
Tata Processing

Edwards and Broadwell

Computers in Action Processing

Perry Edwards and Bruce Broadwell
Sierra College

E8260623

Wadsworth Publishing Company Belmont, California A Division of Wadsworth, Inc.

Preface to the Instructor

Approach

Data Processing: Computers in Action is designed for introductory data processing and information systems courses. It is written for students who have no prior knowledge of computing concepts, terminology, or programming languages. Its organization into modules allows maximum flexibility for use in courses of differing emphasis and organization.

With so many introductory computing texts already on the market, writing yet another might seem like processing another IBM card. However, we feel our book offers many unique features that can improve students' learning.

In hardware/software books, the opening chapters often present the history of computing. We decided to spread this material throughout the text so the history can be linked to particular topics. That way students not only remember the history better because they see a reason for studying it, but they get immediately to contemporary, state-of-the-art topics.

Many textbooks display an "either/or" treatment of programming—it is either stressed at the expense of other topics or virtually ignored. In contrast, we combine student-written programs with class material to make both more interesting and understandable. For instance, we use a program on files to illustrate the concepts of file creation, deletion, and update in a discussion of magnetic disk and tape files. Programming helps students visualize records and fields.

Still other texts offer a computers-in-society approach. Such "computer appreciation" courses often present too little material to show how or why computers do what they do. They introduce a term like data file, describe it, and analyze it, but only in an abstract manner. We wonder how students can relate to such concepts without actually experiencing file processing in a program. Though some might argue that writing an actual program to create and access

a file is too hard for the average student, we do not think this is the case with interactive computer systems.

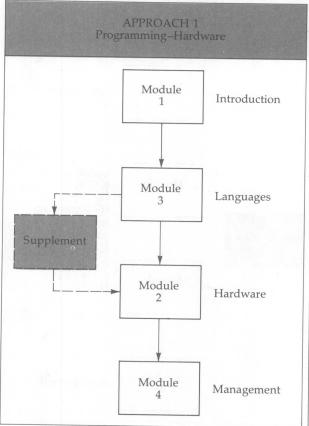
In essence, our approach combines the *general study* of the computer with a study of *specific language*, so that students experience a sense of immediacy and learn about the computer directly. Through such immediacy our students have gained the perspective and background to understand what computer use is really all about.

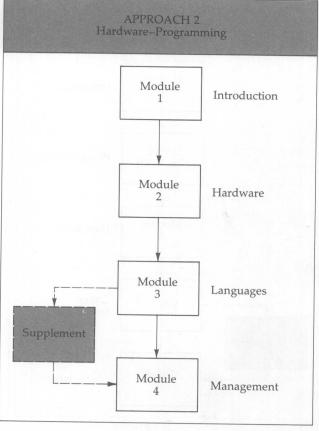
Organization

We divided our text into four modules: Introduction, Hardware, Language, and Management; three supplements; and a group of problems for programming. Since everyone teaches differently, we have written the modules and many of the chapters to be used independently. Thus, you can "customize" our book to fit your favorite course structure and emphasis. If you believe that programming should be taught first, you might assign the chapters as shown by approach 1 on the following page. If you want to present hardware first and programming second, you might use the modules as shown in approach 2. If you like to mix the two approaches (as we do), see the pathway through the text shown in pproach 3. Approach 4 shows you how you can use a language other than BASIC with our book. Other approaches are possible, and the module concept gives you the flexibility to develop your own.

The first module, Introduction, establishes the essential terms, definitions, and concepts. It also covers how computers actually retrieve and process data.

The second, Hardware, concerns data processing equipment and functions. It explains how people enter data into the computer, how the computer stores and outputs data, and how data are stored on external file devices. We also compare methods of processing

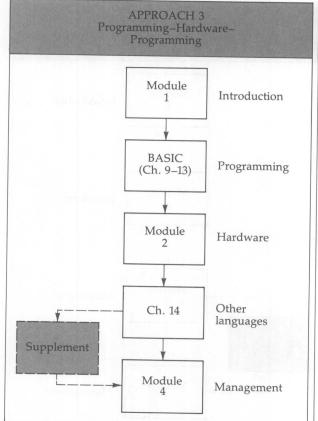

data: batch, time-sharing, multiprogramming, real-time/on-line, virtual storage, networks, and others.

