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Preface

It is no exaggeration to say that within the past 10 years there has been a veritable ex-
plosion of activity in the general field of combinatorics. Within this domain, one particular
subject has enjoyed even more remarkable growth. This subject is Ramsey theory, the topic
of these lecture notes. The notes are based rather closely on lectures given at a Regional
Conference at St. Olaf College in June, 1979. It was the purpose of the lectures to develop
the background necessary for an understanding of these recent developments in Ramsey
theory. In keeping with the style of the lectures, the notes are informal. However, com-
plete proofs are given for most of the basic results presented. In addition, many useful re-
sults may be found in the exercises and problems.

I wish to thank all the participants at the Conference for providing the stimulating at-
mosphere so beneficial to meetings of this sort. In particular, special thanks go to Fred
Abramson, Lowell Beineke, Tom Brown, Stefan Burr, Fan Chung, Linda Lesniak, George

- Mills, Mel Nathanson, Jerry Paul and John Selfridge for their illuminating auxiliary lectures

on various topics in Ramsey theory. The critical comments of Tom Brown, Stefan Burr and
Mark Haiman on portions of the text have been most helpful. Finally, without the beauti-
ful organization and gracious hospitality of Rich Allen and Cliff Corzatt (and the support of
the National Science Foundation) the meeting would not have been possible.
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Introduction

Loosely speaking, Ramsey theory is that branch of combinatorics which deals with
structure which is preserved under partitions. Typically one looks at the following kind of
question: If a particular structure (e.g., algebraic, combinatorial or geometric) is arbitrarily
partitioned into finitely many classes, what kinds of substructures must always remain jntact
in at least one of the classes? ;

For example:

(i) In any partition of the integers into finitely many classes, some class always con-
tains arbitrarily long arithmetic progressions (van der Waerden’s theorem);

(i) For any partition of the k-element subsets of an infinite set S into finitely many
classes, there is always an infinite subset of S with all ifs k-element subscts in a single class
(Ramsey’s theorem);

(iii) For any partition of the points of the plane into finitely many classes, some class
always contains three points forming a right triangle of area 1.

During the past few years, a number of spectacular advances have been made in the
field of Ramsey theory. These include, for example, the work of Szemerédi and Furstenberg
settling the venerable conjecture of Erdds and Turdn (that a set of integers with no k-term
arithmetic progression must have density zero), the Nesettil-Rod] theorems on induced Ram-
sey properties, the results of Paris and Harrington on “large” Ramsey numbers and undecida-
bility in first-order Peano arithmetic, Deuber’s solution to the old partition regularity con-
jecture of Rado, Hindman’s surprising generalization of Schur’s theorem, and the resolution
of Rota’s conjecture on Ramsey’s theorem for vector spaces by Graham, Leeb and Rothschild.
It has also become apparent that the ideas and techniques of Ramsey theory span a rather
broad range of mathematical areas, interacting in essential ways with parts of set theory,
graph theory, combinatorial number theory, probability theory, analysis and even theoretical
computer science.

It is the purpose of these lecture notes to lay the foundation on which much of this
recent work is based. Most of what is covered here is treated in considerably more de-
tail in the recent monograph Ramsey theory by Graham, Rothschild and Spencer. Indeed,
I have borrowed freely from several sections of _0t!1i§ book when I felt it was appropriate.
On the other hand, a number of the results and ";r'éofs given here have not appeared before
in the literature. Bogppibars, ety 3N ;
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Chapter 1. Three views of Ramsey theory

There are a number of viewpoints which can be taken when studying various classes of
Ramsey theorems. We mention several of these now.

Let (S, <) be a (finite) set partially ordered by < and having a unique minimal ele-
ment 0. We say that § is graded if all maximal chains from any element x € S to 0 have the
same length. In this case we call this length the rank of x, and denote it by p(x). We usu-
ally denote the set of rank k clements of S by [§]. Examples of this are:

(@) S = 21", the collection of subsets of the set [n] = {1,2, ..., n} partially or-
dered by inclusion, and for x € §, p(x) = |x], the cardinality of x;

(b) S = the lattice of subspaces of a given n-dimensional vector space V over a fixed
finite fieid GF{g) partially ordered by inclusion, and for x € §, p(x) = dimension of x;

(¢) § = collection of partitions of [n] partially ordered by refinement, and for the
partition x: B, UB, U ---UB, of [n], p(x) =n - k.

