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Preface

The purpose of this book is to make you intimately familiar with the programming
environment of the Motorola MC68000 family of microprocessors. Here we cover
the architectural details of the basic MC68000, the MC68008, the MC68010, the
MC68012, and the MC68020. A very large part of this book is concerned with teach-
ing you how to become an effective Assembly Language programmer. We have
chosen the MC68000 as our typical example of a modern 16/32-bit microprocessor.
However, the ideas advanced can be easily transferred to other popular machines,
such as the Intel 80286, the National Semiconductor 32016, and the DEC MicroVax.
We could just list a set of MC68000 operation codes of course. But that provides
no understanding of the how and the why of the opcodes. Therefore, we constantly
try to illuminate the philosophy of why particular design choices were made. We
illustrate the important architectural features of the machine. Even if you never
return to Assembler after reading this text, you will always retain a feeling for the
structure of the MC68000 series. You will be able to constructively compare it against
other micros.

Most books in this area tend to be written from the viewpoint of electrical
engineering. This text approaches the topic from the software side and describes
hardware in software engineering terms. It is not a hardware text but will still give
the ordinary programmer an opportunity to learn about the hardware side of things,
especially in how it can affect the operation of programs that he or she might write.

The pedagogic approach we apply is to use Pascal as our starting point. We
assume that you have an understanding of the language (C or FORTRAN-77 would
do as well). Using the constructs of that language and results from recent advances
in research into high-level programming language techniques, we teach Assembly

xi



xii Preface

Language from a structured and disciplined point of view. One of the major dif-
ferences between programming in Assembler compared with programming in Pas-
cal, for example, is that, since you have full access to the machine’s resources, you
have the power to inadvertently do great damage to your programs, too. Therefore,
we stress the use of modern programming techniques such as structuring and data
classing to underline the importance of discipline in the writing of good Assembler
programs. Following our techniques will go a long way in helping you write clear,
readable, modifiable, yet efficient MC68000 Assembly Language programs. To this
end, we introduce a new structuring concept called PASWEB. Based on the work
of Knuth [3], it greatly improves the readability of assembler programs.

We also examine interfacing techniques from the programmer’s point of view.
We examine how I/0 devices, from simple switches to hard disks, are interfaced
into the MC68000 and the ramifications to the software. Implicit in this is a detailed
examination of the problem of bus structures connecting CPUs to memory and
I/O devices. We also examine exactly when you should use Assembler and when
you should remain with a high-level language. Finally, we discuss various hardware
assists that have been provided to aid in efficient implementations of operating sys-
tems and related systems support software.

Our journey is long and arduous. But we will illustrate points along the way
with meaningful, real examples of actual MC68000 code. Throughout the text, we
try to illustrate design trade-offs made by the Motorola designers. In this manner,
the text also provides useful insights into the realm of computer architecture.

The reader is assumed to have had a general introduction (formal or practical)
into computer science and to be familiar with at least one high-level language, pref-
erably Pascal. Second, a previous introduction into some Assembly Language pro-
gramming would be helpful but not mandatory. The main thing you need is an
inquiring spirit and the ability not to get discouraged if you do not understand things
immediately. One prerequisite that is not expected is any knowledge of electrical
engineering.

The book is structured with the view of getting you writing code as soon as
possible, yet consistent with understanding the architectural details. Chapter 2 de-
scribes the programming model, the various addressing forms, and when you should
use each and why. Chapter 3 describes individual components of the instruction set
and gives examples of their use. Chapter 4, using Pascal as the model, shows how
to convert structured control statements into equivalent MC68000 code. Data class-
ing is also covered. Chapter 5 is concerned with simple 1/0. If you are interested
in getting a simple program running in the minimum amount of reading and/or
teaching time, follow the sequence 2.1, 2.2, 2.3, 2.4.1, 2.4.2, 3.1, 3.2, 3.3.1, 3.3.2,
4.2.1, 4.2.2, and 5.3. That is enough to handle a subset that will allow you to write
a simple program. You may return later to handle more complex forms.

Chapter 6 stresses the need to approach Assembly Language programming
with a plan, and we give one. Chapter 7 covers the real story on I/0, starting at
the very lowest level and building up, in an organized fashion, to programming
UART:s and P1/T chips (serial and parallel interface chips), concluding with a look
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at interrupts, traps, and DMA operations. Chapter 8 examines the Pascal/Assembly
Interface, addresses interfacing the two, and discusses when to use what. The book
concludes with an examination of the whole family, including the CPUs available,
the MC68020, and other support chips.

