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God thundereth marvellously with his voice; great things doeth he, which we

cannot comprehend. JoB 37:5

Continuous thunder: the symbol of the shock. The Superior Man in fear and
trembling seeks to improve himself. I CHING, HEXAGRAM 51



Preface

This book is designed as an introduction into what I call ‘abstract’ Topological
Dynamics (TD): the study of topological transformation groups with respect to
problems that can be traced back to the qualitative theory of differential equa-
tions. So this book is in the tradition of the books [GH] and [EI]". The title
(‘Elements . . " rather than ‘Introduction . . .") does not mean that this book
should be compared, either in scope or in (intended) impact, with the ‘Ele-
ments’ of Euclid or Bourbaki. Instead, it reflects the choice and organisation of
the material in this book: elementary and basic (but sufficient to understand
recent research papers in this field). There are still many challenging prob-
lems waiting for a solution, and especially among general topologists there is a
growing interest in this direction. However, the technical inaccessability of
many research papers makes it almost impossible for an outsider to under-
stand what is going on. To a large extent, this inaccessability is caused by the
lack of a good and systematic exposition of the fundamental methods and
techniques of abstract TD. This book is an attempt to fill this gap.

The guiding principle for the organization of the material in this book has
been the exposition of methods and techniques rather than a discussion of the
leading problems and their solutions, though the latter are certainly not
neglected: they are used as a motivation wherever possible. As a rule, clarity of
the exposition has had a higher priority than the completeness of the included
material (though is was hard to resist my natural inclination to be ency-
clopedic). In addition, I have included an abundance of examples, as illustra-
tion of results, as ‘test-cases’ for techniques, and often also for their own
interest.

The book can be divided in two parts: Chapters I-1II (actions of R and Z only,
and not exclusively concerned with minimality) form Part One, and Chapters IV-V1
(actions of arbitrary topological groups, with the accent on minimal flows and their
extensions) form Part Two. The theory in the second part is independent of the first
part, but for many examples in Part Two we refer to Part One. A description of the
contents of the various chapters can be found in the introductory remarks in each
chapter. However, at this place I want to make a remark about Chapter 1. This chapter
is not needed for the understanding of the rest of the book in a technical sense. But
mathematics is more than just formal techniques and results. Though I am not enough
of a philosopher to be able to explain briefly what exactly there is more to it, it is my
opinion that a good mathematician should know at least how his speciality came to

)* Most references to the literature have the form W.A. VEECH [1976]. For a few often-cited books
they are of the form [GH].
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being: what are its roots, what are its connections with other fields of mathematics?
Chapter I gives a concise answer to these questions: it describes in a nutshell a large
part of the field of Dynamical Systems and contains historically orientated motivations
for various problems and notions studied in this field.

In every chapter (except Chapter I) the material is organized at three levels:
first there is a systematic and essentially self-contained exposition of the
theory, then there is a collection of ‘lllustrations’, containing miscellaneous
results, applications and examples (presented as exercises with hints), and
finally there is a set of ‘Notes’, containing references to the sources. additional
results (usually without proofs) and references to related material. A little
warning is due here: results from references are cited as if they were written in
the framework of this book. E.g., I have ‘translated’ results from [El] about
right actions and right ideals into the language of left actions and left ideals.
(If no reference is given for a particular result this doesn’t mean that I claim
any originality: for many results it would have been too time-consuming to
trace back the original. A reference to a source only shows where I found the
particular result, not who first published it.) In this way I hope the book is
also of value for specialists. To increase its value as a reference work there are
many cross-references in the book; in addition, I have included an extensive
subject index.

Prerequisites for reading the book are a working knowledge of general topol-
ogy (e.g.. as set forth in [Wi], [Du] or [Ke]; I use [Wi] as the main reference)
and familiarity with the elements of (Lebesgue) integration theory; also some
functional analysis will be useful. For easy reference I have included in four
appendices some material from these fields: in a fifth appendix I present the
elements of the theory of topological transformation groups as needed in this
book.

