Studies in Computer Science 2
and Artificial Intelligence

| The Ecology of
Compufaﬂon ¥

B.A. Huberman
editor

o

North-Holland



7 5% 8863010

THE ECOLOGY OF COMPUTATION

edited by
B.A.HUBERMAN

Xerox Palo Alto Research Center
Palo Alto, CA
U.S.A.

WALITA

E8863010

N
. Y

1988

NORTH-HOLLAND —AMSTERDAM e NEW YORK e OXFORD e TOKYO



L

© Elsevier Science Publishers B.V., 1988

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
ortransmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owner.

ISBN: 0 444 70375 6

Publishers:

ELSEVIER SCIENCE PUBLISHERS B.V.
P.O. Box 1991

1000 BZ AMSTERDAM

THE NETHERLANDS - ey

Sole distributors for the U.S.A. and €anada:

ELSEVIER SCIENGE PUBLISHIN%COMPANY INC.
52VANDERBILT AVENUE K

NEW YORK, N.Y. 10017 .

US.A.

Library of Congress Cataloging-in-Publication Data

The Ecology of computation.

(Studies in computer science and artificial
intelligence ; 2)

1. Electronic data processing. 2. Artificial
intelligence. I. Huberman, B. A. (Bernardo A.),
1943~ . II. Series.

QA76.E26 1988 004 87-36405
ISBN 0-444-70375-6 (U.S.)

PRINTED IN THE NETHERLANDS



THE ECOLOGY OF COMPUTATION



STUDIES IN COMPUTER SCIENCE
AND ARTIFICIAL INTELLIGENCE

Editors:

D. G. Bobrow

Xerox Corporation
Palo Alto Research Centre
Palo Alto, California

H. Kobayashi

IBM Japan Ltd.
Tokyo

J. Nievergelt

ETH, Institut far Informatik
Zirich

M. Nivat

Université Paris VIl
Paris

NORTH-HOLLAND —AMSTERDAM e NEW YORK e OXFORD e TOKYO



8863010

v
CONTENTS
The Ecology of Computation
B.A. Huberman — 1
// ;
Offices are Open Systems 1,"’ N\
C. Hewitt / v 5
Why AM and Eurisko Appear to Work \
D.B. Lenat and J.S. Brown N _, 25
Comparative Ecology: A Computational Perspective |
M.S. Miller and K.E. Drexler 51
The Behaviour of Computational Ecologies
B.A. Huberman and T. Hogg 77
Deals Among Rational Agents
J.S. Rosenschein and M. Genesereth 117
Markets and Computation: Agoric Open Systems
M.S. Miller and K.E. Drexler 133
Enterprise: A Market-Like Task Scheduler for Distributed
Computing Environments
T.W. Malone, R.E. Fikes, K.R. Grant and M.T. Howard 177
From Rig to Accent to Mach: The Evolution of a Network
Operating System
R.F. Rashid 207
Incentive Engineering for Computational Resource Management
K.E. Drexler and M.S. Miller 231

Guardians and Actions: Linguistic Support for Robust, Distributed
Programs
B. Liskov and R. Scheifler 267



vi Contents

Language Design and Open Systems
K.M. Kahn and M.S. Miller

The Next Knowledge Medium
M.J. Stefik

291

315



The Ecology of Computation
B.A. Huberman (editor)
© Elsevier Science Publishers B.V. (North-Holland), 1988 1

The Ecology of Computation

B. A. Huberman
Xerox Palo Alto Research Center
Palo Alto, CA 94304

A new form of computation is emerging. Propelled by advances in software
design and increasing connectivity, distributed computational systems are
acquiring characteristics reminiscent of social and biological organizations.
These open systems, self—regulating entities which in their overall behavior are
quite different from conventional computers, engage in asynchronous
computation of very complex tasks, while their agents spawn processes in other
machines whose total specification is unknown to them. These agents also make
local decisions based both on imperfect knowledge about the system and on
information which at times is inconsistent and delayed. They thus become a
community of concurrent processes which, in their interactions, strategies, and

competition for resources, behave like whole ecologies.

The appearance of such complex systems on the computational scene
creates a number of interesting problems. At the operational level, the lack of
global perspectives for determining resource allocation gives rise to a whole
different approach to system level programming and the creation of suitable
languages. Just to implement procedures whereby processes can cross trust
barriers and manage to compute in a highly heterogeneous medium is a
challenging task with no optimally known solution. Although human
organizations often deal successfully with the problem of asynchronous operation
and imperfect knowledge, the implementation of a computational analog is far

from obvious. Nevertheless, pieces of such systems are already in place, and a



2 B.A. Huberman

serious effort at designing open computational networks is under way in a

number of laboratories.

