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PREFACE

During the week of February 23rd to March 1st, 1986, a conference on semigroups was
held at Oberwolfach, Germany, at the Mathematisches Forschungsinstitut. It was organized
by H. Jirgensen (The University of Western Ontario), G. Lallement (Pennsylvania State
University), and H. J. Weinert (Technische Universitat Clausthal). It was the third conference
on semigroups held at Oberwolfach, this time with an emphasis on combinatorial semigroups
and their applications. The previous ones were held in 1978 and 1981. Their proceedings
have been published as volumes 855 and 998 of these Lecture Notes in Mathematics.

The conference was attended by 53 participants from 15 countries: 11 from Germany; 25
from the countries of Czechoslovakia, Finland, France, Hungary, the Netherlands, Poland,
Portugal, the Soviet Union, the United Kingdom, and Yugoslavia; 15 from Canada and the
United States; 1 from each of Australia and Taiwan. The conference program included 42
lectures, most of which are presented in this volume.

The organizers would like to express their gratitude to the staff at Oberwolfach for creating ex-
cellent conditions for the meeting, and to the editors of the Lecture Notes in Mathematics for
publishing these proceedings. They also thank all authors and the referees for the work they
contributed to the publication of this volume. Special thanks are due to Dr. U. Hebisch (Tech-
nische Universitat Clausthal) for his continued and indispensable assistance in the preparation
of the conference itself and of this volume.

H. Jirgensen, G. Lallement, H. J. Weinert
London (Ontario), University Park (Pennsylvania), and Clausthal-Zellerfeld,
December 1987.



INTRODUCTION

The papers gathered in this volume reflect various trends of research activity over the past
several years in pure algebraic semigroup theory, in some areas of theoretical computer science
related to semigroup theory (languages, automata, rewriting rules, systems of equations), and
in areas of ring theory, universal algebras, and category theory where the objects of interests
do have some direct connections with semigroups.

The following brief analysis of the papers regroups them under somewhat artificial headings.
This is essentially intended to help the reader gain a better understanding of the general aims
of researchers in the various fields mentioned above.

1. Congruences

Unlike in group theory or ring theory, congruences on a semigroup are somewhat difficult
to apprehend. In general, subobjects replacing the kernels are not available. Inverse and
regular semigroups have proven to offer the best grounds of approach, and the paper by
B. P. Alimpié and D. N. Krgovié, where some classes of congruences on regular semigroups
are studied, illustrates perfectly this point.

In the sixties the work of Rhodes on complexity of finite semigroups led him to consider
sequences of morphisms collapsing a semigroup to a singleton, each individual morphism of
the sequence collapsing as little as possible. The corresponding notion is that of minimal
congruence. This is the object of the article by M. Demlovd and V. Koubek which provides
a classification of minimal congruences, and studies their relationship to the extension prob-
lem. In the same context, subdirectly irreducible semigroups (i. e. semigroups with a finest
congruence distinct from equality) are of interest. An example of structural investigation of
this kind for a special class of semigroups is provided by A. Nagy’s article.

Structural properties of the lattice of all congruences have also been studied. It is well-known,
for example, that the lattice of congruences of a completely simple semigroup is semimodular.
Here P. R. Jones determines almost all varieties of semigroups having a semimodular lattice
of congruences and his paper contains results relevant to both congruences and varieties.

2. Varieties and pseudovarieties

Besides the paper by P. R. Jones mentioned above, another one by P. G. Trotter concentrates
on varieties of completely regular semigroups (formerly called unions of groups). These
varieties have been vigorously investigated in recent years, e. g. by Petrich, Gerhardt, Jones,
and Polldk. Here P. G. Trotter determines the injective objects (‘injective’ means that any
morphism § — I extends to T — I where T is an extension of S) in several completely
regular varieties.