Let $ = (S,. <), n € w,be a sequence of graded partially ordered sets. We say that
S has the Ramsey property if for any' k, 7, r € w there is an n such that if the rank k ele-
ments of S, are arbitrarily partitioned into 7 classes, there is always a rank / element YES,
such that all rank & elements x with x < y belong to a single class. More symbolically:

For all k, I, r € w there exists 7 such that for

s’l SII
all A: % — [r] there exists y € ; and

i€ [r] sotlmtgxe[i"]:x<y$§)\"(l).

The reader is invited to try this statement out for various families S, for example,
with S, taken to be sets S of maximum rank n in (a), (b), (c) (as well as for other families).
We will see proofs for these particular cases in later sections.

For another viewpoint, let us consider a bipartite graph G with vertex sets 4 and B
and edge set £ C A x B. We say that G is rRamsey if for all mappings A: B — [r] there
is an x € A such that, for some i € [r], {y €B: (x, y) €E} S A~'(). Much of Ramsey
theory can be reduced to determining whether particular graphs are 7-Ramsey. However,
while conceptually simple, this formulation has not (so far) contributed very much to the

lNm'many we treat the case that k, I or r is 0 as holding vacuously.
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solution of specific questions in Ramsey theory. The reason may be simply that it is so
general that it is usually not able to take advantage of the special structure of the particular
problem at hand. For example, consider the bipartite graph G shown in Figure 1.1.

FiGURE 1.1

It is a fact that G is 2-Ramsey. However, a direct verification of this could involve
checking each of the 22° mappings \: B — [2]. In fact, G is exactly the graph obtained
by (suitably) identifying 4 and B with the 3-sets and 2-sets, respectively, of [6] and forming
an edge between x € 4 and y € B if y C x. With this interpretation the fact that G is 2-
Ramsey is immediate.

EXERCISE 1.1. (a) Verify the claim that G is 2-Ramsey. (b) Does G remain 2-Ram-
sey if a vertex of 4 is deleted? What about deleting two vertices of A?

A final point of view we mention is that of hypergraphs. By a hypergraph rl = H(V, E)
we mean a set ¥ together with a family £ of subsets of ¥, each containing at least two ele-
ments. The chromatic number of H, denoted by x(H), is defined to be the least integer ¢
such that there is a mapping A: ¥ —> [¢] so that thereisnoe € Eand i € [¢] withe & ATLG).
The term “chromatic” comes from the following interpretation. We imagine the mapping A
to be an assignment of colors to the points of H. If all the points of some edge € € F are
assigned the same color, we say that e is monochromatic® (or moncy). Thus, x(H) = tif ¢
is the least integer for which there is a t-coloring of ¥ forming no monochromatic edge of E.

It is not difficult to see the connection between a t-chromatic hypergraph H and the
corresponding (appropriately constructed) (# — 1)-Ramsey bipartite graph G = G(H).

A fundamental tool which is used quite often in Ramsey theory is (some version of)
the compactness theorem of deBruijn and Erdos [BrE]. Before stating it we need one more
bit of terminology. A hypergraph G = G(V', E") is said to be a subhypergraph of H = H(V, E)
if V"CVand E'CE.

CoMPACTNESS THEOREM. If x(H) > t and all edges of H are finite then there is a
finite subhypergraph G of H with x(G) > t.

PrROOF. (Countable case.) Without loss of generality we can take V = w. Define H,
to be the subhypergraph with vertex set V,, = [n] and edge set £, = {e € E: e S [n]}.

