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Preface

Traditional methods for controlling chemical manufacturing processes
have relied exclusively on the measurement of temperature, pressure and
flow rate. Only when more information was essential for the safe
operation of a plant would the addition of other types of process
analysers be considered. Measurement of oxygen in the manufacture of
ethylene is a case in point, since oxygen can lead to runaway reactions
and the loss of lives and equipment.

More recently, the manufacture of new polymers, materials and other
complex products has demanded more timely composition data in order
to ensure that the highest possible quality product be made at the lowest
possible cost. Better process control with the use of detailed, real-time
chemical measurements has become the key to lowering quality costs, i.e.
costs associated with reprocessing, destroying or selling off-spec material.
Quality costs in chemical and materials manufacturing are estimated to
be ten per cent of sales!

Sophisticated on-line and in-line chemical analyses are also required
when it is necessary to determine not only product composition, but also
product performance during manufacturing. For example, octane num-
bers for gasoline, and several other performance parameters for all fuels,
are today determined on-line during blending from near infrared spectral
data analysed by multivariate calibration methods. Another application
involves spectral data acquired during polymerization processes to pre-
dict quality parameters such as hardness, elongation or dyeability of the
polymer product.

Finally, recent environmental regulations require data on aspects such
as impurities, solvents and wastewater, to ensure that chemical manufac-
turing is safe for workers, for communities near chemical plants, and for
the environment. These demands for real-time quantitative chemical
information on a growing list of manufacturing processes present new
challenges to analytical chemists, instrument engineers and plant super-
Visors.

In response to these needs, the Center for Process Analytical Chemistry
was established in 1984 at the University of Washington to work with
industry to identify, prioritize and address generic needs in the newly
emerging area of Process Analytical Chemistry. Since then a journal
(Process Control and Quality) has been introduced, several International
Forums on Process Analytical Chemistry (IFPAC) have been held, and
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in 1993 the Application Reviews issue of Analytical Chemistry contained
the first review on the field, authored by chemists from Dow Chemical
Company.

Although a few books are available on process analysers, these focus
primarily on commercially available technology. This is the first book on
Process Analytical Chemistry to cover the present and future of this new
field. Our international team of contributors has been brought together
from academia, equipment suppliers and different sectors of the chemical
industry, to produce a volume which covers a list of topics currently
under development as well as in real-life applications. Written for a
broad range of scientists and engineers educated in the physical sciences
and working in the chemical and allied industries, the book can also be
used as the basis for a course at advanced undergraduate or graduate
level. Some familiarity with standard laboratory chemical analysis is
assumed. The editors hope that the book will provide the basis for more
academic involvement in the field. The future of analytical chemistry
calls for a partnership between analytical laboratories filled with the most
sophisticated instrumentation and in-field chemical sensors/analysers
capable of long-term, maintenance-free operation even in the most hostile
environments.

Beneficiaries of this book include students and practitioners of analyt-
ical chemistry, process engineering, plant supervision and control/intel-
ligence. The book opens the opportunity for analytical chemists to work
closely with chemical engineers to design, build and operate safer and
more efficient manufacturing processes for the present and future. The
editors see this possibility as the key to manufacturing excellence as we
move into the 21st century.

F. McLennan
B.R. Kowalski
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1 Process analytical chemistry in perspective
F. MCLENNAN

1.1 Introduction

Process Analytical Chemistry (PAC) is the application of analytical
science to the monitoring and control of industrial chemical process [1,2].
This information may be used to both control and optimise the perform-
ance of a chemical process in terms of capacity, quality, cost, consistency
and waste reduction.

PAC is not new. It has been applied in the petroleum and petrochem-
ical industries since the 1950s but is presently going through a reincarna-
tion and is a rapidly developing field in all areas of chemical production —
petroleum, fine chemicals, commodity chemicals, petrochemicals, bio-
technology, food, pharmaceuticals, etc. being fuelled by technological
advances in analytical chemistry together with changing needs within the
chemical industry.

In a traditional chemical manufacturing plant, samples are taken from
reaction areas and transported to the analytical laboratory which is
typically centralised. Here the samples are analysed by highly qualified
technical staff using state-of-the-art equipment producing results typi-
cally in a few hours to a few days. Such analysis is generally used
retrospectively to measure process efficiency, to identify materials which
need to be reworked or discarded or in a multistage batch synthesis to
assess the charge for the next stage. Where these results are critical to the
continuation of the process, the process is usually designed to accommo-
date this time delay giving rise to longer cycle times and reduced plant
utilisation.

Process control in this environment is effected by an experimental
correlation of physical parameters during the process such as flow rates,
times, temperatures, pressures with chemical composition, quality and
yield of the derived material followed by subsequent control of these
physical parameters.

Implementation of PAC dramatically changes this scene. PAC analy-
sers are situated either in or immediately next to the manufacturing
process. They are designed to withstand the rigours of a manufacturing
environment and to give a high degree of reliability. They are operated
either automatically or by non-technical staff such as process operatives
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and produce real or near-real-time data which can be used for process
control and optimisation.

The move towards PAC has been fuelled by two developments. Firstly,
increasing international competitiveness within the chemical industry has
lead to the widespread adoption of ‘right first time’ and ‘just in time’
approaches to manufacturing and quality. This has placed the emphasis
on building quality into all stages of the process, increased manufactur-
ing flexibility, reduced inventory and improved control of processes.
Secondly, during the past decade advances in analytical chemistry and in
particular the development of the microcomputer and improved algo-
rithms for data handling, have enabled almost instantaneous generation
of information.