On a different vein, the existence of computational ecologies leads to a
number of fascinating questions concerning their function, dynamics, and
efficiency. Stated succinctly, one would like to understand the overall system
behavior from knowledge of what the individual processes can do. Since the rules
whereby computational agents choose among possible strategies can be
arbitrarily set by the designer, whole scenarios can be artificially created and
tested. Moreover, the intrinsic nonlinearity of such systems leads to a rich
repertoire of behaviors which can be studied at both the theoretical and
experimental level. This leads in turn to a consideration of concepts such as
evolutionarily stable strategies. Also, since computational ecologies have much
in common with biological organizations, one expects that insights gained from
one will help the understanding of the other. Just as insect colonies can reveal
the workings of a natural computational system with simple components, the
dynamics of an artificial open system can provide a quantitative testing ground
for models of social organizations.

This book is a collection of articles which deal with the nature, design and
implementation of open computational systems. Although varied in their
approach and methodology, they are related by the goal of understanding and
building computational ecologies. They are grouped in three major sections. The
first one deals with general issues underlying open systems, studies of
computational ecologies, and their similarities with social organizations. The
second part deals with actual implementations of distributed computation, and
the third one discusses the overriding problem of designing suitable languages

for open systems. The book ends with a vision of a future knowledge medium by
Stefik.

Imperfect knowledge, asynchronous computation and inconsistent data
are not exclusive of open computational systems. Human societies face the same
constraints, often successfully, when trying to engage in collective problem
solving, be it a scientific community or a design group. Such an analysis, in the
pervasive context of office work, is presented by Hewitt from an open systems
perspective. ’

The consideration of a computational system as an ecology brings to mind
biological mechanisms such as mutations, which introduce variations into
species. These alterations in the code of life, while leading to increased diversity,



The Ecology of Computation 3

allow for adaptation to a changing environment. Such mutation strategies have
been often proposed as ways of improving the performance of artificial
intelligence systems. A highly instructive example of such an approach is
provided by AM and Eurisko, which were designed in order to explore and
discover mathematical concepts by syntactically mutating small Lisp programs.
Equally interesting is the process of resource allocation to the resulting
programs, and which are distributed by an external agent on the basis of
perceived degree of progress. Lenat and Brown perform an incisive analysis of
the advantages and shortcomings of such systems, and speculate that the
paradigm underlying them may be that of collections or societies of evolving,
self—organizing, symbolic knowledge structures.

Within this context, Miller and Drexler discuss several evolutionary
models such as biological ecosystems, human markets, and Eurisko, and outline
their analogies and differences with computational ecologies. In this and a
related paper on Markets and Computation, they elaborate a vision of direct

computational markets which they term agoric open systems.

Since incomplete knowledge and delayed information are intrinsic
features of computational ecologies, serious consideration has to be given to their
dynamical behavior when operating with such constraints. Huberman and Hogg
derive and analyze the appropriate equations governing game dynamics, and
show that when processes can choose among many possible strategies while
collaborating in the solution of computational tasks, the asymptotic dynamics
can lead to nonlinear oscillations and chaos. These results imply that
evolutionarily stable strategies may not exist in computational ecologies. They
also discuss the possible existence of a universal law regulating the way in which
the benefit of cooperation is manifested in the system, and compare it with
findings in biological ecologies and human organizations.

This dynamical approach to distributed computation is to be contrasted
with the static %tatic one of Rosenchein and Genesereth, who apply classical
game theory to resolve potential conflicts between computational agents having
disparate goals.

The second part of the book discusses actual implementations of
distributed computational systems. Two different papers describe operational
systems designed from an open systems perspective. Enterprise, a market — like
scheduler, described by Malone and collaborators, consists of independent

processes or agents being allocated at run time among remote idle processors



4 B.A. Huberman

through a bidding mechanism. The system provides substantial performance
improvements over processing tasks on the machines at which they originate

even in the face of large delays and inaccurate estimates of processing times.

An alternative system is Mach, described by Rashid in an article outlining
the evolution of a class of network operating systems. A multiprocessor operating
system kernel currently running on VAX architecture machines, Mach provides
a number of attractive features from an open systems point of view. These
include support for transparent remote file access between autonomous systems,
internal symbolic debuggers, and most notably, network interprocesses which
can be protected across system boundaries.

