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This tenth edition of Introductory Mathematical Analysis continues to provide
a mathematical foundation for students in business, economics, and the life
and social sciences. It begins with noncalculus topics such as equations, func-
tions, matrix algebra, linear programming, mathematics of finance, and proba-
bility. Then it progresses through both single-variable and multivariable
calculus, including continuous random variables. Technical proofs, conditions,
and the like are sufficiently described but are not overdone. At times, informal
intuitive arguments are given to preserve clarity.

Applications

An abundance and variety of applications for the intended audience appear
throughout the book; students continually see how the mathematics they are
learning can be used. These applications cover such diverse areas as business,
economics, biology, medicine, sociology, psychology, ecology, statistics, earth
science, and archaeology. Many of these real-world situations are drawn from
literature and are documented by references. In some, the background and
context are given in order to stimulate interest. However, the text is virtually

self-contained, in the sense that it assumes no prior exposure to the concepts
- on which the applications are based.

Changes to the Tenth Edition
Chapter Openers

New to the tenth edition, Chapter Openers appear at the beginning of every
chapter, including the Concepts for Calculus appendix (see below). Each
Chapter Opener presents a real-life application of the mathematics in the
chapter. This new element gives students an intuitive introduction to the topics
presented in the chapter.

Expanded Concepts for Calculus Appendix

Expanded for the tenth edition, this useful end-of-text appendix features cal-
culus topics for student review. This appendix contains applications of calculus
that can be understood before students have studied formal calculus.

Updated and Expanded Mathematical Snapshots

For the tenth edition, this popular feature has been expanded to appear at the
end of Chapters 0 through 19. Each snapshot provides an interesting, and at
times, novel application involving the mathematics of the chapter in which it
occurs. Each of the snapshots includes exercises—reinforcing the text’s strong
emphasis on hands-on practice. The final exercise in each snapshot involves

questions that are suitable for group discussion.
ix
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Preface

Suggested Chapter Review Tests

In the Review Problems of Chapters 1 through 19, selected problems are
marked as suitable for the students to use as practice tests to gauge their mas-
tery of the chapter material. All test items are odd-numbered problems, so that
students can check their work against the answers at the back of the text.

Retained Features

Interspersed throughout the text are many warnings to the student that point
out commonly made errors. These warnings are indicated under the heading
Pitfall. Definitions are clearly stated and displayed. Key concepts, as well as
important rules and formulas, are boxed to emphasize their importance.
Throughout the text, notes to the student are placed in the margin. They re-
flect passing comments which supplement discussions.

More than 850 examples are worked out in detail. Some include a strategy
that is specifically designed to guide the student through the logistics of the so-
lution before the solution is obtained. i

An abundant number of diagrams (almost 500) and exercises (more than
5000) are included. In each exercise set, grouped problems are given in in-
creasing order of difficulty. In many exercise sets the problems progress
from the basic mechanical-drill type to more interesting thought-provoking
problems. Many real-world type problems with real data are included.
Considerable effort has been made to produce a proper balance between the
drill-type exercises and the problems requiring the integration of the concepts
learned. Many of the exercises have been updated or revised.

In order that a student appreciates the value of current technology, op-
tional graphics calculator material appears throughout the text both in the ex-
position and exercises. It appears for a variety of reasons: as a mathematical
tool, to visualize a concept, as a computing aid, and to reinforce concepts.
Although calculator displays for a TI-83 accompany the corresponding tech-
nology discussion, our approach is general enough so that it can be applied to
other fine graphics calculators.

In the exercise sets, graphics calculator problems are indicated by an icon.
To provide flexibility for an instructor in planning assignments, these problems
are placed at the end of an exercise set.

The Principles in Practice element provides students with even more ap-
plications. Located in the margins of Chapters 1 through 19, these additional
exercises give students real-world applications and more opportunities to see
the chapter material put into practice. An icon indicates Principles in Practice
applications that can be solved using a graphics calculator. Answers to
Principles in Practice applications appear at the end of the text.

Each chapter (except Chapter 0) has a review section that contains a list of
important terms and symbols, a chapter summary, and numerous review problems.

Answers to odd-numbered problems appear at the end of the book. For
many of the differentiation problems, the answers appear in both unsimplified
and simplified forms. This allows students to readily check their work.

Course Planning

Because instructors plan a course outline to serve the individual needs of a
particular class and curriculum, we shall not attempt to provide sample out-
lines. However, depending on the background of the students, some instructors
will choose to omit Chapter 0, Algebra Refresher, or Chapter 1, Equations.
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Others may exclude the topics of matrix algebra and linear programming,.
Certainly there are other sections that may be omitted at the discretion of the
instructor. As an aid to planning a course outline, perhaps a few comments
may be helpful. Section 2.1 introduces some business terms, such as total rev-
enue, fixed cost, variable cost and profit. Section 4.2 introduces the notion of
supply and demand equations, and Section 4.6 discusses the equilibrium point.
Optional sections, which will not cause problems if they are omitted, are: 7.3,
7.5,15.4,17.1,17.2,19.4, 19.6, 19.9 and 19.10. Section 17.8 may be omitted if
Chapter 18 is not covered.