This book was conceived and written at the CWI (the Centre for Mathemat-
ics and Computer Science) in Amsterdam, at the end of the paradisiac period
in which justification of mathematical research was not yet restricted to indus-
trial and computational applicability. The idea to write this book was born in
the early eighties, when Jaap van der Woude and I organized a seminar at the
Mathematical Centre (as the CWI was then called). When Jaap was writing his
thesis [Wo] the idea became more concrete: we need a book that contains
‘everything that is needed to understand [Wo]’. Our intention was that Jaap
would select the material and would write first versions, and that I would write
the final version. After I had written the Appendices and Chapter I it became
clear that Jaap could not participate in the project: in the Netherlands there
was (and still is) no interest in a mathematician with his background. and he
had to earn his livings as a computer scientist — which he does as enthusiastically
as he did TD. After a period of hesitation I decided to continue the project alone. This
not only explains the long time needed to complete the book, it is also responsible for
the fact that not all results promised in [Wo] (under the reference [VW?] appear in
these ‘Elements’.
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In this book one will find no revolutionary new results, but for many details
the presentation is new. In particular, my presentation of the structure
theorems for distal and point-distal extensions of compact minimal flows is
entirely based on relatively invariant measures and avoids the use of 7-
topologies. However, I could not always trace back whose ideas I used: those
of my own, those of Jaap van der Woude, or those of the participants of our
seminar at the MC (in particular, Jan Aarts and letje Paalman-de Miranda).
But of course, the full responsibility for all mistakes is mine.

Josi (M.H. Foe) transformed my handwritten manuscript into a file which
caused our printer to produce the output which you now can see before you.
She is not responsible for typographical errors, like tildes and bars over sym-
bols that are too high: those are due to the obsolete implementation of the
typesetting system (trofl). The illustrations were made by me, using MacDraw
IT on a Macintosh Plus ED.

Jan de Vries Hierden, November, 1992



Notation

Here some non-specific notation is explained. Special symbols and notation
introduced in this book are listed in the ‘Index of symbols’.

Most notation in this book is standard or self-evident. For example, if in a
discussion an index set A is fixed then in expressions like Zyx), (1, X, etc. it
will be understood that A runs through the full set A.

Braces are used to indicate alternative reading. For instance: “if {P}{Q}
then {R}{S}” means: “if P then R and if Q then S”. Square brackets [ - - - |
are used to provide a hint or a proof in telegram-style. The symbol [ means
“end of proof” (often: * the rest of the proof should be clear now”).

The following symbols from symbolic logic will be used: = (if - - - then),
< (iff, that is, if and only if), & (and), V (for every), 3 (there exists) and 3!
(there exists a unique). In order to reduce the number of parenthesis we often
write Vx,yeX instead of V(x,y)eX XX, and Vx: ®(x) instead of Vx[P(x)].
The sign : means “such that”; if it immediately precedes a quantifier (V or 3)
it is omitted. The sign : = means “is by definition equal to’; thus, P:=Q and
Q =:P both mean that Q defines P.

In what follows, let 4,X.Y and Z denote arbitrary sets.

A CX means: A4 is a proper subset of X;
ACX ., ACXorA=X;
X~A w 1 {xeX:ixegAdl;

idy » : theidentity mapping of X;

1, , : the characteristic (or: indicator) function of A4;
|X| . . the cardinality of X

Ay . o {(x.x): xeX}, the diagonal in X X X.

The words “function”, “map(ping)” and “transformation” are used, essentially,
as synonyms; in particular, a mapping is not automatically assumed to be con-
tinuous. Functions are usually denoted like f: X—=Y or xwf(x): X—Y;
sometimes parenthesis are omitted from f(x). If f: X—Y is a function or,
more generally, if R CX XY is a relation, then

flA] + ={f(x): xeA}, the image of A under ffor A CX;
R[A] : ={yeY: (x,y)eR for some x4 };

R= : ={(y,x): (x,y)eR}, the inverse of the relation R;

Ry 1 ={(x1,.x2)eX XX: fx,=fx,};

fla @ restriction of fto A for A CX;

VA : =fo---of (ntimes, neN), f':=idy, provided Y = X.