Why should you read this book? The most important benefit for doing so is
that you will gain a clear and comprehensive understanding of the development of
one family of computers. You will learn a very popular 16-bit computer’s Assembly
Language in an organized and structured manner. This experience can be easily
extended to any other assembler on currently available machines. You will learn
when Assembly Language can be used for great effectiveness in conjunction with
high-level languages such as Pascal. This knowledge will provide you with insight
into the architecture of the MC68000.

You will also learn how I/0 devices are connected to micros, why bus struc-
tures are important, and the effects of these features on the design of the I/0 service
routines [I/0O serrs]! that do the software interfacing. You will also learn about the
writing of 1/0 serrs, how to handle interrupts, and where and what to do with them.
Finally, you will gain familiarity with the jargon and buzz words of the field, en-
abling you to converse intelligently with hardware interface people. This familiarity
with the MC68000’s architectural details and the knowledge of the language of the
area will also make it easier for you to read and understand Motorola’s (and other
microprocessor manufacturers’) literature and technical articles.

Last, but certainly not least, the MC68000 family provides several hardware
assists that aid operating system designers in implementing better software. Reading
this text will show you how current advances in computer architecture are shrinking
the ‘‘semantic gap’’; that gap between the hardware constructs provided by the
machine and the software constructs needed by modern, high-level software. The
MC68000 family is one of the most advanced series of micros available. Thus, it is
fitting to contrast the various members of the family and show where each member,
the MC68008, the MC68010, the MC68012, and the MC68020, would be used.

Finally, we constantly stress the design aspect of the MC68000’s architecture,
stressing why certain choices were and were not made. This will enable you to fairly
accurately predict what advances are likely to be forthcoming in the next few years.
The knowledge thus gained is useful with Motorola or other popular manufacturers.

I would like to acknowledge the special assistance given by Motorola, Inc. in
the putting together of this book. The material in Appendixes A-G has been re-
printed by permission of Motorola, Inc.

Most importantly—to Kirsten: TAK for ALT!

J. Michael Bennett

10f necessity, this book is full of acronyms and short forms. We flag any such defined terms with
their acronyms in square brackets [SB] like this. Please try to note them as you read.
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— CHAPTER 1

The World
of the Microprocessor

In this chapter, our purpose is to briefly cover the fascinating history of the devel-
opment of microprocessors and to locate the MC68000 family within that devel-
opment. We will also discuss some of the differences (and difficulties) in
programming on a micro as opposed to a large mainframe. Finally, we look at the
scenario in which you may find yourself in trying to learn MC68000 Assembler.

1.1 THE MC68000’S PLACE IN THE SCHEME OF THINGS

The historical development of the tool that we now call the computer stretches back
over a very long time. Even the fundamental conceptual ideas of how a computer
should function were worked out in the beginning of the last century by the Eng-
lishman, Charles Babbage. However, the realization of those ideas required a suit-
able physical medium for their implementation. That technology only became
available during the chaotic, yet immensely fruitful, explosion of intellectual energy
unleashed by World War II. The first real digital computer, as we know it, was
developed by an Austrian, Konrad Zuse, in the early 1940s. Unfortunately, not much
was known of his work until recently (Zuse unwittingly also presented the world
with the first example of computer obsolescence; the Z-4 was bombed into that state
during an RAF air raid on Munich in 1944), and we generally credit the Americans
(Eckert and Mauchly) and the English (Wilkes and others) with developing the first
computers. At any rate, both UNIVAC and IBM had commercial models available
in the early 1950s.

Architecturally, these computers were classified as von Neumann machines.

1



2 The World of the Microprocessor Chap. 1

The remarkable thing is that virtually all our computers to date can be so charac-
terized. If biologists were to categorize computers like primates, all our machines
would fit into a subphylum similar to ‘‘homo sapiens intelligensi.”” To be sure, speeds
differ, capacities span orders of magnitude (even the colors are different), but,
topologically, the world’s largest computer is structurally similar to the tiny micro
driving your calculator.

What has changed drastically since von Neumann’s time is the technological
bedrock in which the various von Neumann architectures have been implemented.
And what a change! Gone are the leviathans of the 1950s, those million-dollar com-
puter dinosaurs that consumed vast amounts of energy and real estate, failed with
distressing regularity, yet performed at the capacity of a pocket calculator. It is not
surprising that even John von Neumann thought that a handful of these digital
monsters would be enough to service the civilized world until the millenium. We
clearly could not afford many.

