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General and Program Chairs’ Message

The 2nd International Service Availability Symposium (ISAS 2005) provided a
unique forum for academia and industry researchers who focus not only on devel-
oping next generation solutions but also on standards for today’s market. Given
the pervasive interweaving of computing devices, increasingly it is “services”
rather than “systems” that warrant our attention. As services emerge as the pri-
mary vehicle for information acquisition, processing and delivery, the demands
for dependability become of primary concern. Needless to add, the expectations
from users’ with respect to trust and reliance of such systems will only continue
to grow.

As computers already pervade almost all walks of our lives, significantly in-
creased interest in dependable computing should not be a surprise as the industry
leaders and main computer companies are searching for innovative ways of en-
hancing the dependability of systems that are increasingly more complex and
networked. With the paradigm shift where “everything” may become a service,
it is not an option but an imperative to address the questions of service availabil-
ity. From humble beginnings of dealing with types and formats, later with tasks
and processes, then with objects and components, we have arrived to service and
peer-to-peer computing. Over 8.5 billion processors are produced each year and
98.5% end up in geographically distributed and interconnected embedded sys-
tems. The challenge is to design services and systems that are highly available,
reliable and secure. As the number of 7 x 24 applications continuously increases
this is an ambitious challenge that will have to be met. Service availability can-
not be compromised. It will have to be delivered as the economic and social
impacts of unreliable, incorrect services might range from minor inconveniences
to losses of human lives and unpredictable costs.

This year’s ISAS represented an excellent mix of academic and industrial
contributions as well as participation.

The eight sessions featured truly distinguished academics and industrial lead-
ers as well as some new researchers in the field. We had an outstanding Keynote
Speaker Prof. Hermann Kopetz from TU Vienna who is a pioneer in the field
of dependable real-time computing, actively contributing to the field for almost
30 years. A distinguished panel featuring representatives from academia and in-
dustry, two invited sessions, and regular papers that were subject to a rigorous
review process constituted the overall ISAS program. Each paper was reviewed
by at least three Program Committee members. We would wholeheartedly like
to thank our PC members for their guidance and diligent reviewing. Our thanks
go to Prof. Edgar Nett, Nikola Milanovic and Christine Henze for editing the
proceedings. Nikola and Christine also helped together with Sabine Becker and
Steffen T'schirpke of Humboldt University Berlin, Susan Morgner and Dr. Chris-
tine Titel from Congressa GmbH the organization and we do appreciate it very
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much! Last but not least we would like to thank Manfred Reitenspiel who has
been the guiding force behind ISAS and the Service Availability Forum.

I hope that the attendees enjoyed the final program, enjoyed the presenta-
tions, got involved in the discussions, struck up new friendships, and got inspi-
ration for contributions to the next year’s symposium which will be hosted by
Kimmo Raatikainen, University of Helsinki and Francis Tam of Nokia in Helsinki
during May 15-16, 2006.

Miroslaw Malek Neeraj Suri

Humboldt Universitat Berlin Technische Universitat Darmstadt
Institut fiir Informatik Institut fuf Informatik
malek@informatik.hu-berlin.de suri@informatik.tu-darmstadt.de

ISAS 2005 General Chair ISAS 2005 Program Chair
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TTA Supported Service Availability

H. Kopetz

Institut fiir Technische Informatik TU Wien,
A 1040 Wien, Treitlstrasse 3
hk@vmars.tuwien.ac.at

Abstract. The Time-Triggered Architecture (TTA) is a distributed architecture
for high-dependability real-time applications. In this paper the mechanisms that
guarantee a high availability of TTA services are presented. The paper starts
with a deliberation on the fault-hypothesis of the TTA and discusses the parti-
tioning of a TTA system into independent fault-containment regions, their fail-
ure modes and their failure frequencies. In the second part the structure of the
TTA is explained and the mechanisms that handle the specified faults are out-
lined. The role of the TTA-inherent sparse time base for the consistent ordering
of messages and the solution of the simultaneity problem is explained. Finally,
the third part speculates on the vision of a highly integrated TTA-giga-chip that
acts as a self-contained TTA node and could be implemented on a single
silicon die.