Supplements

For Instructors

Instructor’s Solution Manual. Worked out solutions to all exercises and
Principles in Practice applications.

Test Item File. Provides over 1700 test questions, keyed to chapter and section.
Prentice Hall Custom Test. Allows the instructor to access from the computer-
ized Test Item File and personally prepare and print out tests. Includes an edit-
ing feature which allows questions to be added or changed.

For Students

Student Solutions Manual with Visual Calculus and Explorations in Finite
Mathematics Software. Worked out solutions for every odd-numbered exercise
and all Principles in Practice applications. Software includes unique programs
which enhance the fundamental concepts of calculus and finite mathematics
visually, and include exercises taken directly from the text.

For Instructors and Students

PH Companion Website. Designed to complement and expand upon the text,
the PH Companion Website offers a variety of interactive learning tools, in-
cluding: links to related websites, practice work for students, and the ability for
instructors to monitor and evaluate students’ work on the website. For more
information, contact your local Prentice Hall representative.
www.prenhall.com/Haeussler
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" CHAPTER 0

Algebra Refresher

nyone running a business needs to keep track of how well things are
A going. But how is this done? Financial professionals often measure com-
pany performance by calculating fractions called financial ratios. There are
more than fifty different financial ratios in common use. Which one gets used
depends on whether the analyst is trying to assess a company’s growth, its
profitability, its level of debt, or some other aspect of its performance.

One important ratio in retail sales is the inventory turnover ratio. For a
given time period,

net sales

inventory turnover ratio = : ,
average inventory

where inventory is measured in total dollar value at point of sale. When we
substitute appropriate expressions for net sales and average inventory, the

formula becomes

) . gross sales — returns and allowances
inventory turnover ratio = — — .
opening inventory + closing inventory
2

The inventory turnover ratio measures how quickly the retailer’s stock of
goods is being sold and resupplied: the higher the ratio, the faster the turnover.
Too low a ratio means a large inventory in which items sit on the shelf for long
periods and are subject to spoilage. Too high a ratio means a small inventory
and an associated risk, to the retailer, of either losing sales by running out of
items or else having to pay high prices to resupply stock in small lots. The ideal
inventory turnover ratio varies from industry to industry, but an ideal annual
ratio of 6 is reasonable for a retailer selling durable goods, such as hardware or
appliances. A greengrocer’s ratio will of course need to be much higher.

The inventory turnover ratio is an example of an algebraic expression.
Calculating its value involves substituting real numbers for the variable quan-
tities (gross sales and so on) and performing arithmetic operations (addition,
subtraction, and division). This chapter will review real numbers and

algebraic expressions and the basic operations on them.
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To become familiar
with sets, the classification of real
numbers, and the real-number
line.

The reason for ¢ # 0 is that we can-
not divide by zero.

Every integer is a rational number.

The real numbers consist of all deci-
mal numbers.

0.1 Purrose

This chapter is designed to give you a brief review of some terms and methods
of manipulative mathematics. No doubt you have been exposed to much of
this material before. However, because these topics are important in handling
the mathematics that comes later, perhaps an immediate second exposure to
them would be beneficial. Devote whatever time is necessary to the sections in
which you need review.

0.2 Sers AND REAL NUMBERS

In simplest terms, a set is a collection of objects. For example, we can speak of
the set of even numbers between 5 and 11, namely, 6, 8, and 10. An object in a
set is called an element or member of that set.

One way to specify a set is by listing its elements, in any order, inside
braces. For example, the previous set is {6, 8, 10}, which we can denote by a let-
ter such as A. A set A is said to be a subset of a set B if and only if every ele-
ment of A is also an element of B. For example, if A = {6,8,10} and
B = {6,8,10, 12}, then A is a subset of B.

Certain sets of numbers have special names. The numbers 1,2, 3, and so on
form the set of positive integers (or natural numbers):

set of positive integers = {1,2,3,... }.

The three dots mean that the listing of elements is unending, although we
know what the elements are.

The positive integers, together with 0 and the negative integers
—1,-2,-3,...,form the set of integers:

set of integers = {...,—3,-2,-1,0,1,2,3,... }.

The set of rational numbers consists of numbers, such as 5 and 3, that can
be written as a ratio (quotient) of two integers. That is, a rational number is a
number that can be written as p/q, where p and ¢ are integers and ¢ # 0. (The
symbol “# ™ is read “is not equal to.”) For example, the numbers %, %, and =5,
are rational. We remark that 7, 3,2, =, and 0.5 all represent the same rational
number. The integer 2 is rational, since 2 = 7. In fact, every integer is rational.