Note that /= will denote the inverse of the relation f. Thus, if BCY, then
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fTIBl:={xeX: fxeB}, the pre-image of B under /. If yeY, then we write
R[y] and f*[y] instead of R[{y}] and f~[{y}]. The notation f will be used
only to indicate pre-images; in the case that f: X—Y is a bijection, the inverse
mapping will be denoted by f '. Recall that the composition of two relations
RCX XY and S CY XZ is defined as

SoR 1= {(x,z2)e X XZ: AyeY with (x,y)eR & (y.z)eS}.
In this context, if (x,y)eR and (y,z)eS we shall sometimes write
(x,z) = (y.z)o(x,y) € S°R.
If ¢: XX Y—Z is a mapping then the following notation is used:
O (1) 1= d(x,y) =: P(x) for (x,y)eXXY.

This defines mappings ¢*: Y—Z (x&X) and ¢,: X—2Z.)

The evaluation mapping (f.x)w [ (x): Y¥ X X—Y will be denoted by 8§ (usu-
ally it will be clear from the context which evaluation map is considered, so
the same & is used in all cases). Thus, 8,: fi>f(x): Y¥—Y is the evaluation-
at-x (xeX), and &/ =f.

Concerning topology, our notation and terminology are standard; in most
cases we follow [Wi]. In particular, if X and Y are topological spaces, 7 the
topology of X, xeX, A CX and ¢: X—Y a continuous mapping, then:

A.clA,clyA means: the closure of 4, in X (with respect to 9);
intA, intyA . : the interior of 4, in X (with respect to 9);
nbd of A4 . : any subset of X containing A4 in its interior;
nbd of x . : any subset of X containing x in its interior;
Mg, My (X) ... the set of all nbds of 4 in X

M, M (X) .. the set of all nbds of x in X:

Gy, 8(X) .. the set of all non-empty open subsets of X;
Gy, X) . the set of all non-empty closed subsets of X
C(X.Y) .. the set of all continuous maps f: X—Y;
H(X,X) .. the set of all homeomorphisms of X onto X
C(X) .~ - C(X.R);

C'(X) . {feC(X): fis bounded };

/14 for feC(X) .. :sup {|f(x)|: xed}:
o(f) for feC(Y) . : foo.

The topology on function spaces will be denoted by subscripts: p for the point-
wise (or: product) topology, ¢ for the compact-open topology, u for the topol-
ogy of uniform convergence; thus, e.g., C,(X), C(X), CH(X).

The elements of a uniform structure 9 on a space X are denoted by lower
case Greek letters (except in metric spaces: see below). Thus, if a9 and xeX
then a[x]={x"€X: (x.x")ea} is a basic nbd of x in the topology generated by

)l For f:ZXxX—-ZxXX it will be made clear in the context what /" means (neZ):
Smx)y=(fo - of Ym.x) or fM(x)=f(n.x).
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(compatible with) Ql. However, if the uniformity is generated by a metric d on
X, then for =0 we put

S 1= {(x,x)eXXX: d(x,x")<e};

so S [x] is the open e-ball with radius € and center x.

For topological groups our main reference is [HR] (knowledge of its Sections
4-8 will be assumed) or the relevant sections in [Wi]. Notation and terminology
follow these references. Moreover, if T is topological group, then:

e.er denote: the unit element of T}

[ANAPS .. : the multiplication (s,)+ st in T}

T, .. the group T with its discrete topology:

RUC(T) ,, : the set of right uniformly continuous real-valued functions;
LUC(T) .. : the set of left uniformly continuous real-valued functions;

RUC(T):=RUC(T)NC*(T);
LUC(T):=LUC(T)NC*(T).