Pseudo-varieties of finite semigroups and monoids are classes closed under sub, quotient, and
finite direct products (while for varieties there are no finiteness restrictions). Following Eilen-
berg’s correspondence theorem between varieties of rational languages and pseudo-varieties
of monoids, a wealth of activity has been devoted to make this correspondence more precise
in special cases. Talks illustrating this were given at the conference by J. Sakarovitch and
by H. Straubing and D. Thérien. In the same vein the paper by J. Almeida deals with the
problem of the connection between a pseudo-variety V of semigroups and the pseudo-variety
MYV generated by the monoids S* for all S in V.
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3. Languages

The relationship between star-free languages and first order logic was established by Mc-
Naughton in 1971 (see Counterfree Automata, MIT Press). The connection has been investi-
gated further more recently, especially when similarities were detected between the dot-depth
hierarchy of Brzozowski and Knast, and the quantifier alternating depth of first order sen-
tences. The paper by D. Lippert and W. Thomas, which clarifies the differences between
the dot operation in languages and the existential quantifier in first order formulas, is a
contribution to this line of work.

In recent years the Western Ontario school has produced many new results on languages
and free semigroups dealing with properties of disjunctive languages, various conditions on
codes, and properties of partial orders on free semigroups. The papers by M. Petrich and
G. Thierrin and by M. Katsura and H. J. Shyr illustrate this original approach to the study
of languages.

The paper by G. Polldk dealing with infima in the power set of a free monoid is more set
theoretically oriented but it can also be viewed as a contribution to language theory. I should
also mention an interesting lecture by D. Perrin (not reported here) where he uses classical
semigroup theory results to investigate properties of infinite words.

4. Presentations, equations in free monoids

R. V. Book gave an overview of results on presentations of semigroups and monoids with the
so-called Church-Rosser property. The paper by K. Madlener and F. Otto contains numerous
results on groups having such presentations. In my own paper I survey most of the known
results on the decidability of the word problem for one-relator semigroups, concentrating
mostly on results of the Russian school.

The paper by K. Culik II and J. Karhumadki deals with a problem related to the Ehrenfeucht
conjecture proved in 1985 (Each system of equations over a free monoid A*, A finite, with
finitely many variables, is equivalent to a finite subsystem). The question they consider here
is when such a finite subsystem can effectively be found. In another paper on equations,
J.-C. Spehner uses an earlier result of his on presentations of submonoids of free monoids, to
give a classification of certain systems of equations in three variables.

Other important recent developments were presented at the Conference but are not re-
ported in this volume: The plactic monoid and its connections with Young tableaux by
M. P. Schiitzenberger; the study of presentations of inverse semigroups by S. W. Margolis
and J. C. Meakin.

5. Inverse semigroups and generalizations

The papers by N. R. Reilly and by G. A. Fretman and B. M. Schein present problems of
interest either directly in the area of inverse semigroups or inspired by inverse semigroups.
In her paper, M. B. Szendrei studies certain classes of semigroups with involutions and shows
that the free objects in these classes admit descriptions that are quite similar to the well-
known descriptions of free inverse semigroups e. g. by Scheiblich and Munn. Similarly,
J. Fountain studies certain free right adequate semigroups (S is right adequate if each L*-
class has an idempotent, where aL*b iff aLb in an oversemigroup, and the idempotents
commute). Again the free objects Fountain considers do have descriptions extending those
of free inverse semigroups.
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6. Semigroups of endomorphisms

V. Fleischer and U. Knauer prove that the endomorphism monoid of an act (i. e. of a
monoid acting on a set) has a nice representation as a wreath-product of a monoid and a
small category. S. M. Goberstein studies more generally correspondences. A correspondence
on a universal algebra A is simply a subalgebra of A x A. A survey of known results on
correspondences on universal algebras and groups is made, and new results on semigroup
correspondences are announced.

7. Semigroups and other algebraic structures

a) In the theory of partial semigroups an extension of (S;,0,), where o, denotes the partial
operation on S, is defined as (S;,0;) such that S, C S, and ao, b = ¢ implies a0, b = c.
In his paper E. S. Ljapin develops a number of conditions for the existence of a semigroup
extension for a partial semigroup.

b) A typical example of a "transfer” theorem in the theory of semigroup rings is as follows:
The monoid ring R[M] is Artinian if and only if the ring R is Artinian and M is a finite
monoid (Zelmanov). J. Okniriski studies here similar types of transfer theorems with respect
to the Krull dimensions of rings.