All rational numbers can be represented by decimal numbers that termi-
nate, such as 3 = 0.75 and 3 = 1.5, or by nonterminating repeating decimal
numbers (composed of a group of digits that repeats without end), such as
2=0666...,77 = —0.3636...,and & = 0.1333.... Numbers represented
by nonterminating nonrepeating decimals are called irrational numbers. An ir-
rational number cannot be written as an integer divided by an integer. The
numbers 7 (pi) and \/2 are irrational.

Together, the rational numbers and irrational numbers form the set of real
numbers. Real numbers can be represented by points on a line. First we choose
a point on the line to represent zero. This point is called the origin. (See Fig. 0.1.)
Then a standard measure of distance, called a “unit distance,” is chosen and is
successively marked off both to the right and to the left of the origin. With each
point on the line we associate a directed distance, or signed number, which de-
pends on the position of the point with respect to the origin. Positions to the
right of the origin are considered positive (+) and positions to the left are nega-
tive (—). For example, with the point § unit to the right of the origin there corre-
sponds the signed number 3, which is called the coordinate of that point.
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Some Points and Their Coordinates

| | Positive
-3 -2 -1 0 1 2 3 direction

Origin

FIGURE 0.1 The real-number line.

Similarly, the coordinate of the point 1.5 units to the left of the origin is —1.5. In
Fig. 0.1, the coordinates of some points are marked. The arrowhead indicates
that the direction to the right along the line is considered the positive direction.

To each point on the line there corresponds a unique real number, and to
each real number there corresponds a unique point on the line. For this reason,
we say that there is a one-to-one correspondence between points on the line and
real numbers. We call this line a coordinate line or the real-number line. We feel
free to treat real numbers as points on a real-number line and vice versa.

mam_Exercise 0.2

In Problems 1-12, classify the statement as either true or false. If false, give a reason.

1. —7is an integer. 2. tisrational.

3. —3is a natural number. 4. 0is not rational.

5. 5is rational. 6. [ is a rational number.

7. V25isnota positive integer. 8. mis areal number.

9. 2 is rational. 10. \/3is a natural number.
11. —3 is to the right of —4 on the real-number line. 12. Every integer is positive or negative.
To state and illus- 0.3 SoME PROPERTIES OF REAL NUMBERS

trate the following properties of
real numbers: transitive, commu-
tative, associative, inverse, and
distributive. To define subtrac-
tion and division in terms of ad-
dition a‘nd multiplication, Ha—band b~c e~
respectively.

We now state a few important properties of the real numbers. Let a, b, and ¢ be
real numbers.

1. The Transitive Property of Equality

Thus, two numbers that are both equal to a third number are equal to each
other. For example,if x = yand y = 7,thenx = 7.

2. The Commutative Properties of Addition and Multiplication

a+b—>b+ a ' and ab~ ba
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This means that two numbers can be added or multiplied in any order. For ex-
ample,3 + 4 = 4 + 3 and 7(—4) = (—4)(7).

3. The Associative Properties of Addition and Multiplication

a+ (b¥e)=(a+b)+c and albc) = (aliic

This means that in addition or multiplication, numbers can be grouped in any
order. For example, 2 + (3 + 4) = (2 + 3) + 4;in both cases, the sum is 9.
Similarly, 2x + (x + y) = (2x + x) + yand 6(3 - 5) = (6 -+ }) - 5.

4. The Inverse Properties
For each real number a, there is a unique real number denoted —a such that

a+ (—a)=0.

The number —a is called the additive inverse, or negative, of a.

For example, since 6 + (—6) = 0, the additive inverse of 6is—6.The ad-
ditive inverse of a number is not necessarily a negative number. For example,
the additive inverse of —6 is 6, since (—6) + (6) = 0. That is, the negative of
—6is 6, so we can write —(—6) = 6.

For each real number a, except 0, there is a uniqué real number denoted
a ! such that
a‘a =1

1

The number @™ is called the multiplicative inverse of a.

Zero does not have a multiplicative

inverse because there is no number

that, when multiplied by 0, gives 1. Thus, all numbers except 0 have a multiplicative inverse. You may recall
that @ ~! can be written » and is also called the reciprocal of a. For example, the
multiplicative inverse of 3 is §, since 3(3) = 1. Hence, § is the reciprocal of 3.
The reciprocal of 3, is 3, since (3)(3) = 1. The reciprocal of 0 is not defined.

5. The Distributive Properties.

alb+ c¢)=ab+ ac and (b + c)a = ba + ca.

For example, although 2(3 + 4) = 2(7) = 14, we can write
23+ 4)=2(3) +24) =6+ 8= 14.
Similarly,
(2+ 3)(4) = 2(4) + 3(4) = 8 + 12 = 20,
and x(z + 4) = x(z) + x(4) = xz + 4x.
The distributive property can be extended to the form
a(b+ c+d)=ab+ ac + ad.

In fact, it can be extended to sums involving any number of terms.
Subtraction is defined in terms of addition:

a — bmeansa + (—b),



