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Preface

This is the second volume of the Paris-Princeton Lectures in Mathematical Finance.
The goal of this series is to publish cutting edge research in self-contained articles
prepared by well known leaders in the field or promising young researchers invited
by the editors. Particular attention is paid to the quality of the exposition, and the aim
is at articles that can serve as an introductory reference for research in the field.

The series is a result of frequent exchanges between researchers in finance and
financial mathematics in Paris and Princeton. Many of us felt that the field would
benefit from timely exposés of topics in which there is important progress. René Car-
mona, Erhan Cinlar, Ivar Ekeland, Elyes Jouini, José Scheinkman and Nizar Touzi
will serve in the first editorial board of the Paris-Princeton Lectures in Financial
Mathematics. Although many of the chapters in future volumes will involve lectures
given in Paris or Princeton, we will also invite other contributions. Given the current
nature of the collaboration between the two poles, we expect to produce a volume
per year. Springer Verlag kindly offered to host this enterprise under the umbrella of
the Lecture Notes in Mathematics series, and we are thankful to Catriona Byrne for
her encouragement and her help in the initial stage of the initiative.

This second volume contains three chapters. The first one is written by Tomasz
Bielecki, Monique Jeanblanc and Marek Rutkowski. It reviews recent developments
in the reduced form approach to credit risk and offers an exhaustive presentation of
the hedging issues when contingent claims are subject to counterparty default. The
second chapter is contributed by Tomas Bjork and is based on a short course given
by him during the Spring of 2003 at Princeton University. It gives a detailed intro-
duction to the geometric approach to mathematical models of fixed income markets.
This contribution is a welcome addition to the long list of didactic surveys written
by the author. Like the previous ones, it is bound to become a reference for the new-
comers to mathematical finance interested in learning how and why the geometric
point of view is so natural and so powerful as an analysis tool. The last chapter is
due to José Scheinkman and Wei Xiong. It considers dynamic trading by agents with
heterogeneous beliefs. Among other things, it uses short sale constraints and over-
confidence of groups of agents to show that equilibrium prices can be consistent with
speculative bubbles.

It is anticipated that the publication of this volume will coincide with the Third
World Congress of the Bachelier Finance Society, to be held in Chicago (July 21-24,
2004).

The Editors
Paris / Princeton
June 04, 2004.
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Summary. The goal of this chapter is to present a survey of recent developments in the prac-
tically important and challenging area of hedging credit risk. In a companion work, Bielecki et
al. (2004a), we presented techniques and results related to the valuation of defaultable claims.
It should be emphasized that in most existing papers on credit risk, the risk-neutral valuation
of defaultable claims is not supported by any other argument than the desire to produce an
arbitrage-free model of default-free and defaultable assets. Here, we focus on the possibil-
ity of a perfect replication of defaultable claims and, if the latter is not feasible, on various
approaches to hedging in an incomplete setting.
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Introduction

The present chapter is naturally divided into three different parts.

Part I is devoted to methods and results related to the replication of defaultable claims
within the reduced-form approach (also known as the intensity-based approach). Let
us mention that the replication of defaultable claims in the so-called structural ap-
proach, which was initiated by Merton (1973) and Black and Cox (1976), is entirely
different (and rather standard), since the value of the firm is usually postulated to be
a tradeable underlying asset. Since we work within the reduced-form framework, we
focus on the possibility of an exact replication of a given defaultable claim through
a trading strategy based on default-free and defaultable securities. First, we analyze
(following, in particular, Vaillant (2001)) various classes of self-financing trading
strategies based on default-free and defaultable primary assets. Subsequently, we
present various applications of general results to financial models with default-free
and defaultable primary assets are given. We develop a systematic approach to repli-
cation of a generic defaultable claim, and we provide closed-form expressions for
prices and replicating strategies for several typical defaultable claims. Finally, we
present a few examples of replicating strategies for particular credit derivatives. In
the last section, we present, by means of an example, the PDE approach to the valu-
ation and hedging of defaultable claims within the framework of a complete model.