Based on semimodules over semirings H. J. Weinert extends the notion of (generalized)
algebras over rings by introducing (generalized) semialgebras over semirings including those
where infinite sums are used.

¢) A semiring is said to be a weak p. o. semiring if it has a partial order compatible with
its addition only. The paper by U. Hebisch and L. C. A. van Leeuwen contains results
on embeddings, and on weak p. o. semirings S such that (S,+) or (S,-) are idempotent
semigroups.

d) K. D. Schmidt introduces a new class of partially ordered semigroups called minimal clans,
and shows how their properties allow to retrieve properties of both Boolean rings and lattice-
ordered groups, thereby solving a problem posed about 20 years ago by Birkhoff.

e) A category is called universal if it contains the category of graphs as a full subcategory.
P. Goraltitk and V. Koubek prove here the following interesting result: The category of all
extensions of a semigroup S is universal if and only if S has no idempotents.

f) The object of the paper by W. Lez are acts in the general meaning of semi-automata,
especially lattices of torsion theories of acts as proposed by him and Wiegandt. In this
context a new characterization of the non- trivial abelian groups is obtained.

g) Is it possible to get machines to prove theorems for you? Not quite. The machines still need
assistance from the operator, as shown in R. B. McFadden’s paper, using several problems in
the theory of semigroups, the last of which I liked particularly.

As these short analyses show, a large variety of topics have been the object of lectures
at the Conference. It is a clear sign that the algebraic theory of semigroups is steadily
growing over the years, both in strength and in depth. It also appears that semigroups are
increasingly connected to more and more distinct areas of Mathematics. This is perhaps the
most important warrant of the future vitality of the field.

Gerard Lallement
University Park (Pennsylvania), November 1987
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SOME CONGRUENCES ON REGULAR SEMIGROUPS

Branka P. Alimpié
Dragica N. Krgovié

Prirodno-matematidki fakultet
Studentski trg 16
YU 11000 Beograd

Matematid¢ki institut
Knez Mihailova 35
YU 11000 Beograd

A congruence p on a regular semigroup S is uniquely determined by its
kernel ker p = {x€S|(3esE)x p e} and trace tr p = DIE(S) [2] . Let
Con S be the congruence lattice of S, K and T equivalences on Con S
defined by p K £ <=> ker p = ker £ and p T £ <=> tr p = tr £. It is
known that K-classes [pK,pK] and T-classes [pT,pT] are intervals on
Con S ([13],[15]). In this paper K-classes with tr pK = wg and T-cla-
sses with ker pT = S are considered. It turns out that such a K-class
consists exactly of E-unitary congruences on S, and such a T-class
consists exactly of band of groups congruences on S. Similarly, K-cla-
sses for which pK is a Clifford congruence consist of E-reflexive con-
gruences. These results generalize corresponding results for inverse

semigroups [14].

Throughout this paper, S stands for an arbitrary regular semigroup. For
X €8S, E(X) denotes the set of idempotents of X. If p is a relation on
S, then p* denotes the least congruence on S which contains p. If p is
an equivalence on S then p° denotes the greatest congruence on S con-
tained in p. Let X € S. A congruence p on S saturates X if for any ace¢X,
the p-class ap is contained in X. In particular, a congruence p on S is
idempotent pure if p saturates E(S). If OX is the equivalence on S in-
duced by the partition {X,SXX} of S, then O; is the greatest congruence

which saturates X. We write 1 instead of Oé. If p is a congruence on S

and o is an equivalence on S/p, then the equivalence a on S is defined
by
a ab <=> (ap) a (bp) (a,bes).

Obviously, a is a congruence on S if and only if a is a congruence on
S/p.



For undefined notations or terminology see [3] or [14].

RESULT 1. [9]. For any congruences p and £ on S,

p T g <=> b7,

S/D s/g’

COROLLARY 1. Let p and & be congruences on S such that p T £. Then

S/ € Con(S/p) <=> ;CS/E
bands then 3{5/ is a V-congruence if and only if Zfs/g is such one.