This section on distributed computation ends with an article by Drexler
and Miller on Incentive Engineering. Within the framework of market—like
mechanisms for resource allocation, it proposes a set of algorithms which allow
for both processor scheduling as an auction process, and for distributed garbage
collection through which unreferenced loops that cross trust boundaries can be
collected.

This book would not be complete if it did not dealt with the problem of
languages for computational ecologies. A suitable programming language for
open systems should allow for programs in which modules reside and execute at
geographically remote, but communicating, locations. It should also allow for the
writing of robust programs which can survive hardware failures without loss of
distributed information, while allowing concurrent access to that information
while preserving its consistency. An example of such a programming language is
provided by Liskov and Scheifler in their article on Guardians and Actions. In a
more general vein, Kahn and Miller analyze the suitability of actor languages
and concurrent logic programming for writing programs which both provide
services and take advantage of them in a manner that scales from basic

computational steps to very large distributed systems.

Lastly, there is a visionary description by Stefik of a future in which Al
systems, distributed across society, will be able to communicate and share
knowledge with each other. This knowledge medium will stand in sharp contrast
to current expert systems which are built from scratch every time and essentially
function as stand alone entities. In his description of such a medium, Stefik
draws heavily both on the history of cultural changes and most importantly, on
the notion of a knowledge ecology.



The Ecology of Computation
B.A. Huberman (editor)
Elsevier Science Publishers B.V. (North-Holland), 1988 5

Offices Are Open Systems

Carl Hewitt
MIT Artificial Intelligence Laboratory

This paper is intended as a contribution to analysis of the implications of
viewing offices as open systems. It takes a prescriptive stance on how to
establish the information-processing foundations for taking action and
making decisions in office work from an open systems perspective. We
propose due process as a central activity in organizational information
processing. Computer systems are beginning to play important roles in
mediating the ongoing activities of organizations. We expect that these
roles will gradually increase in importance as computer systems take on
more of the authority and responsibility for ongoing activities. At the
same time we expect computer systems to acquire more of the
characteristics and structure of human organizations.

1. INTRODUCTION

In this paper we discuss the nature of office work from an open systems
perspective. Coping with the conflicting, inconsistent, and partial information is
one of the major challenges in office information systems. Due process is the
organizational activity of human and computer systems for generating sound,
relevant, and reliable information as a basis of action taking. Within due process
logical reasoning takes place within relatively small coherent modules called
microtheories. In general the microtheories will be inconsistent with one
another. Due process makes use of debate and negotiation to deal with conflicts
and inconsistencies between microtheories.

2. OFFICE WORK

We define an office as a ‘place where office work is done, thus shifting the
emphasis of our investigation from the nature of the locale to the nature of the
activity performed. Office work can take place in an automobile with a mobile
telephone, in the anteroom of a lecture hall, or at a networked personal
computer. Of course, the situation including place, time, and participants can
materially affect the work. All office work takes place within a particular
concrete situation. The point that we want to make here is that there is no special
place where office work has to take place.

Reprinted from ACM Transactions on Office Information Systems, Vol. 4, No. 3, July 1986, pp. 271-287.



6 C. Hewitt

Later we discuss how office work is situated in particular concrete space
and time and how the situation provides an important part of the context in
which the work is done.

We take office work to be information processing that is done to coordinate
all the work that an organization does with the exception of direct manipulation
of physical objects. The organizations in which office work takes place are "going
concerns" in the sense of Everett Hughes [11]. For example, they include the
processing of beliefs, goals, and mutual commitments as well as the development
and management of responsibilities, policies, tasks, transactions, projects, and
procedures. Office work is specialized by excluding robotics. Robotics involves
information processing directly involved in the physical production,
transformation, transportation, servicing, or consumption of physical objects.

Office work is situated social action in the sense that it is the action
produced by participants at particular times and places. However, we need to
extend the usual notion of situated social actions to encompass the social actions
of computer systems in their interactions with other computer systems as well as
the interactions of computer systems with human participants.

3. OPEN SYSTEMS

Offices are inherently open systems because of the requirement of
communication with operational divisions as well as the external world in the
task of coordinating the work of the organization. In all nontrivial cases the
communication necessary for coordination takes place asynchronously.
Unplanned dynamic adaptation and accommodation are required in
organizational information systems to meet the unplanned changing needs of
coordination since the execution of any plan requires articulation, change, and
adjustment.