In Part II, we formulate a new paradigm for pricing and hedging financial risks in
incomplete markets, rooted in the classical Markowitz mean-variance portfolio se-
lection principle and first examined within the context of credit risk by Bielecki and
Jeanblanc (2003). We consider an investor who is interested in dynamic selection of
her portfolio, so that the expected value of her wealth at the end of the pre-selected
planning horizon is no less then some floor value, and so that the associated risk, as
measured by the variance of the wealth at the end of the planning horizon, is mini-
mized. If the perfect replication is not possible, then the determination of a price that
the investor is willing to pay for the opportunity, will become subject to the investor’s
overall attitude towards trading. In case of our investor, the bid price and the corre-
sponding hedging strategy is to be determined in accordance with the mean-variance
paradigm.

The optimization techniques used in Part II are based on the mean-variance portfo-
lio selection in continuous time. To the best of our knowledge, Zhou and Li (2000)
were the first to use the embedding technique and linear-quadratic (LQ) optimal con-
trol theory to solve the continuous-time mean-variance problem with assets having
deterministic diffusion coefficients. Their approach was subsequently developed in
various directions by, among others, Li et al. (2001), Lim and Zhou (2002), Zhou
and Yin (2002), and Bielecki et al. (2004b). For an excellent survey of most of these
results, the interested reader is referred to Zhou (2003).

In the final part, we present a few alternative ways of pricing defaultable claims in
the situation when perfect hedging is not possible. We study the indifference pricing
approach, that was initiated by Hodges and Neuberger (1989). This method leads
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us to solving portfolio optimization problems in an incomplete market model, and
we shall use the dynamic programming approach. In particular, we compare the in-
difference prices obtained using strategies adapted to the reference filtration to the
indifference prices obtained using strategies based on the enlarged filtration, which
encompasses also the observation of the default time. We also solve portfolio opti-
mization problems for the case of the exponential utility; our method relies here on
the ideas of Rouge and El Karoui (2000) and Musiela and Zariphopoulou (2004).
Next, we study a particular indifference price based on the quadratic criterion; it will
be referred to as the quadratic hedging price. In a default-free setting, a similar study
was done by Kohlmann and Zhou (2000). Finally, we present a solution to a specific
optimization problem, using the duality approach for exponential utilities.

Part I. Replication of Defaultable Claims

The goal of this part is the present some methods and results related to the replication
of defaultable claims within the reduced-form approach (also known as the intensity-
based approach). In contrast to some other related works, in which this issue was
addressed by invoking a suitable version of the martingale representation theorem
(see, for instance, Bélanger et al. (2001) or Blanchet-Scalliet and Jeanblanc (2004)),
we analyze here the possibility of a perfect replication of a given defaultable claim
through a trading strategy based on default-free and defaultable securities. There-
fore, the important issue of the choice of primary assets that are used to replicate
a defaultable claim (e.g., a vulnerable option or a credit derivative) is emphasized.
Let us stress that replication of defaultable claims within the structural approach to
credit risk is rather standard, since in this approach the default time is, typically, a
predictable stopping time with respect to the filtration generated by prices of primary
assets.

By contrast, in the intensity-based approach, the default time is not a stopping time
with respect to the filtration generated by prices of default-free primary assets, and it
is a totally inaccessible stopping time with respect to the enlarged filtration, that is,
the filtration generated by the prices of primary assets and the jump process associ-
ated with the random moment of default.

Our research in this part was motivated, in particular, by the paper by Vaillant (2001).
Other related works include: Wong (1998), Arvanitis and Laurent (1999), Green-
field (2000), Lukas (2001), Collin-Dufresne and Hugonnier (2002) and Jamshidian
(2002).