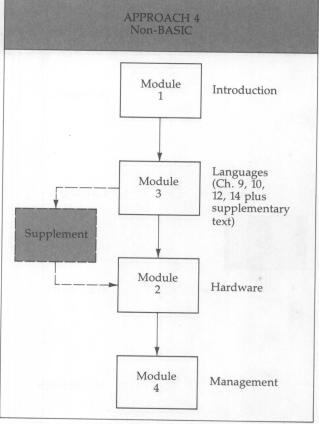

The third module, Language, covers flowcharting, Job Control Language (JCL), BASIC, and an overview of FORTRAN IV, Structured COBOL, RPG-II, PL/I, and APL. We have programmed a single application in each language to show students how the languages differ. We use check digits as the common example because so many businesses use the check digit procedure in their credit card systems. The module ends with a tabular and graphical comparison of these languages.

We emphasize BASIC because of its wide availability and its popularity on time-sharing, small busi-

ness, and personal computers. Also, students can learn to use BASIC easily and quickly, thus rapidly gaining a positive first-time computer experience. The modular organization of our book does not mandate BASIC as the langauge, however. If you want to substitute FORTRAN, COBOL, or RPG-II for BASIC simply choose a supplementary text and use it in place of the BASIC material. The flowcharting chapters' are designed to allow this substitution easily.

The fourth module, Management, begins with a bird's-eye view of several social issues including automation, privacy, and security. Next, we examine trends and developments in computer technology and look




at projections up to 1985. The last chapter gives an overview of the computer industry, both within the United States and internationally.

In addition to the four modules, we include problems and three supplements. The supplements concern decision tables as an alternate to flowcharting; a survey of data preparation devices ranging from the standard keypunch to multistation key-to-disk systems; and a summary of ANSI Minimal BASIC. "The Challenge of Programming: Problems to Solve" contains 57 widely varied problems, all of which have been classroom tested. The problems have been categorized by type and rated for programming complexity. They

are drawn from the fields of accounting, finance, marketing, personnel, economics, science, statistics, and many more.

The book ends with a glossary and two indexes. The glossary lists terms used in the book and their American National Standards Institute "formal" definition. It also highlights 60 key terms that students should master during the course and defines these terms in an expanded, nontechnical way as well. The first index, the "Index of Business Examples, Applications, and Exercises," lists the pages where a certain business term, for example, payroll, is discussed in our book (pp. 2, 3, 4, 12, 13, 14, 17, 43, 216, 372, 380). When

you examine this index, we think you will be pleased by the large number of entries. As an example, we present accounts receivable along with disk/tape concepts in Chapter 7 as a means of showing how the hardware and an application are intertwined (pp. 132-145). The second index uses boldface page numbers to allow you to locate the definition of a term in context.

Features

A very special feature of our book is a fictional story "Shake Hands with the Machine" (found at the beginning of each module). John Daniel wrote this story especially for introductory students, to show what happens when a computer is brought into a work area. The story also covers the duties, responsibilities, and employment potentials of programmers, analysts, and the overall manager.

Each chapter in our book offers a rich assortment of teaching and learning devices:

- 1. A Chapter Outline, giving chapter content at a glance
- 2. A Preview that introduces the topics to be discussed
- 3. New material, with key terms emphasized with **boldface** type
- 4. A History Capsule, describing a person or event that had an impact on the material in this chapter
- 5. Cartoons by Sidney Harris, spaced at pertinent locations
- 6. A Summary that reinforces the concepts presented in the chapter
- 7. A Case Study, a reprint of a recent journal article that focuses on the concepts presented in the chapter by describing how real people interact with computers and examining the various jobs that people involved with computers actually do
- 8. A list of Key Terms for review
- 9. Exercises, arranged by level of difficulty, that offer practice in chapter material

Teaching and Learning Aids

To accompany the text we have an instructor's manual and a student study guide. For each chapter the instructor's manual includes:

- 1. Behavioral objectives
- 2. A summary
- 3. Teaching suggestions
- 4. Answers to all end-of-chapter exercises
- 5. Multiple choice and true/false questions
- 6. Overhead transparencies

The student study guide is written by William L. Harrison (Oregon State University) and produced by P.S. Associates. For each chapter the study guide includes:

- 1. Chapter objectives
- 2. A synopsis
- 3. Self-evaluation questions and a review of terminology
- 4. A short-answer integrative problem
- 5. A self-test

Acknowledgments

Many people think that a book is solely the creation of its authors. Our experience has shown how invaluable others are in such a creation. To list them all would be impossible, yet we want to acknowledge them.