To avoid all misunderstanding (many authors do it just the other way round),
if feC(T) then feRUC(T) iff

Ve>03UeN, VsieT: st 'elU = | fs)—f(1)]| <e
and fe LUC(T) iff
Ve>033UeN, Vs, eT: s ltelU > [ f(s)—fl)] <e

The meaning of RUCA(T) and LUC,(T) should be clear: the spaces RUC(T)
and LUC’(T) endowed with the compact-open topology, respectively, the
topology of uniform convergence on 7.

If H is a subgroup of 7 then 7/ H will denote the space of all lefr cosets tH
(teT) of H in T. endowed with its quotient topology. The quotient map
T—T/H will often be denoted by [ — |;;; so forreT and A CT:

[f]” = ’H. [A ]H — {S‘HiSEA }
Standard notation:

: the set of all complex numbers:
. the set of all real numbers;
. the set of all rational numbers;
. the set of all integers;
:={1,2,3,--- };

.T : unit circle in R?, resp., C;
: 2-torus T XT.

=W 2Z2ZNQ=EBO

|
If A,BCR then
A" ={aeAd:a=0}, A :={acA:a<0};
—A :={—a:iacAd};

{
A" i={a ':aeA) (provided 0¢A):
A+B:={atb:acA & beB}. A —B:=a+(—B):
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AB :={ab: acA & beB}.
Thus, eg, A" =ANR"; note the difference between N and Z': Z" =
NU{0}. Intervals in R are denoted as follows (a.b €R, a<<b):
[a:b):={teR: a<t<b}, [a,b):=[a:b]~{b}, (a;b):=|a:b]~{a},
(a;b):=la:b]~{ab}.
Intervals in Z are denoted similarly. Thus (when it is clear from the context
that an interval in Z is meant), [p:q]:={neZ: p<n<gq) for p.geZ, p<gq. etc.
Occasionally, intervals of ordinal numbers are denoted in the same way.
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Chapter |
Various Aspects of the Theory of Dynamical Systems

In this introductory chapter a superficial sketch is given of the theory of dynamical systems: its
genesis and its contents. This is done mainly as an attempt to explain the relationship of Topo-
logical Dynamics with other parts of dynamical systems theory, notably Ergodic Theory and
Differentiable Dynamics (also called the Theory of Smooth Dynamical Systems). Although in this
chapter almost no ‘abstract’” Topological Dynamics will be treated, we hope in this way to contri-
bute to an understanding of its roots.

A current definition of Topological Dynamics says that it is ‘the study of transformation
groups with respect to those topological properties whose prototype occurred in classical
dynamics’ (cf. W.H. GorrscHalk & G.A. HepLunD [1955], p.iii). If in this definition the adjective
‘topological’ is replaced by ‘measure-theoretic’ then one obtains a description of Ergodic Theory
(cf. P. WaLters [1982], p. 1). Similarly, ‘differentiable’ (or ‘smooth’) instead of ‘topological’ gives
a description of Differentiable Dynamics. Thus, in each of these three fields of mathematical
research one studies groups (and also semigroups) of transformations of a space that preserve
the structure of the space (either a topological, or a measurable, or a differentiable structure)
And although the three fields have the same origin, namely, the study of (classical) dynamical
systems, the difference in methods and techniques has given them completely different flavours,
and they have developed in different directions. Nevertheless, it seems useful to pay attention to
what they have in common: the type of properties that occur in classical dynamics (in this con-
text, the phrase ‘qualitative properties’ is often used).

Thus, in Section 1 we sketch how problems from the study of differential equations can give
rise to the notion of a continuous flow, and also how the study of discrete flows can be useful
for this. In Section 2 one may find a brief discussion of the fundamentals of Ergodic Theory and
its impact on the topological theory of dynamical systems. Section 3 contains some basic ideas
from Differential Dynamics. All discussions are quite sketchy: Section 1 because otherwise there
would be too much overlap with the remainder of the book, Sections 2 and 3 because of the
fact that their contents are outside the scope of this book (in addition, there exist excellent expo-
sitions of these topics). The only purpose of this chapter is to give the reader a (maybe, very
faint) idea of the theory of Dynamical Systems in its broadest sense. Moreover, we feel that
every student in Topological Dynamics should at least know what Ergodic Theory and
Differentiable Dynamics are about. The contents of this chapter will not be used in the remainder
of the book. In particular, one may start reading in Chapter 2 without any difficulty. (Only occa-
sionally there will be a cross-reference to some item in Chapter 1, for motivation.)