1 Introduction

The Time-Triggered Architecture (TTA) [1] is an integrated distributed computer
architecture, designed to provide a continuous timely services with an MBTF of bet-
ter than 10” hours in the presence of component failures, provided that the occur-
rences of component failures are in agreement with the stated fault hypothesis. The
TTA is intended for applications that require utmost availability even in the presence
of a fault in any of its components: examples of such applications are the control of a
nuclear power plant, the flight control system of an airplane or a computer-based
brake control system within an automobile that does not contain a mechanical backup.

Such a high reliability can only be achieved by the provision of redundancy in the
hardware, since the observed component (chip) failure rates are orders of magni-
tudes lower [2] than the desired system reliability. Every redundancy scheme is based
on a number of assumptions--the fault hypothesis--about the types and frequency of
faults that the system is supposed to handle. In case that all fault-handling mecha-
nisms are perfect and cover all scenarios that are listed in the fault-hypothesis, the
probability of system failure is reduced to the assumption coverage[3), i.e., the prob-
ability that the assumptions made in the fault hypothesis are met by reality. The fault
hypothesis of any fault-tolerant system is a critical document in the design process.
The fault hypothesis of the TTA is discussed in more detail in Section two.

One common technique to implement fault-masking by redundancy is called triple-
modular redundancy (TMR). In a TMR system fault-tolerant units (FTUs) are
formed by placing three synchronized deterministic replicas of every critical
component into a new distributed unit--the FTU. An incoming message is distributed

M. Malek, E. Nette, and N. Suri (Eds.): ISAS 2005, LNCS 3694, pp. 1 - 14, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 H. Kopetz

to all three units of the FTU and the result message (and the internal state) is output-
ted to a voter that makes a majority decision based on at least two identical results. If
one of the components of FTU produces no result or a result that is different from the
result of the other two components, this component is considered to have failed.
TMR structures will only succeed if the redundant components fail independently,
i.e. if there is no correlation between the failures of components that form a fault-
tolerant unit. Correlated failures can occur because of external causes (a single exter-
nal event, e.g., a lightning stroke, causes the failure of more than one component) or
by error propagation, i.e. an erroneous component sends a faulty message to an up to
that instant correctly operating component and thus corrupts the internal state of this
component. The issues of fault isolation and error propagation in the TTA are cov-
ered in Sections three and four. ’

Finally in Section five and six we speculate about the future hardware implementa-
tion of the TTA. Considering the tremendous advances in the field of semiconductor
technology, which is expected to give us billion-transistor giga chips (system-on-a-
chip: SoC) by the end of this decade, we outline the structure of a generic TTA-
SoC that can be used in many different application domains.

2 Fault Hypothesis of the TTA

In the following paragraphs we discuss the fault hypothesis of the TTA with respect
to hardware faults. We assume that the hardware design and the basic fault-handling
mechanisms are free of design faults.

2.1 Fault-Containment Regions

The first step in the specification of a fault-hypothesis is concerned with the estab-
lishment of a the fault-containment regions (FCR), i.e. the units of failure. An FCR
is a subsystem that is considered to fail independently from any other FCR. If we
must tolerate the physical destruction of a hardware component (e.g., in an accident),
then different FCRs must be in different physical locations, i.e. the computer system
must be distributed. In the TTA we assume that every node of the distributed system
forms an FCR.

2.2 Failure Modes

In the next step we must specify the critical failure modes of FCRs. Any restriction
of the tolerated failure modes must be considered as an additional assumption that
has a negative effect on the assumption coverage. In the optimal case no restriction
of the failure modes are made, i.e. a failing component can manifest an arbitrary
behavior.