25 synonym for this in common use (especially by set theorists) is homogeneous.
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W x(H,) <t for all n € w. Thus, there exists A,: [n] — [], such that no monox
edge is formed. Consider the images A (1), n = 1,2, 3, ... . By the pigeonhole principle,
some value, say i, € [f], occurs infinitely often. Define \*(1) =i, and let n, <n, < -
be the indices such that k,,l(l) = i,. Consider the images )\,,1(2), i > 2. As before, some
value, say i, € [t], occurs infinitely often. Define A*(2) = i, and let n; <n, < --- be the
subsequence of the n, such that A .(2) = i,. Consider the images 7\,,;(3), i 2 3. Once again,

~some value, say i, € [t], occurs in_ﬁnitely often. Define A*(3) =iy and let n; <ny <---
be the subsequence of the n; such that )\,'7(3) = i;. Continuing this argument (which really
is an application of the Konig infinity lemma®) we define a mapping A\*: w —> [t] with the
property that no edge of i is \*-monochromatic, ie., for all e €E, i € [t], e L A* ().
This follows immediately from the construction of A* since for any n there is an n’ (in fact
infinitely many) such that

N@ =N D, i€ [n].

However, this contradicts the assumption that x(H) > ¢ and the proof (for the countable
case) is completed. The proof in the general case requires the use of the Axiom of Choice

or something equivalent, such as Tychonoff’s theorem, and will not be given here. Of course,
this result also follows the compattness thorem for propositional calculus.

We remark in closing that it is possible to develop many of the concepts of Ramsey
theory in terms of category theory, and indeed, a number of very strong results have recently
been obtained using this point of view (e.g., see the papers of Leeb [L], and Negetfil-Rodl
[NR1], [NR3]). However, for the purposes of concreteness and in order not to (unneces-
sarily) limit the readership we will not pursue this line of development here.

3Whic:ll asserts that an infinite tree with all vertices having finite degree contains an infinite path.




Chapter 2. Ramsey’s theorem

The prototype for a “Ramsey theorem” is Ramsey’s original theorem itself. Originally
proved for use in connection with certain decidability questions in logic [R], it has proved
to be a remarkably fertile seed from which much of Ramsey theory can be traced.

We first consider (as Ramsey did) the infinite version.

RAMSEY’S THEOREM (INFINITE VERSION). For all k, r € > and any r-coloring x:
[£1 — [r] of the k-element subsets of w, there is always an infinite subset S & w with all
its k-element subsets having the same color.

Note. Statements of this type are very often written in the literature with the so-called
arrow notation of Erdos and Rado. For example, the above statement can be written simply
as [{] — [¥]), oras (W) — (w)f if the convention is used of denoting the k-subsets of
w by (w)* rather than [§’]. We will occasionally use this arrow notation unless there is
danger of no confusion. v

ProOF. We first treat the case k = 2 since it is easy to visualize. The case k¥ = 1 is
nothing more than an infinite version of the pigeonhole principle: If an infinite number of
pigeons occupy a finite number of pigeonholes then some pigeonhole contains an infinite
number of pigeons.

For k = 2, we can identify the pairs ['] with edges of the complete graph K, on w
points. Let x: [$] — [r] be an arbitrary r-coloring of the edges of K.

(1) Consider the edges of the form {0, x}, i.e., incident to the point 0. Some color,
say c,, must occur infinitely often. Let x = {x,: i € w} be the set of those x > 0 with
x({0, xP=¢,.

(2) Consider the edges of the form {x,, x,} where x; € X. Some color, say c,, must oc-
cur infinitely often. Let ¥ = {y,: i € w} be the set of those Y > xq in X with x({xy, ¥;}) = ¢,.

~ (3) Consider the edges {y,, y;}. Some color, say c,, must occur infinitely often.
Let Z = {z;: i € w} be the set of z;, > y, in Y with x({y,, z;}) = ¢, etc.

It is clear we can continue in this manner indefinitely. Now, form the infinite set
T ={0,xq, o 29> -} :

Basic FACT. The color of any pair {¢, t'} € [Z] depends only on the value of
min{t, ¢'}. Thus, we can associate to each integer ¢ € T a new color x*(¢) € [r] (well-)
defined by

x*() = x({¢, t'i) fort'>tinT

5



6 R. L. GRAHAM

By the pigeonhole principle some infinite subset S € T must be monochromatic under x*,
ie., all x*(s), s € S, are the same. But by the definition of x* this just means that all
{3, 5"} have the same color under x. This proves Ramsey’s theorem for k = 2.

We can summarize the preceding argument as follows.