For a more exhaustive presentation of the mathematical theory of credit risk, we
refer to the monographs by Cossin and Pirotte (2000), Arvanitis and Gregory (2001),
Bielecki and Rutkowski (2002), Dutfie and Singleton (2003), or Schonbucher (2003).
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This part is organized as follows. Section 1 is devoted to a brief description of the
basic concepts that are used in what follows. In Section 2, we formally introduce the
definition of a generic defaultable claim (X, Z, C, 7) and we examine the basic fea-
tures of its ex-dividend price and pre-default value. The well-known valuation results
for defaultable claims are also provided. In the next section, we analyze (following, in
particular, Vaillant (2001)) various classes of self-financing trading strategies based
on default-free and defaultable primary assets.

Section 4 deals with applications of results obtained in the preceding section to finan-
cial models with default-free and defaultable primary assets. We develop a system-
atic approach to replication of a generic defaultable claim, and we provide closed-
form expressions for prices and replicating strategies for several typical defaultable
claims. A few examples of replicating strategies for particular credit derivatives are
presented.

Finally, in the last section, we examine the PDE approach to the valuation and hedg-
ing of defaultable claims.

1 Preliminaries

In this section, we introduce the basic notions that will be used in what follows. First,
we introduce a default-free market model; for the sake of concreteness we focus on
default-free zero-coupon bonds. Subsequently, we shall examine the concept of a
random time associated with a prespecified hazard process.

1.1 Default-Free Market

Consider an economy in continuous time, with the time parameter ¢t € R;. We are
given a filtered probability space ({2, F,P*) endowed with a d-dimensional standard
Brownian motion W*. It is convenient to assume that F is the P*-augmented and
right-continuous version of the natural filtration generated by W*. As we shall see in
what follows, the filtration [ will also play an important role of a reference filtration
for the intensity of default event. Let us recall that any (local) martingale with respect
to a Brownian filtration F is continuous; this well-known property will be of frequent
use in what follows.

In the first step, we introduce an arbitrage-free default-free market. In this market,
we have the following primary assets:

e A money market account B satisfying
dBf = I'fo dt, B() =1,

or, equivalently,
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t
B; = exp </ T du) ,
0

where 7 is an F-progressively measurable stochastic process. Thus, B is an [F-
adapted, continuous, and strictly positive process of finite variation.
e Default-free zero-coupon bonds with prices

B(t,T) = BiEp-(B;' | Ft), Vt<T,

where T is the bond’s maturity date. Since the filtration F is generated by a
Brownian motion, for any maturity date 7" > 0 we have

dB(t.T) = B(t.T)(r dt + b(t,T) dW)

for some F-predictable, R?-valued process b(t,T'), referred to as the bond’s
volatility.

For the sake of expositional simplicity, we shall postulate throughout that the default-
free term structure model is complete. The probability P* is thus the unique mar-
tingale measure for the default-free market model. This assumption is not essen-
tial, however. Notice that all price processes introduced above are continuous [F-
semimartingales.

Remarks. The bond was chosen as a convenient and practically important example
of a tradeable financial asset. We shall be illustrating our theoretical derivations with
examples in which the bond market will play a prominent role. Most results can be
easily applied to other classes of financial models, such as: models of equity markets,
futures markets, or currency markets, as well as to models of LIBORs and swap rates.

1.2 Random Time

Let 7 be a non-negative random variable on a probability space ({2, G, Q*), termed
a random time (it will be later referred to as a default time). We introduce the jump
process H; = 1l{.<; and we denote by H the filtration generated by this process.

Hazard process. We now assume that some reference filtration F such that F; C G
is given. We set G = FVH sothat G, = F;VH; = o(F;. H;) foreveryt € R,. The
filtration G is referred to as to the full filtration: it includes the observations of default
event. It is clear that 7 is an H-stopping time, as well as a G-stopping time (but not
necessarily an F-stopping time). The concept of the hazard process of a random time
7 is closely related to the process F; which is defined as follows:

Ff:Q*{T§f|f{}. Vt€R+

Let us denote Gy = 1 — F; = Q*{r > t|F;} and let us assume that G; > 0 for
every t € R, (hence, we exclude the case where 7 is an F-stopping time). Then the
process I' : R, — Ry, given by the formula
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Ii=—-In(l-F)=—-InG,, VteRy,

is termed the hazard process of a random time 7 with respect to the reference filtra-
tion I, or briefly the F-hazard process of 7.