Over 1,000 of our students at Sierra College have used this material in prepublication form and have given us feedback. We thank them for their helpful comments, their candor, and their "debugging."

Before publication of our book, the following individuals also reviewed the manuscript. Our thanks to: David R. Adams, Arkansas State University; Ray V. Alford, John Carroll University; Gerald H. Anderson, Cowley County Community College; James D. Brainerd, Lansing Community College; N. D. Brammer, Colorado State University; Scott Brown, Burroughs Corporation; Chuanyu E. Chen, Montclair State College; Rosemary W. Damon, Cañada College; Stephen Deam, Milwaukee Area Technical College;

Donald B. Distler, Jr., Belleville Area College; Robert H. Dourson, California Polytechnic State University, San Luis Obispo; Felix E. Dugger, Southwestern College; Sallyann Z. Hanson, Mercer County Community College; William L. Harrison, Oregon State University; Robert C. Hopkins, Los Angeles Pierce College; Hattie Russell Jones, Chowan College; Robert A. Marshburn, West Virginia Institute of Technology; B. Matley, Ventura College; Richard E. Matson, Schoolcraft College; Lawrence McNitt, Andrews University: Don B. Medley, Moorpark College; George L. Miller, North Seattle Community College; Michael P. O'Neill, Pacific Lutheran University; Donald J. Puro, C. S. Mott Community College; Donald J. Schaefer, Wright State University; John J. Thornton, formerly of University of South Florida: Jav-Louise Weldon, New York University; Gary A. Wicklund, University of Iowa; and Dan C. Winters, Orange County Community College.

The contributions of William Harrison and John Daniel were particularly important to us. Bill devel-

oped the student study guide, which we feel is a great asset in helping students learn and practice the concepts we present. The continuing story that John wrote ties people and life to our book.

Besides our students and colleagues, the support provided by Wadsworth Publishing Company has been enormous. Mike Snell, our editor, and Sheryl Fullerton and Autumn Stanley, our writing analysts, were most helpful.

The tasks of typing and duplicating were performed by Pat Brophy and Don Skewis. They conscientiously met our deadlines without complaint.

Without support from our families we never would have made it. Many hours that could have been spent with them were sacrificed toward the creation of this book. Our acknowledgment of them should have come first, not last.

Perry Edwards Bruce Broadwell

Preface to the Student

Among today's fastest changing fields are electronics and computers. To realize how fast they are changing, think back to the early 1970s when a handheld calculator was physically the size of this book, cost around \$100, and could only add, subtract, multiply, and divide. Today a four-function calculator is small enough to fit inside a wrist watch (and still have the watch, too) and may cost as little as \$3.50. In fact, the size of a calculator depends more on the size of the buttons we humans need to push than on the electronic needs of the calculator itself.

Change is a big part of our lives and computers are one reason why. We believe you should realize the capabilities and limitations of computers. We have tried here to give you knowledge on which to base a philosophy of the computer's role in business and society. This same knowledge should also give you insight into the impact of the computer in helping to shape society's future.

This course will bring you some skills and techniques in problem solving that can be transferred to other disciplines and to your everyday life. You will see how simple and logical you must be when trying to get the computer to do something. You will be forced to consider every possible alternative the

computer will encounter, and plan for it.

Most colleges offer computer courses more advanced than the one you are now taking. This book will prepare you for advanced courses in computer science or data processing if you choose to take them.

Besides a computer philosophy, some insight, and technical skills, you will also receive an historical perspective of the social and technological state of the art. Since the first commercial computer was installed in the early 1950s, the history is brief, but it is also very significant.

One final word before you turn to Chapter 1 and begin your study of an exciting and unique field. We believe you will learn the most by doing. We do not think you will fully grasp the concepts in this book unless you get involved with computers. That may mean solving a problem wrong sometimes, but you can learn from that experience, too. When you write a program you will inevitably make mistakes. Just remember that only you and the computer know of these mistakes, and the computer can't tell anyone.

Perry Edwards Bruce Broadwell To our wives, Kathleen and Celia, and to our children, Marcella, Lyman, James, Rosalie, Jennifer, Sarah, and Benjamin, who went with unanswered questions and unfinished chores, but who gave us encouragement and shared in our efforts.