Open systems deal with large quantities of diverse information and
exploit massive concurrency. They can be characterized by the following
fundamental characteristics [9]:

(1) Concurrency. Open systems are composed of numerous components
such as workstations, databases, and networks. To handle the simultaneous
influx of information from many outside sources, these components must process
information concurrently.

(2) Asynchrony. There are two sources of asynchrony in open systems.
First, since the behavior of the environment is not necessarily predictable by the
system itself, new information may enter the system at any time, requiring it to
operate asynchronously with the outside world. Second, the components are
physically separated distances prohibiting them from acting synchronously. Any
attempt to clock all the components synchronously would result in an enormous
performance degradation because the clocks would have to be slowed down by
orders of magnitude in order to maintain synchronization.

(3) Decentralized control. In an open system, a centralized decision maker
would become a serious bottleneck. Furthermore, because of communications
asynchrony and unreliability, a controlling agent could never have complete,
up-to-date information on the state of the system. Therefore control must be



Offices are Open Systems 7

distributed throughout the system so that local decisions can be made close to
where they are needed.

(4) Inconsistent information. Information from outside the system or even
from different parts of the same system may turn out to be inconsistent.
Therefore decisions must be made by the components of an open system by
considering whatever evidence is currently available.

(5) Arms-length relationships. The components of an open system are at an
arms-length relationship: The internal operation, organization, and state of one
computational agent may be unknown and unavailable to another agent for
reasons of privacy or outage of communications. Information should be passed by
explicit communication between agents to conserve energy and maintain
security. This ensures that each component can be kept simple since it only needs
to keep track of its own state and its interfaces to other agents.

(6) Continuous operation. Open systems must be reliable. They must be
designed so that failures of individual components can be accommodated by
operating components while the failed components are repaired or replaced.

4. CONCURRENCY

The underlying concurrent basis of operation enables due process to react

dynamically to asynchronous input and in many cases makes the results
indeterminate.

4.1 Asynchronous Input

Concurrent systems differ from Turing machines in that they allow
asynchronous communication from the external environment to affect ongoing
operations. Sequential systems deal with this problem as a kind of "interrupt" in
which they "switch tasks." Organizational information systems rarely have all
the material at hand needed to make an important decision. Information that is
known in advance to be required arrives asynchronously as the decision making
proceeds and is often incomplete. Unanticipated information can arrive at any
time in the process and affect the outcome even though it arrives quite late. For
instance, an unanticipated story in the Wall Street Journal on the morning of a

corporate board meeting to give final approval to a merger has been known to
kill or delay a deal.

4.2 Indeterminancy

Concurrent systems are inherently indeterminate. The indeterminancy of
concurrent systems does not stem from invoking a random element such as
flipping a coin. Instead it results from the indeterminate arrival order of inputs
to system components. In general, complete knowledge of the state and structure
of a concurrent system together with exact knowledge of the times and values of
inputs does not determine the system's output. Concurrent systems are
indeterminate for the same reason that other quantum devices are
indeterminate.

The indeterminancy of concurrent computation is different from the usual
nondeterministic computation studied in automata theory in which coin flipping



8 C. Hewitt

is allowed as an elementary computational step. In general, it is not possible to
know ahead of time that a concurrent system will make a decision by a certain
lime. Flipping a coin can be used as a method of forcing decisions to occur by
making an arbitrary choice. Often as a matter of principle, however, due process
refuses to invoke arbitrary random measures such as coin flipping to make a
decision. For example, a jury might not return a verdict, and the judge might
have to declare a mistrial. (Agha [1] provides an excellent exposition of the
nature of a mathematical model of concurrent computation and its differences
with classical nondeterministic Turing-machine-based theories.)

5. CONFLICTING INFORMATION AND CONTRADICTORY BELIEFS

Conflicting sources of information and inconsistent beliefs are a staple of life in
organizational information systems. This partly results from dealing with
differing external organizations that retain their own autonomy and belief
structures.

Inconsistencies inevitably result from the measurements and observations
made on complicated physical systems. Higher level abstractions are used to
attempt to construct a consistent description of parts of the environment in
which the organization operates. For example, a firm's earnings might be labeled
"provisional” and then "subject to audit." But, even after being published in the
annual report, they might later have to be "restated." In this case "provisional,"
"subject to audit,” and "restated" are attempts to construct a consistent
description from conflicting information about earnings.

Whatever consistency exists among the beliefs within an organization is
constructed and negotiated by the participants. In the case of reported earnings,
the chief executive officer, finance department, board of directors, and regulatory
authorities play important roles in constructing and negotiating the financial
reports.