€ Con(S/E). Moreover, if IV 1is a variety of

RESULT 2. ((15],[13],[9])). Let p and & be congruences on S. Then

(i) pT = [DTIDTJ and pK = [pK,pKJ are intervals of Con S.
. - * 0
(ii) P (trp)*, JCS/D
K
= 2 * = 0
Pk {(x,x?)| xeker pl*, o Oker 5
(iii) tr p € tr £ => p,, € Ep and pT < ET,

ker p € ker § => Py (= gK.

(iv) ker p <« ker £ and tr p < tr £ => p

n
™

Using this result and Theorem [li} it is easy to prove the following

lemma.

LEMMA 1. Let be a nonempty family of congruences on S. Then

30" = (L) o and \/op = (\/p)

pe¥ pas peg 0eg T

REMARK. This result is a part of Theorem 4.13[1Q}

RESULT 3. [18]. For X € S,

a O; b <=> (¥x,yeS!)(xay € X <=> xby e X) (a,beS).

COROLLARY 2. Let p be a congruence on S and let Ts/p be the greatest

idempotent pure congruence on S/p. Then p = rs/p. Consequently
p K £ <=> TS/p = TS/E (p,tE€e Con S).
Proof. a T b <=> (ap)t (b
£ S/p (ap) S/p o)

<=> (¥ x,ye S')((xay)p € E(S/p) <=> (xby)p € E(S5/p))

A
Il

> (¥x,ye€ S')(xay e ker p <=> xby ¢ ker p)

- 0
<=> a Oker o b (by Result 3)

2=> a pK b (by Result 2).



If w denotes the universal congruence on S then o = W [B = wK] is the
least group [band] congruence on S. Similarly, if € denotes the equality
on S then p = ET[T = EKJ is the greatest idempotent separating [idempo—

tent pure] congruence on S.

Using Result 2 we obtain

PROPOSITION 1. The following inclusions are valid for any congruence

p & Con S.

(1) PNTcppspPNo

(ii) PN U =spPps PNB

(iii) pvusoTs p VB

(iv) ;J(s p\Vo

gzggg. (i) Since p ¢ w implies pT < Wp = o it follows P < p No. From
tr(p n 1) € tr p = tr Pp and ker(pnt) = E ¢ ker Pp we have p "1 ¢ Ppe

(ii) The argument here is similar to that in the proof of (i) and is
omitted.

(iii) Since € < p implies u = eq‘s pT it follows p\v u < pT. From

ker pT ¢ S = ker(p v B) and tr pT = tr p < tr(p v B) we have pT < p v B.
(iv) From tr pKS; wp = tr(p v o) and ker pK = ker p € ker(p v o) we have
pK €S pwvo.

The following example shows that the analoque of the first inclusion of

(1ii), i.e. the inclusion p v T ¢ OK, does not hold in general.

EXAMPIE 1. [14;111.4.11]. Let S be a semilattice of two groups G and H
of order 2 determined by an isomorphism ¥ :G + H. Let p be the Rees con-

K
gruence on S relative to H. Then p v 17 = w and p = p # w.

By [14J a semigroup in which # is a congruence is cryptic. A completely
regular cryptic semigroup (i.e. a band of groups) is a cryptogroup.

The next theorem characterizes T-classes with ker pT = S.

THEOREM 1. The following statements concerning a congruence p on S are
equivalent.

(1) p is a cryptogroup congruence.

(i1) pT is a band congruence.

(iii) pT = p v B.

(iv) tr p = tr (p v B).



vroof. (i) => (ii). Since S/p is a cryptogroup, }es/p is a congruence
on S/p which together with Result 2 (ii), shows that oT = ﬂ%/p. Since

# -classes of S/p are groups we have

(vaeS)( Je€E(S)) ap .}‘ﬁs/p ep (by Lallement’s Lemma)
<=> Yaes E(S L. e

(¥Ya )( 3e €eE(S)) a ﬂ%/p
<=> pT is a band congruence.

(ii) => (iii). The hypothesis implies that pT 2 p v B, and thus by Pro-

position 1 (iii), we have pT = p Vv B.
(iii) => (iv). This is obvious.

(iv) => (i). This is immediate from Corollary 1.

COROLLARY 3. On a reqular semigroup S the following conditions are

equivalent.

(1) S is a cryptogroup.
(ii) u = B.
(iii) For every p ¢ Con S, pT = p Vv B.

(iv) For every p € Con S, pPg = P N U

Proof. (i) <=> (ii) is a consequence of Theorem 1.

(ii) => (iii) and (ii) => (iv) follow immediately from Proposition 1.
(132] => (fi)s n =8 =B v B = Ba

(iv) => (ii). B = wg T WA U= U

REMARK. Equivalences (i) <=> (ii) <=> (iii) are implicitly in [17] and
[12].
The next simple result describes the least cryptogroup congruence.

PROPOSITION 2. The congruence k = BT is the least cryptogroup congru-

ence on S.

Proof. Since tr(BT) tr B, Theorem 1 implies that BT is a cryptogroup
congruence on S. If p is any cryptogroup congruence on S, pT is a band

congruence, so B ¢ pT. Hence by Result 2 (iii), BT < (DT)T = Ppc P

Let n denotes the least semilattice congruence on S. Similarly one pro-

ves the following series of results.



THEOREM 2. The following statements concerning a congruence p on S are

equivalent.

(i) p is a Clifford congruence.

(ii) pT is a semilattice congruence.

. T
(iii) p~ = p v N.
(iv) tr p = tr(p v n).

COROLLARY 4. On a regular semigroup S the following conditions are

equivalent.
(i) S is a Clifford semigroup.

(ii) uw = n.

(iii) For every p € Con S, pT = pwv n.

PROPOSITION 3. The congruence n, = v is the least Clifford congruence

on s.

Following R.Feigenbaum [l], for any non-empty subset H of S the closure

Hw of H is defined by Huw get {xes|(dheH)hxeH}. H is closed if

Hw < H. If H is a subsemigroup of S or if it is full (E(S) < H), then

[o

H < Hw.

A regular semigroup S is E-unitary if the set E(S) is closed.Any E-uni-
tary semigroup is orthodox [4}.

A subset H of S is called self-conjugate if x'Tx < T for every x of S
and every inverse x'’ of x. Let U be the least full self-conjugate sub-

semigroup of S, and let o be the least group congruence on S. According

to [1], ker o = Uw. If the semigroup S is orthodox, U = E(S).

For a subset H of S, and any congruence p on S, let
Hp = {xes|( FheH)x p h}.

RESULT 4 [6]. For any congruence p on S

ker(fh v o) = (Up)w.

RESULT 5 [6}. Let S and T be regular semigroups and ¢:S » T a homomorp-
hism of S onto T. If U is the least self-conjugate full subsemigroup of

S, U% is the least such subsemigroup of T.

Now we shall consider K-classes of Con S with tr pK = wp where Wg is the

universal congruence on E(S).



THEOREM 3. The “ollowing statements for a congruence p on S are equi-

valent.

(1) p is E-unitary.
(ii) ker p is closed.
(iii) ker p = ker(p v o).
(iv) pK = p Vvo.

(v) OK is a group congruence.

1

Proof. (i) <=> (ii). p is E-unitary
<=> (¥a,heS)((ha)p, hpe E(S/p) => ap € E(5/p))
<=> (¥a,hes)(ha,h € ker p => a € ker p)
<=> ker p is closed.
(i) => (iii). Let x € S. Then
X € ker(p v o) <=> x € (Up)w (by Result 4)
<=> (ds€8)(secUp and sx € Up)
=> ( 3se€S)(spe U(S/p) and (sx)pe U(S/p)) (by Result 5)
=> ( IJs€8)(spe E(S5/p) and (sx)p € E(S5/p))
(since S/p is orthodox)
=> xp & E(S/p) (since S/p is E-unitary)
=> x ¢ ker p.

Thus ker(p v o) € ker p. Since the opposite inclusion is obvious, (iii)
follows.

(iii) => (iv). From ker oK = ker p = ker(p v o) it follows pK > p\vO.
By Proposition 1 (iv) we have pK = p\v o.

(iv) => (v). This is obvious.

(v) => (i). The hypothesis implies that pK is E-unitary and by

(i) <=> (ii) it follows ker p = ker pK is closed. Thus p is E-unitary.

COROLLARY 5. On a regular semigroup S, the following conditions are
equivalent

(1) S is E-unitary.

(ii) o = T.

(iii) For every p € Con S, Pp = PN T.
(iv) Every idempotent pure congruence on S is E-unitary.

(v) There exists an idempotent pure E-unitary congruence on S.




REMARK. Equivalence (i) <=> (ii) is proved also in [16].

The proof of the following proposition is similar to the proof of the

Proposition 2.

PROPOSITION 4. The congruence w = Ok is the least E-unitary congruence

on s.

Using the Corollary 5 and Lemma 1 one can prove that the following holds.
PROPOSITION 5. Let S be an E-unitary regular semigroup. The mapping

$:p + pANT

is a complete lattice homomorphism of Con S onto the lattice of idempo-

tent pure congruences on S.

Let S be an orthodox semigroup and let Y be the least inverse congruence

on S. Then we have

PROPOSITION 6. For an orthodox semigroup S the following conditions are
equivalent.

(i) S is E-unitary.

(ii) Y is E-unitary.

(iii) ba ¥ a => b€ E (a,bes).

Proof. (i) <=> (ii) follows from Corollary 5.

(ii) <=> S/Y is E-unitary
<=> (baYa = bY ¢ E(S/Y)) (by Proposition III 7.2.[14])

<=> (iii) (since Y is idempotent pure).

REMARK. The equivalence (i) <=> (ii) is also proved in f8] and [llJ.

In the remainder of the paper we consider K-classes which consist of
E-reflexive congruences. A semigroup S is E-reflexive if exy € E(S)
=> eyx € E(S) for every x,y € S and e € E(S). We observe that every

E-unitary semigroup is E-reflexive [4].

RESULT 6 [7]. On a reqular semigroup the following conditions are
equivalent

(i) VT,
(ii) Every n-class of S is E-unitary.

(iii) S is E-reflexive.

We can now prove an analogue of Theorem 3.



THEOREM 4. The following statements concerning a congruence p on S are

equivalent.

(1) p is E-reflexive.
(ii) ker p N N is closed in N for every n-class N of S.

K . ’
(iii) p is a Clifford congruence.

(iv) ker p ker(p v v).

Proof. (i) => (ii). Let N be an n-class of S and let a € N. Then we have
a € (ker p n N)mN => (Jdx)(xa € ker p "N and x € ker p N N)
=> ( Jdx)(xa,x € ker p and a n x)
=> ( 3x) ((xp),(xa)p € E(5/p) and (ap) "s/p (xp))
=> ap € E(S/p) (by Result 6)
=> a € ker p.
(ii) => (i). (¥ N) ker p n N is closed in N
= (¥ N)DIN is an E-unitary congruence on N
=> S/p~ n 1is a semilattice of E-unitary semigroups
=> S/p 1N is E-reflexive (by Result 6)
=> S/p is E-reflexive (since ker p = ker(p nn)).
=> p is an E-reflexive congruence.

(i) <=> (iii). S/p is E-reflexive <=> 'S/p is a Clifford congruence
(by Result 6)

<=> pK is a Clifford congruence

(by Corollary 2)

(ii1) => (iv). Since pK is a Clifford congruence we have v < p which
yields p v v < pK, so ker(p v v) < ker oK = ker p. But ker p cker(p v V)

and therefore ker p = ker(p v/ v).

(iv) => (iii). From ker pK = ker p = ker(p v v) it follows that
pK > p v VvV =2V, hence oK is a Clifford congruence on S.

The following proposition is an analogue of Proposition 4.

PROPOSITION 7. The congruence A = Vg is the least E-reflexive congruence
on s.
One may ask whether the equivalence (i) <=> (ii) of the Result 6 would

remain true if v and n were replaced by k and B respectively. It can be
proved that k. < 1 implies that E(N) is closed in N for every B-class N