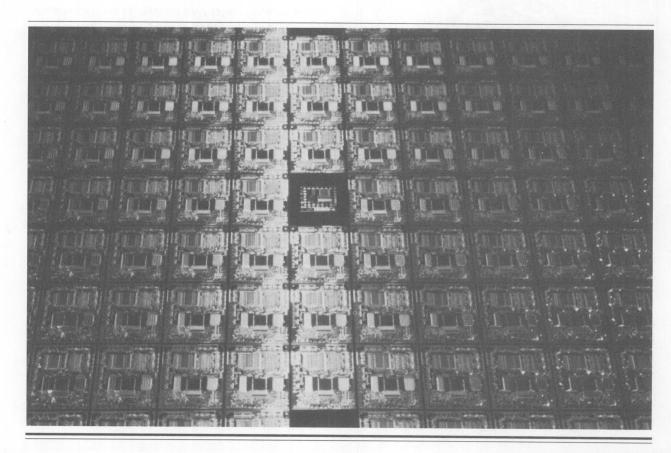
BRIEF CONT	ENTS
------------	------

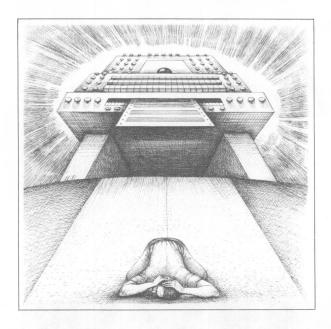
INTRODUCTION	ON MODULE	1
Chapter 1	What Is Data Processing?	5
Chapter 2	Functional Parts of Computers	15
Chapter 3	How Do Computers Really Work?	26
HARDWARE M	MODULE	41
Chapter 4	Primary Input/Output Devices	45
Chapter 5	Specialized Input/Output Devices	75
Chapter 6	Memory and Data Representation	105
Chapter 7	Secondary Data Storage Devices	130
Chapter 8	Modes of Processing Data	151
LANGUAGE M	ODULE	173
Chapter 9	Flowcharting: I	177
Chapter 10	An Overview of Programming	
	Languages and a Problem for	
	Programming	203
Chapter 11	BASIC: I	211
Chapter 12	Flowcharting: II	232
Chapter 13	BASIC: II	247
Chapter 14	Language Comparisons:	
	FORTRAN IV, Structured COBOL	,
	RPG-II, PL/1, APL	265
MANAGEMEN	T MODULE	293
Chapter 15	Effects of Automation	297
Chapter 16	Privacy	311
Chapter 17	Computer Security and Crime	328
Chapter 18	Trends and Future Developments	340
Chapter 19	Computer Industry	356
SUPPLEMENTS	S MODULE	371
Supplement A	Decision Tables	372
Supplement B	Data Preparation Devices and	
	Procedures	383
Supplement C	Summary of ANSI Minimal	
71	BASIC	402
The Challenge	of Programming:	

Problems to Solve

C1. 1. II 1 11. 11. 14. 14. 11. 11. 10.00		History Capsule: Gene Amdahl:	
Shake Hands with the Machine: Elton's Office	2	The Man Who Took on IBM	32
CHAPTER 1 What Is Data Processing?	5	The Control Unit	34
Preview	6	Macroprogramming and	
The Curse	6	Microprogramming	34
Definition of Data Processing	7	Summary	37
Types of Data	7	Case Study: Upgrading with Planned	
Types of Processing	8	Obsolescence	38
Manufacturers and Sizes of Computers	9	Terms	39
Definition of Programming	io	Exercises	40
History Capsule: George Boole and His Algebra	10		
Problem Solving Using a Computer	11		
Summary	12	HARDWARE MODULE	41
Case Study: Small Computer Meets Tall Order	12	Shake Hands with the Machine:	
Terms	14	One of Those Days	42
Exercises	14	CHAPTER 4 Primary Input/Output Devices	45
CHAPTER 2 Functional Parts of		Preview	46
Computers	15	Introduction to Input/Output	46
Preview	16	Punched Card Input and Output	48
Inside a Computer	16	Punched Paper Tape Input and Output	55
Central Processing Unit: CPU	16	Printer Output	56
Input Devices	18	History Capsule: Hollerith, Billings, and Powers	56
Output Devices	19	Visual Display Devices	68
External or Secondary Storage:		Summary	71
Magnetic Tape and Disk	19	Case Study: Saving \$40,000 a Year in	
History Capsule: Charles Babbage/	17	Computer Printing Costs	72
Ada Lovelace and the Analytic Engine	20	Terms	73
Programs	21	Exercises	73
Summary	23	CHAPTER 5 Specialized Input/Output	
Case Study: An On-Line Data Entry System		Devices	75
Handles Subscriptions	24	Preview	76
Terms	25	Specialized Output Devices	76
Exercises	25	Specialized Input Devices:	, .
CHAPTER 3 How Do Computers		Media Readers	84
Really Work?	26	Specialized Input Devices:	01
Preview	27	Voice Recognition Devices	94
Electricity and Circuits	27	Specialized Input Devices:	-
Memory	30	Keyboard Input Devices	95
	31	Electronic Funds Transfer	99