We consider a failure mode of an FCR as critical, if it impacts the remaining cor-
rect nodes of the distributed system in such a way that the functionality or the consis-
tency of the distributed computing base among the nodes that are outside the affected
FCR is lost. We focus on a single fault during a fault-recovery interval Ad. After the
recovery interval Ad the architecture has recovered from the consequences of this
fault and can tolerate a further fault (provided enough resources remain operational).
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We define a set of nodes as Ad-consistent if Ad time units after the occurrence of
failure all remaining correct nodes have the same view about this failure event.

In the TTA we have identified the following critical failure modes of an FCR that
must be addressed at the level of the architecture:

(i) Crash/Omission (CO) failures

(ii) Babbling idiot failures

(iii) Slightly-off-specification (SOS) failures
(iv) Masquerading failures

(v) Massive transient disturbances

In the analysis of failure mode (i) to (iv) we assume that a fault impacts a single
FCR only. Failure mode (v), special case that affects more than one FCR, is ex-
plained at the end of this Section.

Crash/Omission Failures: A widely accepted fault-model in a distributed system
assumes a fault that manifests itself as either a crash failure of a node or an omission
failure of the communication channel (CO failure). CO failures are the most com-
mon failures in distributed system--close to 99% of the failures are of the CO type[4].
According to this fault model a node either operates correctly or crashes. The com-
munication system either transports a message correctly, produces a detectably cor-
rupted message, or fails to transport a message. Most of the available communication
protocols, such as for example TCP/IP, are designed to detect and, if possible, to
correct CO failures. The consequence of a CO failures is a loss of consistency of the
distributed computing base. In a point-to-point communication system an acknowl-
edgement service is provided to detect CO failures. In multi-cast communication
system, such as the TTA, a membership service can is available to detect and identify
CO failures. Another mechanism for CO failure detection is the acknowledgement
mechanism of the CAN protocol[5].

In a multicast environment it is important to distinguish between an omission fail-
ure at the sender and an omission failure at one of the receivers. If the sender learns
promptly about a local omission failure it can often undo the state-change assumed to
have taken place by rolling back to the state before the send operation. In case of an
omission failure at one of the receivers, such a rollback is not possible.

Prompt CO failure detection and diagnosis at the architecture level is important in
order to inform the application that consistency has been lost, and which unit is re-
sponsible for the loss of consistency. The application can then decide what corrective
action must be taken.

Babbling idiot failures: A babbling idiot failure of an FCR occurs, if the FCR
starts sending untimely messages. In a multicast time-triggered communication topol-
ogy that contains a broadcast channel such a babbling FCR can interfere with the
communication of the correct nodes. If an FCR exhibits permanent babbling-idiot
failures on both channels (this is in principle possible, since both channels are in the
same FCR) any further communication among the correct nodes becomes impossible.
The TTA detects and handles babbling-idiot failures of FCRs by the guardians in the
communication system. The guardian will only open the sending channels during the
a priori known time-interval that has been allocated to a node.

Slightly-off-Specification (SOS) Failures: Slightly-off-specification failures are an
important special case of Byzantine failures. They can occur at the interface between
the analog and the digital world. Assume the situation as depicted in Figure 1. The
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specification requires that every correct node must accept analog input signals if they
are within a specified receive window of a parameter (e.g., timing, frequency, or volt-
age). Every individual node will have a wider actual receive window than the one speci-
fied in order to ensure that even if there are slight variations in manufacturing it can
accept all correct input signals as required by the specification. These actual receive
windows will be slightly different for the individual nodes, as shown in Fig 4. If an
erroneous FCR produces an output signal (in time or value) slightly outside the speci-
fied window, some nodes will correctly receive this signal, while others might fail to
receive this signal. Such a scenario will result in an inconsistent state of the
distributed system.

Parameter (e.g., Time, Voltage) SOS Incorrect

A Output Signal
| / from a node

Receive window of Parameter according to Specification

Actual receive
R ] ‘\ég window of
\ . . .
individual nodes

Node L-F R-B R-F L-B
(all correct, since they all contain the specified receive window!)