(i) From the given coloring X: {$] — [r] define a new “induced” coloring x*:
[¥] — [r] having rather regular structure on a (large) subset of w.

(i) Apply (by induction) the corresponding Ramsey theorem for [¥] to.x®.

This general format occurs over and over in Ramsey theory. It is probably the single
most useful approach in proving the existence of a Ramsey theorem for a class of structures.
The reader can expect to see this technique occurring in a variety of guises throughout this
monograph.

As an example, we continue our proof of Ramsey’s theorem by considering the case
k = 3. Given the initial r-coloring x: [$] — [r], we define an induced r-coloring x, of the
pairs of X = w — {0} by x;({x, x'}) = x({0, x, x'}). By Ramsey’s theorem for k = 2, X
contains an infinite monoy, set X' = {x;;i € w} (i.., all the values X, ({x{, x;}) are the
same), say having color ¢,. Next, define an induced r-oloring x, on [¥] where Y =
X' = {xg} by

({7 »"D ={xe 2. ¥'}D.

As before, by Ramsey’s theorem for k = 2, Y contains an infinite monoy;, set Y’ = { e
i € w}, say having color ¢,. Of course, we next define an induced r-coloring x3 on [‘}]
where Z = Y' - {yg} by xa({z. z2'}) = x({yo 2 2'}), etc.

As before we finally form a set T = {0, Xg, Yo, ---} which by construction has the
property that the color of any triple {#, t', t"} depends only on min{z, ¢', ¢"}. From T we
can then form the desired set S with all its triples having a single color.

The proof for general k follows exactly the same lines. This proves Ramsey’s the-
orem. O

The finite version of Ramsey’s theorem usually has the following form.

RAMSE'Y'S THEOREM (FINITE VERSION). Forallk, I, r € w there exists n(k, I, r) € w
such that if n 2 n(k, I, r) and X: [',:] — [r] is any r-coloring of the k-subsets of [n] then
some l-subset of [n) has all its k-subsets with the same color.

(More briefly: For all k, I, r € w there exists n(k, I, r) € w such that n > n(k, 1, 1)
implies (3] — [£1,)

The finite version of Ramsey’s theorem follows at once from the infinite version
by the Compactness Theorem. Unfortunately, this type of proof gives no estimate for
the minimum possible values for the numbers n(k, I, r). These numbers, known as the
(classical) Ramsey numbers, and denoted by R(k, I, r), have been studied extensively dur-
ing the past S0 years. In spite of this effort, however, there is relatively little known
about them.
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All known (nontrivial) values are listed in Table 2.1.

k ! r Rk, L 1)
2 3 2 6

2 4 2 18

2 3 3 17

2 5 2 42-55

TABLE 2.1

Of course,
RO, L=(-Dr+1, Rkkr)=k

The strongest general bounds on R(k, [, r) known are obtained by use of the probabi-
listic method of Erdos. Not surprisingly, it is also to him that the earliest (and still among

the best) bounds are due.
We illustrate a simple version of the method in the following result: We abbreviate

R(2, k, 2) by R(K).
THeOREM (ERDOS [E1]).
@.1) R(k) > ck2*/?

for some fixed constant ¢ > 0.

ProOF. Consider the complete graph K, on the vertex set [r]. Let us call a 2-coloring
of the edges of K, good 1f it contains a monoy copy of K. For each choice of k points X
of K, there are 2 - 2(2)—(2) ways to 2-color the edges of K, so that X spans a monox K.

Since there are just (}) ways of choosing X then there are at most (")2(,")-(2)” good color-
ings. Thus, if

ny_(k n
( :)2(2) G 2(2) (the total number of 2-colorings of K,,)

ie., if

22) (3 <2

then there exists a 2-coloring of K,, which is nof good. But this means that R(k) must ex-
ceed this value of n since by definition any 2-coloring of K ;) must be good. Since (2.2)
holds for n > ck2*/? then (2.1) is proved. ©

The most precise bounds known for Ramsey numbers are (not surprisingly) those for
r(k, 3), defined to be the least m such that any 2-coloring of K, contains-either a color 1 K
oracolor 2 K. In this case we have

()1

P IS, RN T Resn T2

b 4 £ 2
—k—<r(k 3)<lc"k
(log k)? 8




8 R. L. GRAHAM

for suitable positive constants c, ¢'. The upper bound is a very recent result of Ajtai, Komlos
and Szemerédi which at the time of this wyiting,hztnot yet appeared. The best constructive
lower bound known for R(k) is

R(K) > expl(c(log k)*/(log log k)'/3)

due to Frankl [Fr] and Chung [Ch]. Erdos is currently offering (U.S.) $250 for a constructive
proof that R(k) > (1 + €)* for a fixed € > 0.
We conclude this chapter with a typical application of Ramsey’s theorem.