被自工家


		Marine 11	
Intelligent Terminals	100	CHAPTER 8 Modes of Processing Data	151
Summary	101	Preview	152
Case Study: Housing Authority Converts		Symbol Definition	154
to Microfiche	102	Processing Modes	154
Terms	103	Summary	169
Exercises	103	Case Study: And Now Bank of America:	
CHAPTER 6 Memory and Data		The Minis Win Again	169
Representation	105	Terms	170
Preview	106	Exercises	170
Human and Computer Memories	106		
Decimal and Binary Systems	109		
Computer Data Notation Systems	113	LANGUAGE MODULE	173
Characteristics of Primary Memory	119	Shake Hands with the Machine: Desk Copies	174
Memory Types	120	CHAPTER 9 Flowcharting: I	177
History Capsule: Atanasoff, Mauchly,		Preview	178
and Eckert	120	Computer Programs	178
Summary	126	Flowcharts	178
Case Study: Upgrading an IBM 370/125		Extended Example: Average Temperature	183
to a Model 138 (- Almost - by Using Add-on		History Capsule: John Von Neumann	185
Memory)	126	Decision Making in the Average	
Terms	127	Temperature Program	188
Exercises	128	Flowcharting Rules	188
CHAPTER 7 Secondary Data Storage		Flowcharting Examples	191
Devices	130	Summary	200
Preview	131	Terms	200
Why Secondary Storage Devices?	131	Exercises	200
Structures of Data: Files, Records, Fields	131	CHAPTER 10 An Overview of Program-	
A Billing Routine for Long-Distance		ming Languages and a Problem for	
Telephone Calls	132	Programming	203
Sequential File Processing Using		Preview	204
Magnetic Tape	133	Programming Languages	204
Random File Processing Using		Machine Languages	204
Magnetic Disk	138	Assembly Languages	205
History Capsule: Magnetic Tape and Disk	141	High-Level Languages: BASIC,	
Database File Structures	142	FORTRAN, COBOL, RPG-II, APL,	
Additional Secondary File Devices	143	and PL/1	206
Summary	147	History Capsule: The Origins of FORTRAN	207
Case Study: Getting More out of a		Problem Definition: Check Digits	207
Tape Library	147	Summary	210
Terms	149	Terms	210
Exercises	149	Exercises	210


CHAPTER 11 BASIC: I 211 History Capsule: The Origins of COBOL Preview 212 RPG-II BASIC: Background and Purpose 212 PL/1 Language Rules 212 APL	271 278 280 282 283
BASIC: Background and Purpose 212 PL/1 Language Rules 212 APL	280 282
Language Rules 212 APL	282
History Capsule: Kemeny and Kurtz: Language Selection Criteria	
The Founders of BASIC 220 Program Criterion	284
Program Execution 221 Tabular Comparison of Major Languages	
Solved Exercises and the GO TO 223 Summary	288
Summary 226 Case Study: How to be a Superprogrammer	288
Case Study: Menasha's Computerized Costing Terms	291
System Improves Profits 227 Exercises	
Terms 229	291
Exercises 2.30	
CHAPTER 12 Flowcharting: II 232 MANAGEMENT MODULE	293
Preview 233 Shake Hands with the Machine: Working Late	293
Functions 233 CHAPTER 15 Effects of Automation	294
More on Loops 236 Preview	298
Arrays 239 What Is Automation?	298
Alphanumeric Strings 242 Economic Impact	298
Summary 244 Sociopsychological Impact	304
Terms 244 Responsibilities for Coping with	304
Exercises 245 Automation	207
CHAPTER 13 BASIC: II 247 Summary	307
Preview 248 Terms	309
Functions 248 Exercises	309
LARICISES	309
Loops and FOR/NEXT 250 CHAPTER 16 Privacy Arrays 252 Preview	311
History Capsule: The Julian and Gregorian Introduction	312
	312
255 vvitat is i fivacy!	313
String Variables 257 How Is Privacy Threatened? Summary 261 The Information Revolution: Databanks	314
The information Revolution, Databalks	314
T	316
Examples of Computer Threats to Privacy	316
203 How Do We Weet Threats to Privacy?	321
FORTRAN IV, Structured COBOL, Summary Terms	326
DDC II DV	326
D :	326
200 CHAITER 17 Computer Security and	9983
FORTH AND WA	328
CI I COPOL	329
Structured COBOL 270 Introduction	329