Notice that I',, = oo and I' is an F-submartingale, in general. We shall only con-
sider the case when I is an increasing process (for a construction of a random time
associated with a given hazard process I', see Section 1.2). This indeed is not a se-
rious compromise to generality. We refer to Blanchet-Scalliet and Jeanblanc (2004)
for a discussion regarding completeness of the underlying financial market and prop-
erties of the process I". They show that if the underlying financial market is complete
then the so-called (H) hypothesis is satisfied and, as a consequence, the process I is
indeed increasing.

Remarks. The simplifying assumption that Q*{7 > t|F;} > 0 for every t €
R4 can be relaxed. First, if we fix a maturity date 7', it suffices to postulate that
Q*{r > T|Fr} > 0. Second, if we have Q*{7 < T} = 1, so that the default
time is bounded by some U = ess sup7T < 7T, then it suffices to postulate that
Q*{r > t|F} > 0forevery t € [0,U) and to examine separately the event
{7 = U}. For a general approach to hazard processes, the interested reader is referred
to Bélanger et al. (2001).

Deterministic intensity. The study of a simple case when the reference filtration F
is trivial (or when a random time 7 is independent of the filtration [F, and thus the
hazard process is deterministic) may be instructive. Assume that 7 is such that the
cumulative distribution function F'(t) = Q*{7 < t} is an absolutely continuous
function, that is, .
Fit)y= [ f(u)du

Jo

for some density function f : Ry — R, . Then we have

Fi)=1-eTW =1 e Jorwdu  yieR,

where (recall that we postulated that G(t) = 1 — F'(t) > 0)

f(t)
t) = ——F—~, VteR,.
The function v : Ry — R is non-negative and satisfies ]UX Y(u)du = oo. It is
called the intensity function of T (or the hazard rate). It can be checked by direct
calculations that the process H; — fot T v(u) du is an H-martingale.

Stochastic intensity. Assume that the hazard process I is absolutely continuous
with respect to the Lebesgue measure (and therefore an increasing process), so that
there exists a process v such that [; = fot Yo du for every t € Ry. Then the F-
predictable version of « is called the stochastic intensity of T with respect to IF,
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or simply the F-intensity of 7. In terms of the stochastic intensity, the conditional
probability of the default event {¢t < 7 < T'}, given the full information G; available
at time ¢, equals

7).

Q*{T >T | g,} = ﬂ{‘r>t} Eg- <€_ftT Yu du ]:t)

It can be shown (see, for instance, Jeanblanc and Rutkowski (2002) or Bielecki and
Rutkowski (2004)) that the process

Q*{t < T S T|g[} = 11{7'>t} E@* (1 B e_frT—Y“ du

Thus

TAL t
Hf*F-,—/\f:H[—/ 7“du:/ (I—Hu,)’yud7l,7 Vt€R+,

0 0

is a (purely discontinuous) G-martingale

Construction of a Random Time

We shall now briefly describe the most commonly used construction of a random
time associated with a given hazard process 1. It should be stressed that the random
time obtained through this particular method — which will be called the canonical
construction in what follows — has certain specific features that are not necessarily
shared by all random times with a given F-hazard process I". We start by assuming
that we are given an F-adapted, right-continuous, increasing process I" defined on a
filtered probability space ({2, F,P*). As usual, we assume that ;) = 0 and I
+oo. In many instances, the hazard process I is given by the equality

t
Iy= / Yudu, VteR,,

0
for some non-negative, F-predictable, stochastic intensity . To construct a random
time 7 such that I is the F-hazard process of 7, we need to enlarge the underlying
probability space {2. This also means that I is not the F-hazard process of 7 un-
der P*, but rather the F-hazard process of 7 under a suitable extension Q* of the
probability measure P*. Let £ be a random variable defined on some probability
space (12, F,Q), uniformly distributed on the interval [0, 1] under Q. We consider
the product space {2 = 2 x Q endowed with the product o-field G = Fo ® F and
the product probability measure Q* = P* ® Q The latter equality means that for
arbitrary events A € F., and B € F we have Q*{A x B} = P*{A}Q{B}. We
define the random time 7 : {2 — R by setting