Moving from a traditional analysis approach to a PAC approach is not
easy, not only does it require significant technical developments but it
also requires a ‘cultural’ change. This change needs to be embraced not
only by the analyst community, but also by manufacturing, R&D and
engineering, etc. This change process requires a ‘champion’ or better still
a number of champions at both the managerial and technical levels in
order to be successful.

Figure 1.1 outlines the key differences between the traditional and
PAC approaches to process control.

While this chapter and most of this book will concentrate on the role
of in-plant analysis, this does not mean that there is not a place for the
specialised analytical laboratory and it is the author’s belief that an
integrated approach to process analysis is essential to meet all the needs
of a modern chemical plant [3, 4]. It also does not mean that manufac-
turing processes are the only processes to benefit from moving analytical
chemistry from its centralist role to the in-situ or distributed role. The
human body, the air over a city and a mountain lake all represent
complex chemical processes, the study of which would benefit from
on-line, real-time and even non-invasive analysis.

(a)
3 Ijamp?I - Ilransport l——) [Analysis] — [Communicate] — lDecisiorT|

(b)
Bnalysis}—é LDecisioﬂ

Figure 1.1 (a) Traditional approach to process control. Analysis employs technical staff,

high-tech equipment and typically takes several hours. (b) Process analytical chemistry

approach to process control. Analysis is either automatic or employs non-technical staff,
utilises rugged and reliable equipment and takes seconds or minutes.
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1.2 Terminology

For the purpose of this volume, we propose to use the following
definitions (Figure 1.2).

Off-line analysis: This involves manual removal of the sample, trans-
port to the measurement instrument which is located in a specialised
central laboratory using highly qualified technical staff. This is typi-
fied by relatively low sample frequency, complex sample preparation,
flexible and complex analysis. The advantages of this approach
arise from the economy of sharing expensive instruments and skilled
staff.

At-line analysis: Many of the deficiencies of off-line analysis—time
delay, administration costs, prioritisation of work—may be addressed by
carrying out the analysis at-line. This still involves manual sampling but
in this case the measurement is carried out on a dedicated analyser by
the process operative. At-line analysis is usually accompanied by signifi-
cant method development work to simplify the sample preparation and
to modify the measurement technique to permit the use of robust,
reliable instrumentation. It is a mistake to simply transfer the laboratory
analysis to the plant floor — time and effort spent in the evaluation of
what information is required to control the process invariably leads to
the development of a more robust solution.

On-line analysis: We use this definition to describe all examples of fully
automated analyser systems. Other authors have subdivided this further
into on-line, in-line and non-invasive analysis but we will consider all
these as one group.

Table 1.1 highlights the pros and cons of each of these approaches.

Table 1.1 The pros and cons of each approach

Advantages

Disadvantages

Off-line Expert analysts available.

Flexible operation.

Controlled environment.

Sophisticated instrumentation.

Low unit costs/test.

Dedicated instrument.

Faster sampling process.

Simpler instrumentation.

Ownership of data by production
personnel.

Control of priorities.

Fast.

Automatic feedback possible.

Dedicated analyser.

At-line

On-line

Slow.

Lack of ownership of data.
Conflicts of priorities.
Addition admin costs.

Low equipment utilisation.
Equipment needs to be robust to
cope with production environment.

Minimum downtime required.

Long/expensive method development.

24 h troubleshooting/maintenance resource
required.

Electrical classification required.
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(a)
|
!
:

(b)
:
'l

(©)

Figure 1.2 (a) Off-line, (b) at-line, and (c) on-line analysis.
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1.3 An integrated approach

PAC is a truly multidisciplinary science. The aim of each project should
be to define the optimum process control, measurement and analysis
philosophy for the process. This key stage requires contributions from
the analytical chemist, measurement engineer, control engineer, process
development chemist, chemical engineer and production manager. In the
past we have had on-line analysis teams and off-line analysis teams, often
competing with each other and nobody looking at the important area of
at-line analysis.

While the move from off-line to in-plant analysis can be retrofitted to
a process and bring substantial benefits, experience has shown that the
biggest impact comes when PAC is integrated with the process develop-
ment and plant design (e.g. rapid on-line or at-line analysis may allow
efficient manufacture without intermediate storages). In the former case,
much of the in-built inefficiency (i.e. to cope with time consuming off-line
analysis) cannot be recouped. An effective way of getting in at a sufficient-
ly early stage, is to apply the PAC philosophy (especially on-line) to
process research and development. Substantial gains in development time,
process cycle times, materials efficiency and energy efficiency are achiev-
able even where such work does not lead to process-scale PAC projects.

On a project by project basis, PAC should be problem rather than
technique driven. It is nonetheless essential that high level research and
development is undertaken to enhance the range of techniques available.
This is especially true for on-line analysis where the application of even
well established laboratory techniques may offer huge challenges. In
addition to instrument development, the application of commercially
available systems to specific process problems can also be complex. A
progressive PAC organisation needs high calibre staff and support from
senior management to ensure that project implementation against today’s
problems is undertaken in parallel with longer term research to solve
tomorrow’s problems. Such research should make full use of existing
company research infrastructure; the PAC specialist cannot be an expert
in all analytical techniques. It is therefore important that ‘traditional’
researchers embrace the PAC philosophy to some extent.

Great progress in PAC has clearly been made over the past 5-10 years.
Most of the R&D has been undertaken by the world’s major chemical
companies; it was not easy to follow developments since much of the
work is deemed proprietary and confidential. Over the years, this has
been supported by relatively small ‘niche’ instrument companies, close to
particular sectors of the chemical industry. More recently, the major
suppliers of analytical instrumentation have become interested in PAC.
The strategic alliance between Perkin Elmer and Dow Chemical, to
develop and commercialise Dow’s PAC expertise, is a good example.