In parallel with the development of vacuum tube computers, physicists were
developing solid-state equivalents to the large, power-hungry, and unreliable tubes.
For our computers depend on Boolean algebraic logic, and the vacuum tube is but
one implementation of that. We could equally well use any device that has a binary
characteristic; a transistor, a water level, or even an Irish leprechaun waving an
orange flag (though they tell me their reliability is open to question). Thus, once
the solid-state technology became mature and cost effective, computers were reim-
plemented using those smaller, more reliable devices.

The consequence of all of this was that computers became easier to make and
thus cheaper. No longer were they the sole preserve of research institutions, military
complexes, or large companies. Now they could be owned by much more modest
social organizations. This proliferation also had an important side effect. The de-
mocratization of the computer led to a very serious software problem. Thus, this
period also saw the development of high-level computer languages, operating sys-
tems, and similar systems software.

The next generation was spawned by more complicated solid-state develop-
ments. Physicists succeeded in putting together several transistors into the same
space formerly occupied by one. Such small-scale integration [SSI] accelerated this
already established trend toward miniaturization and reliability. As the construction
of computers became manifestly easier, the designers had an option of two direc-
tions into which they could evolve. One was toward more baroque architectures
providing physically smaller, but more powerful machines for the same dollar. The
other was to provide far simpler machines for far less money.

Almost all the established computer companies chose the former route. One
chose the latter, and the decision of Digital Equipment Corporation [DEC] to in-
troduce the PDP-8 in 1965 dates the beginning of the minicomputer revolution. The
details of that fascinating technological development need not detain us here. But
the salient points to be noted are that the developments in solid-state technology
made possible a reincarnation of the first-generation machines in a far cheaper me-
dium. For a PDP-8 is the architectural kid brother of the UNIVAC-1. Like those
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first tube relics, the PDP-8 (initially) had about as much software. Yet they were
seized by the thousands by scientists on a budget and placed to work controlling
complex equipment, gathering and reducing data and eventually front-ending onto
mainframes. Nor does the story end here. For minicomputers went down the same
evolutionary road as their bigger mainframe siblings. Now we identify three distinct
minicomputer generations, both in a software and hardware sense. Indeed, a mature
minicomputer product line (such as the PDP-11) can now boast a very impressive
range of software and hardware. So successful was this development that the world,
in a short span of seven years, had more minicomputers than mainframes.

Our story now has as many parallel threads as a good novel. For while main-
frames were struggling to fend off predatory attacks by marauding minis, devel-
opments in solid-state technology marched on at an accelerated pace. SSI gave way
to medium-scale integration [MSI], and we were now seeing a density of 100 gates
per chip. By the end of the 1960s, chip manufacturers were producing products that
had densities approaching a thousand.

At the turn of the decade, a now-defunct Japanese calculator manufacturer
approached a fledgling Silicon Valley chip manufacturer about the possibility of
producing an unusual set of calculator chips. The only problem was that their design
required a chip density in excess of 2000. The company responded and two years
later began marketing a 4-bit microprocessor. The production of the Intel 4004
microprocessor signalled the beginning of the microcomputer revolution.

Again, plus ca change, plus c’est la meme chose.! For the Intel 4004 architec-
ture was reminiscent of the UNIVAC I or the PDP-8. The era of LSI, large-scale
integration, had arrived, and the 4004 was quickly followed up with an 8-bit version,
the Intel 8008. While the 4004 was really only designed to drive a calculator, the
8008 was a real computer processor. However, like UNIVAC and DEC before them,
Intel ignored the holistic approach to complete computer systems. Their products
were software-naked and, worse, required extensive interfacing (or electronic
“‘glue’’) to attach them to outside-world devices. In 1974, Motorola announced the
MC6800; a solid 8-bit design with a family of compatible I/O chips, usable soft-
ware, and a microcomputer development system. So successful was this approach
that it was duplicated shortly by Intel, Zilog, and many others. Again, the cycle
repeated. Within 3 years of the introduction of the first real micro, the volume of
microprocessors exceeded the combined total of minicomputers and mainframes.
Software also became more commonly available, and micros even joined in the
generation game.

Useful as the 8-bit micros were and are, they have severe arithmetic and ad-
dressing limitations~Thus, as the three streams of computer technologies advanced,
so did basic semiconductor research. At the turn of the 1980s, densities were ap-
proaching 100,000 transistor-equivalents per chip and the first of the true 16-bit
micros were delivered. The first four available were the Texas Instruments TI9990,
the MC68000, the Zilog Z-8000, and the Intel 8086/88 (of IBM PC fame).

'The more things change, the more similar they become.