r=inf{teR;:e "<&} =inf{teR,: 1} >n},

where the random variable 7 = — In £ has a unit exponential law under Q*. It is not
difficult to find the process F; = Q*{r < t|F;}. Indeed, since clearly {7 > t} =
{€ < e~ Tt} and the random variable I is . -measurable, we obtain
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Q{r >t Fx} =Q{€ < et | Foc} = @{E < e Toep = e
Consequently, we have
L= F = Q{7 > t| R} = Eq- (Q{r > t| Fu} | F) = 7",

and so F' is an F-adapted, right-continuous, increasing process. It is also clear that
I' is the F-hazard process of 7 under Q*. Finally, it can be checked that any P*-
Brownian motion W* with respect to F remains a Brownian motion under Q* with
respect to the enlarged filtration G = F v H.

2 Defaultable Claims

A generic defaultable claim (X, C', Z, 7) with maturity date 7" consists of:

e The default time T specifying the random time of default and thus also the default
events {7 < t} forevery ¢ € [0, T]. It is always assumed that 7 is strictly positive
with probability 1.

e The promised payoff X, which represents the random payoff received by the
owner of the claim at time 7', if there was no default prior to or at time 7'. The
actual payoft at time T" associated with X thus equals X T, 7y.

e The finite variation process C' representing the promised dividends — that is, the
stream of (continuous or discrete) random cash flows received by the owner of
the claim prior to default or up to time 7', whichever comes first. We assume that
Cr—Cp_=0.

e The recovery process Z, which specifies the recovery payoff Z, received by the
owner of a claim at time of default, provided that the default occurs prior to or at
maturity date 7.

It is convenient to introduce the dividend process D, which represents all cash flows
associated with a defaultable claim (X, C, Z, 7). Formally, the dividend process D
is defined through the formula

Dy = X175y lip,)(t) +/

(1 H,)dC, + / Z,dH,,
(0.1]

(0,1]

where both integrals are (stochastic) Stieltjes integrals.

Definition 1. The ex-dividend price process U of a defaultable claim of the form
(X,C, Z, 1) which settles at time T is given as

B = B EQ*(/('LT] B-1dD, 'g,). Vit e[0.7),

where Q* is the spot martingale measure and B is the savings account. In addition,
at maturity date we set Ur = Urp(X) + Up(Z) = XU roqy + Zr =7} .



Hedging of Defaultable Claims 9

Observe that U; = U (X) + Uy (Z) + Uy (C'), where the meaning of Uy (X)), Uy (Z)
and U;(C) is clear. Recall also that the filtration G models the full information, that
is, the observations of the default-free market and of the default event.

2.1 Default Time

We assume from now on that we are given an F-adapted, right-continuous, increasing
process I on (£2,F,P*) with I\, = oo. The default time 7 and the probability
measure Q* are constructed as in Section 1.2. The probability Q* will play the role
of the martingale probability for the defaultable market. It is essential to observe
that:

e The Wiener process W* is also a Wiener process with respect to G under the
probability measure Q*.
e Wehave Qy, = Pj, foreveryt € [0,7].

If the hazard process /' admits the integral representation /; = fot Y. du then the
process 7 is called the (stochastic) intensity of default with respect to the reference
filtration F.

2.2 Risk-Neutral Valuation

We shall now present the well-known valuation formulae for defaultable claims
within the reduced-form setup (see, e.g., Lando (1998), Schonbucher (1998), Bi-
elecki and Rutkowski (2004) or Bielecki et al. (2004a)).

Terminal payoff. The valuation of the terminal payoff is based on the following
classic result.

Lemma 1. For any G-measurable, integrable random variable X and anyt < T we

have
Eq+ (L{r>7y X | Ft)

Q*(T>t|fy)

Eg: (Lr>my X |Gt) = 175y
If, in addition, X is Fp-measurable then

Eg (L(r>7) X | Gt) = Nirspy Bge (e 717 X | 7).

