T S, the incidence vector or characteristic vector of T is the
{0, 1}-vector in RS, denoted by y;, satisfying

rr(8)=1 ifseT

1) (=0 ifseS\T.

If S and T are finite sets, an S x T-matrix is a matrix with rows and columns
indexed by S and T, respectively. If A4 is an S x T-matrix and beR”, the product
AbeR?® is defined by:

(16) (Ab)s:: Z as.lﬂr

teT

for se§ (denoting A =(«,,) and b =(f3,)).
If ¥ is a collection of subsets of a set S, the incidence matrix of € is the
% x S-matrix M whose rows are the incidence vectors of the sets in €. So

Mp.=1 ifseT
My, =0 ifs¢T
for Te®, seS.
The support of a vector is the set of coordinates at which the vector is nonzero.

The linear hull and the affine hull of a set X of vectors, denoted by lin.hull X
and affhull X, are given by

(17)

(18) linhull X = {4, x; +- + A4x,|t > 0;xy,...,x,€X; Ay,..., 4,eR}
afthull X = {4, x; +- -+ Ax, |t = I;x,,...,x,€X;4,,..., LeR;
Ayt A =1}
A set C of vectors is convex if it satisfies:
(19) if x,yeC and 0 < A< 1, then Ax + (1 — A)yeC.

The convex hull of a set X of vectors in the smallest convex set containing
X, and is denoted by conv.hull X; so

(20) conv.hull X = {4, x; +-+ Ax,|t = 1;x,,...,x,€X;
Aseits 20 4+ + A, =1}
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A (convex) cone is a nonempty set of vectors C satisfying
(21) if x,yeC and A, u >0, then ix + uyeC.

The cone generated by a set X of vectors is the smallest convex cone containing
X, and is denoted by cone X; so

(22) cone X = {A;x; + -+ Ax|t=0x,,...,x,€X;4,..., 4 =0}.

If S R" then a function f:S—R is convex if S is convex and f(/x+
(1 =AY <Af(x)+(1 —A)f(y) whenever x,yeS and 0< A< 1. [ is concave if
—f is convex.

Pivoting

If A is a matrix, say

a b
(23) A=|:C D]

where « is a nonzero number, b is a row vector, ¢ is a column vector, and D is a
matrix, then pivoting over the pivot element (1, 1) means replacing A by the matrix

—a ! o~ b
24) |:a_1€ D—a_lcb:|'

Pivoting over any other element of A is defined similarly.

Some inequalities

We recall the following well-known (in)equalities (cf. Beckenbach and Bellman
[1983]). First the Cauchy—Schwarz inequality: if ¢,deR" then

(25 cd<|cl-ld].

Ifb,,...,b,, are column vectors in R", and B is the n x m-matrix with columns
b,,...,b,, then

(26) \/m = the area of the parallelepiped spanned by b,,...,b,,.
This implies the Hadamard inequality:

7)) JdetBB< by |- byll.

In particular, if B is a square matrix, then

(28)  |detB|< | by [l By Il

(26) also implies that if 4 denotes the matrix with columns b,,...,b,,_,, and
¢ is a vector orthogonal to b,,...,b,_,, where c is in the space spanned by
by,...,b,, then

.
b
(29) ,/detBTB=|C“C|’|"I Jdet ATA.