Fig. 1. Slightly off Specification (SOS) failure

Example: Consider a brake-by-wire system where four receiving nodes are at the
four wheels of a car (L-F: left front, R-B: right back, R-F: right front, L-B: Left back).
In this example an SOS output failure of the “brake master” will cause confusion in the
distributed system. According to this example, the L-Front and the L-Back node will
accept the SOS message, while the R-Back and R-Front node will discard this message.
In a brake-by-wire system, such an inconsistency can become safety relevant.

In the TTA we must address the following three types of SOS failures:

(i) SOS value failure
(i) SOS coding failures
(iii) SOS send-instant failures.

An SOS value failure occurs, if the signal level of the outgoing message is SOS
faulty. Some receivers may still correctly decode such an SOS faulty signal, while
others may not be able to decode this signal. Since both outgoing channels of an FCR
depend on the same power supply, the probability that SOS value failures on both
channels are correlated.

An SOS coding failure occurs, if the bit stream from the sender is at the border of
the coding specification, e.g., the frequency is SOS faulty. Since both channels are
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driven by the same oscillator the probabilities for the occurrence of an SOS coding
failure on both channels are not independent.

An SOS send-instant failure occurs, if the send-instant of a message transmission
(see Section 3.1 ) is SOS faulty. A message that is SOS send-instant faulty may be
accepted by some nodes and rejected by others. Again, SOS send-instant failures on
the two channels are correlated.

Masquerading Failures: A masquerading failure occurs if an erroneous node
assumes the identity of another node and causes harm to the system. Systems that
rely on names stored in a message to identify the transported message and the in-
formation contained therein are vulnerable to masquerading failures. It opens the
possibility that a single faulty node can masquerade other nodes, without the re-
ceivers having a chance to detect the fault. For example, if a bit in the name of a
message to-be-sent that is stored in the sending node is incorrect, this message
could, after arrival at its destination, overwrite correct messages at correct receiv-
ers. This problem is discussed at some length in the safety-critical SafeBus protocol
[6] p.36: Any protocol that includes a destination memory address in a message is a
space-partitioning problem.

Massive Transient Disturbances: Another important fault class in a distributed
embedded system, particularly in the automotive domain, is concerned with massive
transient disturbances, e.g., those caused by electromagnetic emission (EMI). A
massive transient disturbance can cause the temporary loss of communication
among otherwise correct nodes that reside in different FCRs or cause state-
corruptions within more than one node. Based on available failure data [2] it is
reasonable to assume that the multiple correlated faults produced by a massive tran-
sient disturbance are transient, i.e. that the hardware is not faulted by the massive
transient disturbance. In such a situation the architecture can provide the service of
prompt error detection in order that the nodes may take some local corrective action
until the transient disturbance has disappeared and the communication service and
the consistency of the nodes is reestablished by a fast restart. For example, [7] re-
port that in an automotive environment a temporary loss of communication of up to
50 msec can be tolerated by freezing the actuators in the positions that were taken
before the onset of the transient disturbance. The probability of occurrence of tran-
sient disturbances must be reduced by proper quality engineering, e.g., by shielding
the cables or installing fiber optics instead of copper. In a safety-critical distributed
system massive transient disturbances must be rare events. From the point of view
of the communication system, fast detection of a transient disturbance and fast re-
covery after the transient has disappeared are important.