PROPOSITION. Every finite semigroup S contains an idempotent, i.e., an element x such
that x* = x.

Proor. Consider an arbitrary sequence X = (x,, X, X5, ..., X,) where x; € § and
s = |S|. Define an s-coloring of K, with vertex set [¢] by x({i, /}) = X; 4y " X420 """ " X}
€ S for i <j. Taking t = R(s), K, contains a monox triangle, say x({i, /}) = x({i, k}) =
x({J, k}) =x €S, i <j <k. But this means

x-T -1 x,=< n)( I x,,)=x,

i<asj j<B<k i<y<k i<a<j j<B<k

je,x=x o

EXERCISE 2.1. Define the off-diagonal Ramsey number R(k, I) to be the least integer
m such that if the edges of K,, are arbitrarily 2-colored, say using red and blue, then there is
always either a red K, or a blue K; formed.

(a) Show that R(k, 1) <R(k —1,1) + R(k, I = 1).

(b) Deduce an upper bound for R(k, /) and R(k) from this.

EXERCISE 2.2. (a) Show that for each n there exists f(n) such that any set of f(n)
points in the plane in general position always contains n points which form a convex n-gon.
Estimate f from below and above. (Hint: use Ramsey’s theorem.)

(b) What if we require that the convex n-gon contain no other points of the set as in-
terior points?

EXERCISE 2.3. By a tournament we mean a complete graph in which every edge is
directed. A tournament is transitive if a—> b and b — ¢ implies a — ¢. Show that for each
n there exists g() such that any tournament on g(n) points contains a transitive subtourna-
ment on n points.

EXERCISE 2.4. Let A = {a, <a; <:-'} consist of the set (4 +4:0<i<j}. Show:

(i) Every n € w has at most three representations as ¢; + a;, i <J.

(i) For any partition of 4 into finitely many sets, say A = 4, U --- U 4, for some
A, = {a; <ay < -} infinitely many n € w can be written as a; + a;, i <}, in at least
three ways. (Hint: Ramsey’s theorem, of course.)

EXERCISE 2.5. Let P, denote the graded set of partitions of [n] partially ordered by
refinement, where the rank of a partition [n] = B, U - -+ U B, is defined to be n — k. Show
that the family {P,: n € w} has the Ramsey property. (Hint: Consider the sublattice of P,
which is generated by a partition which has largest block size 2.)
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Chapter 3. van der Waerden’s theorenﬁ

In 1927, B. L. van der Waerden published [V1] a proof of the following unexpected
theorem: :

If the positive integers are partitioned into two classes, then at least one of the classes
must contain arbitrarily long arithmetic progressions. :

This result is often attributed (as a conjecture) to the Dutch mathematician P. J. H.
Baudet, probably because of the title of van der Waerden’s paper which first proved it. How-
ever, there seems to be strong evidence that it was actually first conjectured by I. Schur in
connection with his work on the distribution of quadratic residues modulo p. (The reader
can consult A. Brauer’s preface to Schur’s collected works [Sc2] for an account.) It has
turned out to be the genesis of a number of very interesting developments in combinatorics
and number theory, some of which we will encounter in later chapters. In this chapter we
will examine several proofs of this classical theorem of van der Waerden.