1. DYNAMICAL SYSTEMS

(1.1) A dvnamical system may be defined as follows. It consists of a space M.,
the so-called phase space, which is to be interpreted as the set of all possible
states of some fictitious physical system: in addition, there is a ‘rule of evolu-
tion” which describes how any state assumed by our fictitious physical system
changes with time. To be more precise, consider the case of continuous time'.
T The adjective ‘continuous’ refers to the nature of the time-variable, which is taken from the real

numbers (often R is called “continuous’ because it has no gaps). Some authors prefer the term real
time (and. correspondingly. real dynamical system instead of continuous dynamical system).
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and suppose that our physical system is stationary, that is, if at a certain
moment the system is in state x then the state which is reached after a time
interval of length 7 depends only on x and ¢ and not on the particular moment
that this time interval begins (i.c., the moment that state x is assumed). Let
7(t.x) denote the state of the system reached after a time interval of length 7
when it starts in state x (r=0 and x e M). Then 7(s. m(z.x)) is the state reached
after a time interval s +7 when starting in x, i.e.,

(s, m(t,x)) = 7(s +1.x). (1)
By the definition of 7 we also have
7(0.x) = x. (2)

In the above we allowed only s=0 and r=0. For many systems one can
‘reverse time’, i.e.. 7(t.x) is defined and (1) holds also for negative values of s
and 7. In that case we have a mapping 7: R XM—M such that (1) and (2)
hold for all s,reR and xeM. Such a mapping is called an action of (the addi-
tive group) R on M.

The idea that R ‘acts’ on M is clarified by the following notational conven-
tion: define for every reR the transformation 7': M—M by

7'(x) = w(t.x) (xeM). (3)

So 7' sends every state to the state that will be reached after a time interval of
length 7. Using this notation, (1) and (2) can be rewritten as

mlom’ = 5t 79 = idy, 4)

(s.1€R). It follows that, for every r eR.

1 I —

qloqg ' = q !

oq! :7TU =id M-

Consequently, w': M—M is a bijection with inverse @ '. So (4) can be reformu-
lated as follows: the mapping 7+ 7' is a homomorphism of the additive group
R into the group of all bijections of M (with composition of mappings as
group operation).

(1.2)  The mathematical theory of dynamical systems originated from classi-
cal mechanics': originally, the phrase ‘dynamical system’ referred to a physical
system as studied in classical dynamics. Typically, such a system is described
by its state and its law of motion. The state is usually composed of the
configuration (= spatial position of the constituents) of the system. and the
velocity with which this configuration changes in time. In the most simple
cases, the state can be represented by a point in R” for some neN, say with
n =2k, where k coordinates are used for the configuration, and the remaining
k coordinates for the velocity of the system. The law of motion describes how
the state of the system will evolve in time. If this law itsell doesn’t change in
time (i.e., the physical system is stationary) then it has the form of a ‘system’
of autonomous ordinary differential equulions%:

1 In order to distinguish the various meanings of the word system we use quotation marks when it
means ‘interdependent family” (of equations).
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x(1) = Fi(x (1), . ... X, (1). i=1..... n. (3)

Here x (1):=(x (1), . . . .x,(¢)) denotes the state of the physical system at time
¢ and the dot represents differentiation with respect to 7. In a more or less sym-
bolic fashion, equations (5) are often denoted as follows: x; = F(x, ... .. X))\
i=1,....n, and we shall follow this usage. The set of all possible states in R"
is called the phase space of the system (formerly. the word ‘phase’ was used
instead of ‘state’). If the state of the system changes with time then the point
representing the state moves along some curve in the phase space: the rrajec-
tory or orbit. 1t should be clear that this curve is a solution curve of (5).