Any belief concerning an organization or its environment is subject to
internal and external challenges. Organizations must efficiently take action and
make decisions in the face of conflicting information and contradictory beliefs.
How they do so is a fundamental consideration in the foundations of
organizational information systems.

Conflicting information and contradictory beliefs are engendered by the
enormous interconnectivity and interdependence of knowledge that come from
multiple sources and viewpoints. The interconnectivity makes it impossible to
separate knowledge of the organization's affairs into independent modules. The
knowledge of any physical aspect has extensive spatiotemporal, causal,
terminological, evidential, and communicative connections with other aspects of
the organization's affairs. The interconnectivity generates an enormous network
of knowledge that is inherently inconsistent because of the multiple sources of
actors making contributions at different times and places.

For example, suppose that in the middle of 1986 an organization
undertakes to consider its knowledge of sales currently. in progress for that year
for the New England region. In such a situation, there is an enormous amount of



Offices are Open Systems 9

information about other pieces of information. The following considerations show
a small part of the enormous interconnectivity of knowledge:

Spatiotemporal interconnectivity. The organization has a great deal of
knowledge about the history of sales in the New England region in the first
few months of 1986, including how the sales were generated and recorded.
In addition, it has sales projections of what will happen in the remainder of
the year.

Causal interconnectivity. The marketing department believes that
increased advertising is causing sales to go up. On the other hand, the sales
department believes that the increased sales commissions are the real
reason for the increase in sales.

Terminological interconnectivity. Some of the sales are really barter
agreements with uncertain cash value. Do the barter agreements qualify as
sales?

Evidential interconnectivity. The accounting department fears that sales
might really not be increasing because many of the products could be
returned because of a new 30-day free trial offer. It does not believe that the
evidence presented shows that sales are increasing.

Communicative interconnectivity. The organization consists of a community
of actors operating concurrently, asynchronously, and
nondeterministically. The asynchronous communications engender
interconnectivity, which defies any complete description of the global state
of the organization at any particular point in time.

Conflicting information and contradictory beliefs are an inherent part of office
work that must be explicitly addressed in any foundation for organizational
information systems.

6. DUE PROCESS

Due process is the organizational activity of humans and computers for
generating sound, relevant, and reliable information as a basis for decision and
action within the constraints of allowable resources [4]. It provides an arena in
which beliefs and proposals can be gathered, analyzed, and debated. Part of due
process is to provide a record of the decision-making process that can later be
referenced.

Due process is inherently reflective in that beliefs, goals, plans, requests,
commitments, etc., exist as objects that can be explicitly mentioned and
manipulated in the ongoing process.

Due process does not make decisions or take actions per se. Instead it is the
process that informs the decision-making process. Each instance of due process
begins with preconceptions handed down through traditions and culture that
constitute the initial process but are open to future testing and evolution.
Decision-making criteria such as preferences in predicted outcomes are included
in this knowledge base. For example, increased profitability is preferable to
decreased profitability. Also, increased market share is preferable to decreased



10 C. Hewitt

market share. Conflicts between these preferences can be negotiated [18]. In
addition preferences can arise as a result of conflict. Negotiating conflict can
bring the negotiating process itself into question as part of the evaluative
criteria of how to proceed, which can itself change the quality of conflict among
the participants [7, 7a].

Lower prices Lower prices

Y \

Lower profitability Greater market share

Figure 1

Changing the price of a product can affect both its profitability and market
share in conflicting ways, as shown in Figure 1. Market research and internal
cost analysis can help model the effects of lower prices on profitability and
market share. The sales and financial divisions can have very different views on
the subject. They need to organize their respective positions including
counterarguments to opposing views. The cost-effectiveness of generating new
information by market research and new product development can be considered
by using due process.

All this activity takes place within a context that sets the time frame for
the decision-making process. Sometimes the time frames can be very short, and,
at the same time, the decision could be very important to the organization.
Consider the sudden appearance of a new product that is drastically
undercutting prices and demands a quick decision as to whether or not to cut
prices. It is extremely common for a "case" to occur in due process that has to be
settled promptly but has implications for more general issues. A company may
develop a general vacation policy because a request by a particular employee for
certain vacation privileges has to be granted or refused [13]. Due process takes
place within action-taking and decision-making situations. It occurs at a
particular place and time within a community of actors (both human and
computer) that communicate with one another in a historical context involving
information gathering, discussion, and debate.

The communications involved in due process can be analyzed along the
following dimensions:



