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PREFACE -

The undmtandmg of thc physical nature of a vibration problem is often both

more difficult and more important than the calculation of frequencies and modal

shapes. The latter can be tackled readily once a few techniques have been mastered;

and modern oomputmg machinery has removed the one difficulty which previously
existed—that of excessive complc:uty While, however, the study of methods of

. frequency calculation is often an important aid to understandmg the physical

nature of a problem, it is not always sufficient to enable the engineer to obtain the
grasp that he requires. Further, the ease with which numerical work can now be
handled makes a thorough understanding of physical problems even more necessary ;
without it the most important calculations may not be attempted and time may be
wasted on others which are of little value. : :

It was when one of us was working in industry that he came to appreciate the
value of the concept of receptance as an aid to understanding as well as to calcula-
tion. The conceptwas, at that time, being used in studying thevibration of aeroplane
propellers in conjunction with the torsional vibration of the engine shafting on
which they were mounted; it allowed the vibrational characteristics of the pro-
pellers and of the shafting to be discussed mdependendy and this was helpful
because—amongst other reasons—the propellers and engines were often made by
different manufacturers! The receptance concept is used extensively throughout
this book and, in particular, the classical theory of the small oscillation of a linear
system is developed by means of it. We believe that the approach will be satxsfymg
to the reader and that the farmhanty with receptances which he will gain wxll

_ enable him to apply them when examining new problems.

The notion of receptances is particularly useful when the vibration of one portion
of a system, such as a single turbine blade,-is being studied mdependently of the
rest of the system. The justlﬁcatlon for isolating a part of a system in this way, for -
the purposes of analysis, is commonly that of intuition and nothing more; the
receptance idea should often enable the engineer to reconcile the intuitive results
with sound reasoning or alternatively to reject them when they cannot be so -
reconciled. This revaluation of the results of intuition is one of the responsibilities.
of the academlcally trained engineer. _

Since the aim of this book is to present ideas, rathcr than to describe the apphca-
tion of those ideas to particular engineering problems, much of the discussion is in
terms of ‘academic’ systems only, that is to say of spring-connected rigid masses,

* taut strings and uniform elastic bodies. In Chapter 5, however, there is some discus-

sion of the extent to which real systems may be analysed in terms of these ideal
systems.

Some guidance may be needed by thosc who wish to study the receptance con-
cept without working: through the whole book, or by others who have other special
needs. Chapter 1 introduces receptance ideas but the discussion is limited to very
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= . PRBFA.CE
s:mplc mechamcal systems. Chapter 2 deals with dynamxca.l methods for analysmg_
more complex systems and Chapter 3 uses these miethods in a general treatment of -
the vibration of multi-freedom systems. This latter chapter contains most of the
essential ideas in receptance theory. After this, ‘with the exception of Chapter 5,
~ which has been mentioned above, the discussion. is extended to include elastic
‘bodies and the various chapter headings explain which types of system are treated
in each. Systems with damping are then introduced, the general theory for these
being developed in a similar way to that of Chapter 3. Finally the excitation of a
system by transient forces is treated. '

It will be seen that many items which are of i interest to the engineer have been
omitted. For instance, questions of non-linearity, instability, self-excitation, the
vibration of rotating elastic bodies, as well as matters of analytical and experi-
mental technique have not been dealt with. This is admittedly a somewhat arbitrary
division; but it was our original intention to write more than one volume. Perhaps
a second will be written, although we no longcr enjoy the advantage of working in
the same laboratory. :

Much of the theory that is presented is capable of concise proof by matrix methods.
These methods have acquired an important place in vibration analysis, partlcularly
as a result of modern developments in high-speed computing. Nevertheless it is our

_belief that matrices should not be used by engineers ' when mastering the funda- |
mentals of mechanical vibration theory, if only because matrices are so convenient.
It is all too easy to become facile in the mathematical sense without acquiring a
true understandmg of the physical side of things.

Examples are provided at the ends of most of the sections in this book and we have '
used the ‘absolute’ system of units both in these and in the text. That is to say, the
units of force, mass, length and time are the poundal, pound, foot and second
respectively. In doing this we have made free use of a convenient approximation, -

" namely that ¢ = 32ft./sec.? (and that 32 poundals = 11b.wt.). :

Finally we should like to mention a humber of helpers, other than those whose

names are mentioned later in connection with-specific items. First we acknow-
ledge our debt to Professor W. J. Duncan for his encouragement and for the

- benefit which we obtained from his pioneer work in the use of admittance methods

for mechanical systems; without this our book would never have been started.
- Secondly we thank Miss P. L. A. Baker for typing the complete manuscript, and

* . Messrs. B. Wood, S. Hother:Lushington and ‘A. G. Parkinson for reading the
. proofs. = E '

: R.E.D.B.

e D.C.J.
* December 1957 : :
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. See. alsa the Supplcmmtagy Lists qf Symbols at the ends of chaptm :

’ kQ-n

Compound oscxllatory system. :
Numerator of kth partial fraction in series rcprcscntahon of a,,,
[see equation (3.4.3)].

. Inertia coefficient [see equation (3.1.2)].

Inertia coefficient [see equation (3.6.9)].

* Sub-systems which, together, make up 4.

Viscous damping coefficient of isolated damping clcment

Viscous damping coefficient [see equation (8.4.8)].

Stability (or ‘stiffness’) coefficient [see equation (3.1.7)].

Stability (or ‘stiffness’) coefficient [see equation (3.6.9}].

Dissipation function [see equation (8.4.19)]."

Hysteretic damping coefficient [sce equation (9.4. 6)]

Young’s modulus.

The exponential constant.

Amplitude of harmonic applied force or torque.

Amplitude of harmonic force or torque applied at x,. Ifa lctter
(as well as a numerical) subscnpt is carried, this refers to a

- sub-system.

Shear modulus. ;

Gravitational constant (taken as 32 ft.[sec. throughout this book)
Particular value of x defining a section of a taut string, shaft, bar,
beam, distant %4 from origin (0 < £ < {); hysteretic damping

coeflicient of isolated damping element. '

Moment of inertia of ngld disk; second moment of area of cross-
section of beam about its neutral axis.

Imaginary operator [see equation (1.3. 1]

Second polar moment of area of circular shaft.

Stiffness. -

Length of taut string, shaft, bar, beam.

Mass. - :

Mass of partxclc

Magnification factor (see § 8. 2)

Magnification factor [see equation 9.2. 10)]

Generalized force corresponding to $,.

rth principal co-ordinate.

Generalized force corresponding to ¢,.

Set of generalized forces @, Q,, ..., @, which produce dlstoruon
in kth principal mode only. .
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GENERAL NOTATION
rth generalized ¢o-ordinate.
Displacement at ¢, in the kth principal mode.
Amplitude of x (a real constant). :
Dissipation functionfor hysteretic damping [secequation (9.4.8)].
Kinetic energy. :

~ Time.
. =V+S.
- Potential energy.

Lateral deflexion of taut string or beam. ;
Lateral deflexion of taut string or beam in rth principal mode.
Work done by forces of a system due to displacement at g,.
Applied lateral load/unit length on beam or taut string.

. Applied lateral load/unit length causing deflexion of a beam or

taut string in its rth principal mode only. : .
Amplitude of displacement at x, (may be complex). If a letter
(as well as a numerical) subscript is carried, this refers to a

~ sub-gystem. :

Distance along taut string, shaft, bar, beam (0 < x < {).

rth co-ordinate. =

Receptance of system 4.

Receptance at rth principal co-ordinate.

Receptances of sub-systems B, .. s

Denominator of expressions for the receptances of a system having
finite freedom [see equation (3.2.8), (8.5.9) or (9.5.5)], being
the determinant of the coefficients of equations of motion. :

Determinant formed from A by omission of the rth column and

“sth row. - '

Amplitude of P,.

Amplitude of p,.

Mass density,

Amplitude of Q,.

sth characteristic function of taut string, shaft, bar, beam.

Amplitude of g,. : ;

rth anti-resonance frequency (rad./sec.). .~ :

Circular frequency of excitation (rad./sec.). - :

rth natural frequency (rad./sec.).
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~ CHAPTER 1
INTRODUCTION

The position of the moving parts of a steam-engine indicator clamped to an
engine may be specified by giving the-displacement of the pencil from some.
fixed point, or the displacement of the indicator piston, or the inclination of
the pencil lever to the horizontal. Here again, the specification will be only
a good approximation in actual fact, because, for example, the pencil lever
will bend to some- extent when rapidly moved. : , Gk

B. HOPKINSON, Vibrations of Systems having One Degree of Freedom (1910)

1.1 Preliminary remarks

The subject of this book is the theory of the small oscillations of a dynamical
system. This subject is important to the engineer becausé all materials that are
used in the construction of machinery possess mass and the ability to store potential
energy through the property of elasticity; the combination of these properties
renders vibration possible. Gravity and other effects can also affect the potential

- energy of a system and so modify the vibration.

For the purpose of the study it will be convenient to classify systems by their
‘degrees of freedom’. The number of degrees of freedom that a system possesses is
the number of co-ordinates which must be specified in order to define its con-
figuration. Thus a simple mathematical pendulum has one degree of freedom if its
motion is confined to a single plane but it has two degrees of freedom if it can swing
in more than one plane. Now all real systems have an infinite number of degrees
of freedom and this renders impossible a complete vibration analysis: Even if
such an analysis were possible the effort of making it would be mostly wasted
because it would yield far more information than could be used. It is therefore
necessary to make some simplifying assumptions about the motion of a system if an
analysis is to be feasible. ,

Now it usually appears from inspection that some types of motion are likely to be
unimportarit; these can then be imagined to be suppressed entirely for the purpose
of analysis. It will be shown later that the extent to which such restrictions can be
justified depends on the frequencies of vibration to which the system is subjected.
One of the most common simplifications of this type is to regard each vibrating
link of a mechanism as a number of spring-connected rigid masses, the springs
being treated as massless and therefore incapable of surging;; it is sometimes possible
to simplify further by restricting the rigid bodies to zero dimensions so that the
links become systems of spring-connected particles. We may consider as an example
the system that is formed by two flywheels which are joined by a shaft; the torsional
oscillations of the system may be examined under the assumption that the wheels
are rigid and the shaft massless. Simplifications of this type reduce the number of
degrees of freedom of the system and thereby simplify the mathematical treatment.
Ba&y MY



B MBCHANICS OF VIBRATION

C (_:emed in this book, with the a.nalysxsofsystcms aﬁertheyhavc
n The reader should be warned, howeveér, that this is only part of
engineer’s problem; the process of sunphﬁcatmn of the system is often dxﬁcult
and may need considerable knowledge and experience. >
The vibrations which we shall discuss will be linear. That is to say, they will be
govcrncd by linear differential equations which have constant coefficients. In
some problerns this will bé a result of the form taken by the system under discussion;;
‘thus, a linear equatxon governs the ftee oscillations of a mass attached to the free
end of a2 massless spring. The form of the equation is due, in this case, to the nature
of the spring—that is; it obeys Hooke’s law—and to the nature of the oscillation—
~ namely one of motion along the axis of the spring. But in order to arrive at.a linear
~ equation it is sometimes necessary, not only to have a suitable system, but also to
_ restrict its motion to small oscillations. This is required when the geometry of the
system would otherwise vary appreciably during the motion. For mstance, a sxmple
pendulum of length { oscillates according to the equation
£+‘lgsmx=0 ~ e (1.1.1)
~ where xis the anglc made with the vertical. Only by hmmng the angle of swing
can we arrive at the linear equation ;
~ :z+§x= 5 (1.1.2)

- All real mechanisms are affected by frictional forces, of which there are several
causes. It is expedient to neglect these forces entirely during the development of
the analysis. Their effects will be discussed in Chapters 8 and 9.

We shall begm our analysis by consxdenng the motion of a system due to a sinu-

: soxdally varying force. This motion is of direct importance where the effects of lack
of balance of rotating machinery are to be discussed. Such analysis also covers,
through the medium of Fourier analysis, the effects of more complex periodic

. excitation. The motion of a system under transient loading, for instance pulse
- excitation,will be treated in Chapter 11 where it will be shown that the results for
sinusoidal forcing provide useful data for the golution of the transient problem.

EXAMPLE 1.1

1. How many degrees of freedom have the following systems?
- (@) A particle in space.
(&) A particle which is constramed to move along a fixed tortuous curve.
* (¢) *A lamina which can move in its own plane only.
(d) A four-bar kinematic chain with one link fixed.
(e) A four-bar kinematic chain with no links fixed.
(f) A rigid gyroscope rotor in gunbals 2
(g) A tramcar. :
(k) A motor car.
(i) An aeroplane. :
For (&), (k) and (i) it is mtended that the bodws should be treated as ngxd.
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INTRODUCTION 3

.12 Systems thh one degree of freedom

The simplest type of vibrating system has a single dcgree of frccdom Consxder,
as an example, that shown in fig. 1.2.1, in which the rigid body of mass M is attached
to a fixed abutment through the massless-spring of stiffness k Displacements of -
the mass from its equilibrium position will be denoted by x. The equation of 1 motion
of the system, when it is mbranng freely, is

5 | Frwlz=0, (121)

/] ah."x where 0} = k/M The solution cf (1.2.1) may

; : : " be wntten in the forms e
2, x=Acosw1t+Bsmw1t

; < = Rcos(wyi—¢) } . (1.2.2)

ﬁ : . = Rsin (w,t+¥), - _

/ where 4, B, R, ¢ and i are constants which

3 are determined by the initial conditions. The

Pig- 1.1 quantity o, is sometimes called the ‘circular
frequency’; it will be convenient, when therc isno danger of confusion; to refer to
it:simply as ‘the frequcncy

Equation (1.2:1) is easily formed by the application of Newton’s laws. With -

some single-degree-of-freedom systems, however, this method is somewhat laborious
and an energy method may be used instead. Then, the kinetic energy 7" and the
potential energy ¥V of the system concerned are written as functions of the smglc
co-ordinate. The equation of frec motm?x can then be found from the relation

(T+V)_.0 (1.2.3)

~because the total energy of the system remains constant in the absence of external

and frictional forces. Alternatively wé may assume the motion to be harmonic and
can then find the frequency from the relation . : '

Tmax. = Vmax ’ (1 2. 4)

* that is, by equating the maximum values of T and V. This latter method rcquxres

the value of the potentlal energy to be taken as zero in the equilibrium position.
These two energy methads can be tested on the system of fig. 1.2.1. A third, and
much more powerfiil energy method—that of Lagrangc———wﬂl be introduced in

‘Chapter 2.

Now let a harmonic force Fsin wt be applied to the T M along the dn'ectmn
of the motion. The equation now becomes :

- R4oix = w’,‘(—E sin wt ! (1.2.5)
' and the general solution to this is the sum of the complementary function (1.2.2)

and a particular mtcgral The latter corrcsponds as may be expected, to a mouon
. . ! 2




[E MECHANICS OF VIBRATION :
mdx the frequency w of the distmbing force; the general solution is ‘

%= [Acoswyt+ Bsinwyf] + Lo sinot, (1.2.8)
The terms within the bracket in this expression allow; by a suitable choice of 4
and B, for the initial conditions to be satisfied ; it will be shown later that in any real
system these terms are reduced to zero, after a suitable time from the start of the -
motion, by the action of damping. It will also be shown that the other term is not

greatly affected by small damping forces except when  is close to w;. We shall

‘therefore confine our attention’to the forced motion term

o

‘e

kzsin wi. ' (1.2.7)
e *
. ; m
- The solution (1.2.7) may be written in the form ;
e (’7’) Nsin (0t 8), 2 (1.2.8)
“where A is the ‘magnification factor’ which is defined by the relation

(1.2.9)

and { isa phase angle whichiszeroforw < wyand 7 forw > w,. These two quantities
are functions of ®/w, only and are shown sketched in fig. 1.2.2. It must be empha-
sized that any point on these curves represents a particular solution to equation

N

: ¢

| .

I e

|

: e — e e
5 l :
» 4 .
(9] ;l . wfe, o 1 s ofw,

(a) < ®
'Fig. 1.2.2

(1.2.6) for the appropriate value of wjw,; the curves do not imply that if, for a.
specified system,  were varied, then the motion at any moment would be givenby
them. The forcing of the system at a varying frequency would imply transient
excitation for which it is not permissible to neglect the complementary function.
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. Later on, we shall often meet the curves of fig. 1.2.2in a slightly different form.
~ This is obtained by writing (1.2.7) in the form : ’ :

x= [ m—w?l_-_;,—)] Fsin ot = (1.2.’1(?)
and then plotting the quantity in the square bﬁ&ct agamst . The curve is shown
in fig. 1.2.3. ' A e | i

1k
o

As o is taken closer and closer to @,, the amplitude of the motion increases
~ without limit if the force amplitude is kept the same. Alternatively the force ampli-
tude must be diminished ‘indefinitely if the displacement amplitude is not to
~ increase. The latter statement is usually preferable because an infinitely large
amplitude is inconsistent with the assumption of small motion. The concept of
reducing the force indefinitely as » tends to o, may be used to provide an alternative
definition of natural frequency, namely that it is the frequency at which a finite
~ response is produced by an infinitesimal force. ‘We shall find it more convenient
. later to adopt this definition rather than to work explicitly with the equations of
free vibration. : - 3 '
In using the expression (1.2.7) rather than the general solution to the differential
equation the reader may prefer, at this stage, to suppose that the initial conditions
were such as to make the constants 4 and B equal to zero. This will not impair the
- validity of the mathematics though it will restrict the physical application of it.
Such a viewpoint avoids the apparérit contradiction in the assumptions that the
damping will eliminate the free motion but may be neglected in discussing the
forced motion. This contradiction, and the important effect of damping on the
- forced motion in the immediate neighbourhood of the natural frequency, will be
. discussed in Chapters 8 and 9. =




ea method for- represcntmg such quantmes gra.plncally A harmomcally :
: varymgquanﬁty : £=Zsin(Qt+y) = (1.2.11)

may be represented by a rotating line. Thus if a line of length Z rotates with angular
velocity Q about one end, as shown in fig. 1.2.4, then the value of § is given by the
* prejection of the moving line on a fixed line; this is the vertical line in the figure.
Further, it will be found that the quantities £ and £ are given by the projections on
the same fixed line of other rotating lines; these have lengths ZQ and ZQ* respec-
tively, and each one is advanced by 90° on its predecessor. .

‘ - e N
_ : g
e
Fa
.
- F
/
Z,
o -
. (@+9)
z0? ' , : ' : Qe+9¥)
Fig. 124 : Fig. 1.2.5

An nnportant property of these rotating lines is that they may be added vectori-
ally. Let some quanuty £ be given as the sum of two harmonic components so that

we might write £ = Z,sin (Qui+¥) +Zysin (Qut + 8). (1 2.12)

1t may be seen from fig. 1.2.5 that £ is given by the projection of the line OP, wh1ch :
is the vector sum of the lines whose projections give the two components of £ If
the frequencies of the two components are not the same then the”instantaneous <
value of § is still given by the prOJecuon of the vector-sitm line; but under these
conditions this line will not remain of constant length as it moves. In many problems :
only cqual-frequency components are involved ; when this is so the fixed line may be
omitted from the figure because it is only the relative positions of the rotating lines, _
- that is tc say the shape of the diagram which depends on the relative phases, that
concerns us. ;

* When the rotating lme representation is applied to thc frec vxbratlon expression
for the oscxllator then R of equation (1 2.2) will be identified with Z, w1th Q and
x with £,

- The forced vibration cquatxon may a.lso be represented in this way The equa.twn :
! of motion may be written in the form :

Mi +kx = Fsin ot, - (1.2.13)-




INTRODUCTION ' s

-so that the right-hand side will corres'pbnd to a rotating line of lengtfi F. We confine
attention to the variation of x with the frequency o so that is identified with Q.

The value of Z can now be deduced from the diagram of fig. 1.2.6. In order that

" the three lines in the figure should fit together as shown, which they must if the

right-hand side of (1.2.13) is to be. the vector sum of the left-hand side, it is

‘necessary that . Z(k— Mw?) = F,
: ’- F Flk
or : b= = Moh : o (1.2:14)

which agrees with the analytical solution.

//’///’//////

Fig. 1.2.6 e e 1.8
EXAMPLES 1.2

1. The figure (Ex.1.2.1) shows 4 simple pendulum, to the arm of which is attached
a light spring of stiffness £. The system is in equilibrium when the arm is vertical. Find
the frequency of free oscillations by - g
(a) applying Newton’s laws to the free system
(b) using an energy method, :
_ {¢) finding the resonance condition when a harmonic, horizontal disturbing force
is applied to the arm at a distance 4 below. the point of suspension.
{Nore. While it is convenient to specify the point of application of the force, the
choice, cannot influence the value of the natural frequency which is found by this
method.] : '

2. Two equal rollers, each of radius 7, are placed with their axes at the same level
and distant 2-4r apart, in contact with a concave cylindrical surface of radius 3r. They
are maintained in this position by a third equal rolier which is placed in contact with
each of them, its axis thus coinciding with the axis of the corcave surface. All the rollers
are solid and homogeneous. : ;

Show that the periodic time of a swoall oscillation of the three rollers about the above
position of equilibrium, assiming no slipping, will be b7 /(7/g). : e ,
2 T (CUMS.T. Piy, 1959)