Lack of Security Leads to Abuse	330	Advantages and Disadvantages of	
Improving Computer Systems Security	332	Decision Tables	379
Summary	337	Payroll-Merging Decision Tables	380
Case Study: Ex-Service Bureau Supervisor		Summary	381
Indicted for \$500,000 DP Fraud	338	Terms	382
Terms	339	Exercises	382
Exercises	339	SUPPLEMENT B Data Preparation	
CHAPTER 18 Trends and Future		Devices and Procedures	383
Developments	340	Preview	384
Preview	341	Introduction	384
Computer Maid, Cook, Timer, and Tutor	341	Minimizing Errors	384
Hardware Developments and Trends	341	Data Preparation Devices	384
Firmware Developments and Trends	345	Summary	396
Software Developments and Trends	346	Case Study: Data Entry Supersystem	396
Personal Computers	349	Terms	400
Data Communications Developments		Exercises	400
and Trends	351	SUPPLEMENT C Summary of ANSI	
Summary	352	Minimal BASIC	402
Case Study: Father and Son Project		The Challenge of Programming:	
Computerizes Small Business	353	Problems to Solve	409
Terms	354	Glossary	429
Exercises	354	References	443
CHAPTER 19 Computer Industry	356	Index of Business Applications	452
Preview	357	Index	454
The Computer Industry in the			
United States	357		
History Capsule: Thomas Watson:			
The "Old Man" of IBM	360		
International Computer Industry	366		
Summary	370		
Terms	370		
Exercises	370		
SUPPLEMENTS MODULE	371		
SUPPLEMENT A Decision Tables	372		
Preview	373		
Function and Structure of Tables	373		
Some Sample Tables	375		
Complex Tables	377		

Module

Introduction

Shake Hands with the Machine Introduction Module: Elton's Office

"I quit."

Jim Cedric looked up from his desk. Elton Pool stood in the doorway, nervously flicking a short pencil he held between his fingers like a cigarette. Elton was usually the friendliest person in the office. Today his glare was electric. Jim said, "Sit down, Elton."

"Sit-down-Elton?" Elton said. "Why should I sit-down-Elton? As far as I'm concerned, I don't work here any more. I'm here to resign, Mr. Cedric."

Why me? Jim thought. The joys of seniority. Jim was in charge of accounts receivable for Cullen Publishing Company, a fast-growing textbook company on the West Coast. That meant he had to keep track of all the money that came into the company for all the books they sold. He'd been with Cullen since it began twenty years ago, and, as senior accountant, he'd been made manager of all accounting. So he was in charge of everything from office scheduling to the financial statement and

the company budget.

Payroll was also his responsibility, but that was handled for Jim by Florence Gordon, a meticulous, old-fashioned green-eye-shaded bookkeeper who loved, respected, and understood payroll.

Order processing and customer service was also in the accounting wing, and that at times was the biggest headache of all. Certainly the most paperwork. Which meant Cullen Publishing Company and Jim Cedric were both lucky to have Elton Pool. Elton was the paperwork champion of the West Coast publishing world. He had been with the company eleven years, and it would take anyone else at least fifteen to learn his skills. You can't resign, Jim thought. But of course he could.

"Paperwork, right?" Jim said. "What happened, Elton? Did the ledger card machine break down again?" Cullen used the ledger card machine to process information so that much of their accounting could be done by a service bureau—a firm that prepared invoices and kept track of inventory records for them.