The essential ideas. There are two rather harmless-looking modifications we shall make
in the statement of van der Waerden’s theorem, each of which affects the proof in a sub-
stantial way. First, for each k we shall allow only a finite initial segment (depending on k)
of Z* (the set of positive integers) to be partitioned in order that at least one class always
contains a k-term arithmetic progression (A.P.). This modification is attributed to O. Schreier
(see [V2]) and is seen to be equivalent to the original assertion by the Konig infinity lemma.
Second, we shall allow the sets to be partitioned into r classes rather than just two. This
idea was suggested by E. Artin and is essential to all known proofs of van der Waerden's
theorem. With these modifications the “new” version of van der Waerden’s theorem be-
comes:

For k, r € w, there exists an integer W(k, r) so that if [W(k, r)] is partitioned into 7
classes then at least one class contains a k-term A.P.
Or, more chromatically:

For all , r € w, there exists W(k, r) € w 30 that any r-coloring of [W(k, r)] always
has a monoy k-term A.P.

In order to motivate the proof of the general theorem, we first examine a few small cases.
To begin with, for k = 2 and any 7, the result is inmediate (in fact, we may choose W(2, r) =
r+1). Let us consider the case k = 3, r = 2. We claim we can take W(3, 2) = 325. To

9



10 R. L. GRAHAM

see this, assume x: [325] — [2] is an arbitrary 2-coloring. Let us think of [325] as con-
sisting of 65 consecutive blocks of length 5, i.e., [325] = [1,5] U [6,10] U--- U [321, 325]
which we can write symbolically as

l 2

Each B; has 5 points and therefore can be colored in one of 2° = 32 ways. Thus, among
the first 33 blocks, some pair must be colored in exactly the same way (by the pigeonhole
principle), say, for example, B, , and B,,. Let us examine the 2-coloring of B,; = {51, 52,
53, 54, 55}. Among the first three elements of B, ,, at least two must have the same color,
say, x(51) = x(53) = 1. If x(55) is also 1 we are done; herice, we may assume x(55) = 2.
Let us consider the situation up to this point. :

515253 54 55 126 127 128 129 130 201 202 203 204 205
T R e DL e D Y B R A s R Y

‘?'1 i By¢ : By,

We claim we are finished! For if x(205) = 2 then 55, 130, 205 is a color 2 3-term AP. On
the other hand, if x(205) = 1 then 51, 128, 205 is a color 1 3-term AP.

What we havé really done is to “focus” two 2-term A.P.’s having different colors on
the integer 205 so that no matter which of the two colors it was assigned, it must form the
third term of soma monox A.P, -

Let us use the same theme to show that W(3, 3) exists. This time, however, we start
with a 3-coloring x of the first 7(2 - 37 + 1)(2 - 37(2-37+1) 4 1) integers!

We first divide these integers into 2 - 37 37+1) 11 consecutive blocks B, each of
length 7(2 - 37 + 1). Now, since there are just 37(?'3" +1) ways a block B, can be 3-colored
by X, then among the first 37(2:37+1) 4 1 of them, at least two, say B;, and B; ., ,must

be 3-colored by ¥ in exactly the same way. (The reason we use 2 - 37237 +1) 4+ | blocks
is so that the block B; 424, is well defined; we shall soon need it.)

Next, for each i, partition the integers in B, into 2 - 37 + 1 subblocks B, ; of 7 inte-
gers each. Since there are just 37 ways of 3-coloring each B, ;, then among the first 37 +1
blocks B, ,j» At least two, say B, N and B,l' by +da have exactly the same 3-colorings.

Finally, in the first four elements of B, ,ig» SOMe color must occur at least twice, say
x(i3) = x(iy; + d;) = 1 where iy, i +d, EB, ,ip- Since iy + 2d is also in B; . (this is
why we chose it to have length 7) then we may assume without loss of generality that
x(i; + 2d;) = 2 (if x(i5 + 2d;) = 1 we would be done). The current situation is shown in
Figure 3.1.
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FIGURE 3.1