In many cases, it is not possible to establish a suitable 1.1-correspondence
between all states of a physical system and all points of some Euclidean space,
but often it is possible to establish such a correspondence locally: in that case
the phase space is a (desirably smooth) manifold. Let us mention two exam-
ples:

1. The configuration space of a “planar” double pendulum (see Figure 1.2.1) is
the direct product of two circles, i.e., the 2-torus T?. The corresponding phase
space is the tangent bundle of T°.

2. To describe the motion in R* of a rigid body with a fixed point P, intro-
duce two orthogonal coordinate systems S and S’, both with the origin in P.
Let S be fixed and let S” be rigidly connected with the body. The position of
the rigid body is completely described by the position of S” with respect to S.
i.e., by an orthogonal 3> 3-matrix with determinant + 1. So for this system the
configuration space is SO (3). the special orthogonal group of order 3.

An additional reason for considering more general phase spaces is the fol-
lowing. In classical mechanics much attention is given to so-called ‘conserved
quantities” or ‘constants of motion’, also called first integrals (of the differential
equation describing the mechanical system). A first integral is a real-valued
function f, defined on the phase space M which is constant on every trajectory.
It follows that for every value ¢ the set M.:={xeM: f(x)=c} is an invariant
subset (even a submanifold if fis smooth). i.e.. M, has the property that every
trajectory which passes through one of its points lies entirely in M, . The study
of such invariant subsets and of the restriction of the motion to such subsets

2

[}

Ficure 1.2.1. Configuration space of the planar double pendulum.
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can reveal much of the behaviour of the system. But if one restricts
him/herself to M, then in general one is working on some manifold (even if
the original phase space is Euclidean).

If the phase space of a dynamical system is a manifold M, then locally (in
each chart) the law of motion of the mechanical system can still be expressed
by (5). But globally the description is as follows: in every point x of M a
tangent vector F'(x) is given (so we have a vector field on M, or more precisely,
a tangent vector field) and if x(r) denotes the state of the mechanical system at
time 7, then the velocity x(¢) with which the state changes is required to satisfy
the equality

x(1) = F(x(1)). (6)

Consequently, trajectories are curves in M such that in each point of such a
curve the vector field is tangent to the curve. The task of finding such curves
is often formulated as: solve (or: integrate) the equation x = F(x).

Now consider (6) on some manifold M. Using the theory of ordinary
differential equations it can be shown that, under quite weak conditions on F
(usually satisfied for classical dynamical systems )%, for every x € M there exists
a unique differentiable mapping 7,: R—M such that

7.(0) = x, 7(t) = F(7.(1)) (1eR), (7)

i.e., a solution of (6) with initial value x. Also, the solutions in most cases
depend continuously on the initial conditions, i.e.,

7 (1,x) > 7w (1): RXM—-M (8)

is a continuous mapping (RXM endowed with the product topology). This
mapping w is an action of R on M: equality (1) is a straightforward conse-
quence of the unicity of solutions of (6) [both s .(s) with y:=7(r) and
s> (s +1) are solutions of the differential equuli()li with initial value y for
s =0]. and equality (2) is part of (7). The mapping 7 defined in (8) is called
the action of R on M defined by the vector field F (or: by the differential equa-
tion x = F(x)). (The proof that 7 is an action essentially uses that equation (6)
is autonomous. As the fact that the equation is autonomous is an expression of
the fact that the corresponding physical system is stationary. this is in accor-
dance with (1.1).)

(1.3)  The notions described above enable one to use a ‘kinematic™ descrip-
tion of the solutions of a ‘system’ of equations like (5)—or of an equation on a
manifold like (6): one considers the phase space as a set of points flowing
along their trajectories. Actually, the word flow is often used for such a
description. Of course, this way of looking at the family of solution curves is
applicable to all ‘systems’ of autonomous differential equations, whether they
arise from classical mechanics or not (provided existence and unicity of solu-
tions is guaranteed). In fact, this point of view can even be adopted when one
is dealing with an arbitrary action 7 of R on a space M: the point 7(/.x)