2.3 Frequency of Faults

The assumptions about the frequency of fault occurrence are depicted in Table 1.
We distinguish between transient failures and permanent failures as well as between
fail-silent failures and Byzantine failures.
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Table 1. Assumed failure rates

Type of Failure Failure Rate Source
permanent fail silent < 100 FIT Field data from the auto-
(MTTF > 1 000 000 hours) motive industry([2]
transient fail silent < 100 000 FIT SEUs caused by
(MTTF > 1000 hours) neutrons|[8]
permanent Byzantine < 2FIT Fault injection
(MTTF 50 000 000 hours) experiments[4]
transient Byzantine < 2000 FIT Fault injection
(MTTF > 50 000 hours) experiments[4]

Whereas the data in line one--permanent failures--is derived from extensive field
data, the assumptions of line two, three and four are not as well supported by
experimental data and field evidence. In particular it is very difficult to find a good
estimate for the transient failure rates, because these failure are very dependent upon
the environmental conditions (e.g., geometry of the setup determines the susceptibility
with respect to EMI, geographical position and altitude determines the rate of SEUs
etc..) of the unit under observation. The failure rates of Table 1 are our best estimates
and are used in our reliability models to calculate the service availability of the TTA.

3 Structure of the TTA

The time-triggered architecture (TTA) is a distributed architecture for the implemen-
tation of hard real-time applications. It consists of a set of nodes interconnected by a
TDMA (time-division multiple access) based real-time communication system. The
TTA provides the following services to the application at the architecture level

(i) a consistent distributed computing platform with prompt error detection if con-
sistency is lost by a failure that can be detected at the architecture level.

(ii)) afault-tolerant global sparse time base of known precision at all nodes

(iii) mechanisms for the precise operational specification of the interfaces among the
nodes in the domains of time and value. These interfaces are called “temporal
firewalls”.

(iv) error containment such that arbitrary node failures can be tolerated

(v) mechanisms that support the transparent implementation of fault-tolerance.

In the following section we will discuss two essential characteristics of the TTA, the
TTA view of time and state.

3.1 Global Sparse Time

For most applications, a model of time based on Newtonian physics is adequate. In
this model, real time progresses along a dense timeline, consisting of an infinite set of
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instants, from the past to the future. A duration (or interval) is a section of the
timeline, delimited by two instants. A happening that occurs at an instant (i.e., a cut
of the timeline) is called an event. An observation of the state of the world at an
instant is thus an event. The time-stamp of an event is established by assigning the
state of the local clock of the observer to the event immediately after the event oc-
currence. Due to the impossibility of synchronizing clocks perfectly and the dense-
ness property of real time, there is always the possibility of the following sequence
of events occurring: clock in component j ticks, event e occurs, clock in component
k ticks. In such a situation, the single event e is time-stamped by the two clocks j
and & with a difference of one tick. The finite precision of the global time-base and
the digitalization of the time make it impossible in a distributed system to order
events consistently on the basis of their global time-stamps based on a dense time.
This problem is solved by the introduction of a sparse time base in the TTA. In the
sparse-time model the continuum of time is partitioned into an infinite sequence of
alternating durations of activity and silence as shown in Figure 2. The activity inter-
vals form a synchronized system-wide action lattice. From the point of view of
temporal ordering, all events that occur within a duration of activity of the action
lattice are considered to happen at the same time. Events that happen in the distrib-
uted system at different components at the same global clock-tick are thus consid-
ered simultaneous. Events that happen during different durations of activity (at
different points of the action lattice) and are separated by the required interval of
silence (the duration of this silence interval depends among others, on the precision
of the clock synchronization [9]) can be temporally ordered on the basis of their
global timestamps. The architecture must make sure that significant events, such as
the sending of a message, or the observation of the environment, occur only during
an interval of activity of the action lattice. The time-stamps of events that are based
on a sparse time base can be mapped on the set of positive integers. It is then pos-
sible to establish the temporal order of events by integer arithmetic.

-

a s a s a Rea 1 Time

a dur ation of activity
s du rationo f silence

Fig. 2. Sparse time base

The timestamps of events that are outside the control of the distributed computer
system (and therefore happen on a dense timeline) must be assigned to an agreed
lattice point of the action lattice by an agreement protocol. Agreement protocols
are also needed to come to a system-wide consistent view of analogue values that
are digitized by more than one analogue-to-digital converter.