Consider the subblock B; ;. 424, By the choice of i, and d,, this is a subblock of
B,,. Also since B, ; and B; , .4, have the same 3-colorings then the integers iy + 7d,
and iy + dy + 7d, must have color 1 and the integer iy + 2d4 + 7d, must haye color 2.
Therefore, the corresponding element iy + 2d; + 14d, € B, ;, 434, must have color 3, be- :
cause of the potential monochromatic AP.’s iy + 2d,, iy + 243 +7d,, i3 + 2d, + 14d, and
iy, iy +dy +7d,, iy + 2dy + 14d,. Of course, since B; and B, , 4 have the same colorings
thenx€B; and x + 7(2 - 3" + 1)d, €8, .4, always have the same color. In particular,

x(is +7(2-3" + 1)d,) = x(is +dy+7(2-37 +1)d,) = x(i + 7d, +7(2-3" +1)d,) =1,
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Xy + 24, + 72 37 + 1)d,) = xis + 2y + 7y + 72 - 3" + 1)d)) = 2,
3 3 1 3 3 2 1

and :
X(is + 2d, + 14d, + 737 + Dd,) = 3. &

Now, consider the integer m = i, + 2d; + 14d, + 14(3" + 1)d,. We claim there are
three monoy 2-term AP.’s focussed on m, all having different colors, so that no matter what
? the value of x(m) is, m will be the third term of a monox 3-term A.P. To see this, we sim-
ply extract the appropropriate subset from Figure 3.1:
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iy+2dy +14d, - iy + 2y + 14d; + 737 + 1)d, co iy + 2y +14dy ¥14(37 + 1)dy = m.
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Thus, we have shown that we can take ;
w3, 3) = 72 - 37 FI)N2 - 37(2-37+l) +1).

The proof of the general theorem is now just a double induction on &, the length of
the desired progression, and 7, the number of colors. Not only do we. assume-that W(k, s — 1)
exists but we also assume W(k — 1, ") exists for all values of r'. We need the very large
values of ' since in general we shall always partition the original set of integers into equal
 length blocks B, of consecutive® integers and apply the induction hypothesis to the blocks,
which for our purposes behave in the same way the integers do (this is really an induced
coloring of the blocks). If the integers are being r-colored then the blocks are r'B‘ ! colored.
For this reason the values we obtain for W(k, r) are enormous. In fact, no upper bound is
known which is even primitive recursive. On the other hand, even for 7 = 2 the best lower ‘
bound known is of the form ck2* (see [Be]). This glaring disparity in the bounds for ‘
W(Ic_; r) accurately represents the extent of our ignorance in this area.’ JV
" The one additional difficulty remaining to be overcome to complete the proof of van
der Waerden’s theorem along the lines just cutlined is the choice of comprehensible notation. 1
ExERCISE 3.1. Complete this proof of van der Waerden’s theorem (nc cheating!).
EXERCISE 3.2. W(k, 7) is usually defined to be the least value for which van der Waer-
den’s theorem with k-term A.P.’s and r-colors holds. With this convention: ’
(a) What is W(3,2)? W(3,3)?
(b) What is an upper bound for W(10, 10)?
A SHORT PROOF. It is perhaps not surprising that by strengthening the conclusions of
van der Waerden’s theorem we obtain a somewhat stronger result which at the same time is
a bit easier to prove (see [GR2]). We now give such a result. We should point out that the
structure of this proof is essentially the same as van der Waerden’s original proof.
et us call two m-tuples (x;, ..., X, ), (xy, . i1, xp,) € [0, 7)™ kequivalent if they
agree up through their last occurrences of I. (Thus, any two /-tuples not containing 1 are I
equivalent.) For any [, m > 1, consider the statement:

For any 7, there exists N(/, m, r) so that for any r-coloring
S(1, m) x: [IN(, m, n] — [r] there exist a, d,, ..., d,, € P such that
x(@ + %, x,d,) is constant on each l-equivalence class of [0,1]™.

THEOREM. S(/, m) holds for all |, m = 1.

Proor. (i) S(, m)forsomem=>1 =S, m + 1). For a fixed 7, let M = N(, m, r),
M' = N(I, 1, r™) and suppose x: [MM'] — [r] is given. Define the induced coloring x:
M'] — [r™] so that x'(k) = x'(k") iff x(kM - /) = x(k'M - j) for 0 <j <M. By the in-
ductive hypothesis, there exist ' and d ' such that x'(a’ + xd") is constant for x € [0,/ - 1].

%n fact, the blocks do not have to be disjoint—just equally spaced.
5G. Mills has pointed cut that the known values W2, 2) = 3, M3, 2) =9, M4,2) =34 and W5, 2)
= 178 are remarkably close to (3/2)k!.