"Ledger card machine—that thing's a joke," Elton said. "In fact that whole service bureau is more trouble than it's worth." He came into the office. "Jim, I don't know what I'm going to do. Four shipments were returned this week, six since October first. Wrong books. In one case, it was right book, wrong edition. If those meatballs in the Saint Louis shipping department don't shape up, we'll be operating a hotdog stand in two years. Professors are calling collect, demanding that we ship the right books air freight at our expense. And of course the statements just went out last week. You're going to have a lovely time with the next invoices. Pity I won't be around to enjoy the fun."

"I know it's a mess," Jim said. "I never enjoy this time of year. And think of the poor students, standing in long lines to pay almost twenty bucks for a late book they'll use for only half a semester. But Elton, we've been through it before; you've managed, and because you've managed, we've managed. You can't say we don't appreciate you. Besides, we're doing something about the warehouse. By next year, your job will be a lot simpler, thanks to . . ."

"I know," Elton said. "The computer." The electricity was back, and Jim knew that paperwork was not the cause of Elton's explosion.

"The computer?" he said. "Is that it?"

"That's right. The computer."

"Mind if I join this?" Flo Gordon walked into the office. "One of my favorite subjects, computers," she said. "And the same goes for everybody else since the company signed that contract."

Oh brother, Jim thought, two against one. "Look," he said. "I know what you're thinking, and you're both wrong. At least reserve judgment until the first of the year. Then you'll get to meet the computer. It doesn't bite. It's really going to be a great worker, believe me. Why, within five years we'll be able to double our operations, without adding a single . . ."

"Just don't let it get its hands on my payroll," Flo said.
"Don't be ridiculous," Jim replied. "The paychecks are printed by Bank of America, aren't they?"

"Banks are supposed to use computers," Flo snapped.
"They always have. But not the payroll department."

Hopeless. Jim turned back to Elton. "Just think, Elton. The computer will be able to post, add, and sort. Within a few months we'll never have to deal with the ledger card machine or the service bureau again. And within a year, we'll teach it to deal with royalties, and how to process returns . . ."

Elton tossed his pencil in the air and caught it. "Great. Terrific. It doesn't matter if I quit. I'd just be an extra human being."

"Don't be silly. You know more about this department than anybody else, including me," Jim said. "Do you think that computers are going to replace you? Do you think computers work all by themselves?"

Elton's eyes widened. "You expect me to work it? Forget it. I have enough trouble relating to the keypunch operator at the service bureau, and she's a human being. Some days I can't even find the carriage return on my Selectric. Between that and the ledger cards . . ."

"I'm the same way," Flo Gordon added. "I have to call a mechanic or a Boy Scout to get my lawn mower started. It took me a year to learn standard shift." Cedric sighed. "Nobody's asking either of you to operate the machine. We'll be hiring an operator and a programmer for that. But Elton, they won't know anything about the publishing industry or about Cullen Publishing Company. We're counting on you to tell them—especially the programmer—what needs to be done."

"Fine," Elton said. "First you give the computer my office and then you ask me to train the programmer to do my job. The trouble is, I won't be around. Sorry."

Jim paused. "Nobody can do your job but you, Elton," he said. "The machine won't get your job, and neither will the programmer. They'll just make it easier for you to do it yourself."

There was a moment's silence, and then Elton said, "They still get my office, and I still quit."

"Your office?"

Flo cleared her throat and said, "Maybe you haven't seen the memo, Jim?"

"What memo? I haven't gone through my mail yet. Maybe it's at the bottom of this pile of . . ."

Elton said, "Save yourself the trouble. Follow me. There's a copy on what used to be my desk."

The three of them paraded out of Jim's office and through a large room of busy desks, ending up in a bright office at the end of the big room, where, under a faded Hawaiian surfing poster, Elton had worked for the past year. He picked up the memo from Lee Reimers, the vice-president, and handed it to Jim.

Elton's office was a monument to neatness and efficiency. One thing Jim had always admired about Elton was that he didn't try to make himself necessary. Anyone could find anything on his desk or in his files, and it all made sense. But Elton understood it best, and that's why he was necessary.

But, Jim thought, he could do the same in any office. They're all about the same. That's why he'd suggested to the vice-president yesterday that they put the new computer and the programmer in that office, the one with the Hawaii poster. According to the architect, that would be the easiest office to air-condition. And, as Lee Reimers's memo pointed out, the computer would be halfway between Jim's office and Flo's. Should Flo ever