Let X be an Fp-measurable random variable representing the promised payoff at
maturity date 7. We consider a defaultable claim of the form 1l ;- 7} X with zero
recovery in case of default (i.e., we set Z = C' = 0). Using the definition of the
ex-dividend price of a defaultable claim, we get the following risk-neutral valuation
formula
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U(X) =By EQ‘*(B%I]I{T>T}X |Gt)

which holds for any ¢ < T. The next result is a straightforward consequence of
Lemma 1.

Proposition 1. The price of the promised payoff X satisfies for t € [0, T)
Ui(X) = BiEg- (Bi' X1 a1y | G) = L Un(X), (1)
where we define
Uy(X) = B;Eg-(By'e"" =" X | F;) = B, Eg- (B3 X | F),

where the risk-adjusted savings account By equals B; = Biel*. If, in addition, the
default time admits the intensity process vy then

t
B; = exp </ (Tu + Yu) du) :
Jo

The process ljt(X ) represents the pre-default value at time t of the promised payoft

X . Notice that Ur(X) = X and the process U,(X)/By, t € [0,T), is a continuous
[F-martingale (thus, the process U (X ) is a continuous F-semimartingale).

Remark. The valuation formula (1), as well as the concept of pre-default value,
should be supported by replication arguments. To this end, we need first to construct
a suitable model of a defaultable market. In fact, if we wish to use formula (1), we
need to know the joint law of all random variables involved, and this appears to be a
non-trivial issue, in general.

Recovery payoff. The following result appears to be useful in the valuation of the
recovery payoff Z, which occurs at time 7. The process U(Z) introduced below
represents the pre-default value of the recovery payoff.

For the proof of Proposition 2 we refer, for instance, to Bielecki and Rutkowski
(2004) (see Propositions 5.1.1 and 8.2.1 therein).

Proposition 2. Let the hazard process I be continuous, and let Z be an IF-predictable
bounded process. Then for every t € [0,T] we have

Ul(Z) = BiEqg-(B; ' Z: 1L {y<r<1y | Gt)

T
= ]1{7>f}BtE@*(/ Z,LB;](’,F’_[‘“ drl,
t

f,) = 150 0i(2).
where we set

T
U.(Z) = B, E@*( / Z,B;dr,

t

]—]), Vit e[o,T).
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If the default intensity ~ with respect to F exists then we have

T
Ui(Z) = Eg- (/ Zye~ i ety dv Yu du l .7-}).
t

Remark. Notice that [7T(Z) = 0 while, in general, Ur(Z) = Z7ll{;—p) is non-
zero. Note, however, that if the hazard process I is assumed to be continuous then
we have Q* {7 =T} = 0, and thus Up(Z) = 0= Urp(Z).

Promised dividends. To value the promised dividends C' that are paid prior to default
time 7 we shall make use of the following result. Notice that at any date ¢ < 7' the
process U(C') gives the pre-default value of future promised dividends.

Proposition 3. Let the hazard process I be continuous, and let C be an F-predictable,
bounded process of finite variation. Then for every t € [0,T]

o)

= H{T>f}B, ]E(@* ( / B,;l(’F'_F'l dCu
J(t,T)

U,(C) = B, Eg- (/( . B;'(1- H,)dC,
oy

]:f) = ﬂ{‘r>t}l7f(0)*

where we define

U,(C) = éf ]EQ* (/ E;l (]C,L

(t,7]

]-',), Vit e [0,7].
If, in addition, the default time T admits the intensity ~y with respect to F then

ﬁf(C) = IEQ* (/( 1 e f,u('l'u+’7u) dv dCU
t,

).

2.3 Defaultable Term Structure

For a defaultable discount bond with zero recovery it is natural to adopt the following
definition (the superscript O refers to the postulated zero recovery scheme) of the
price B

D°(t,T) = BiEg+(By' U757} |Gi) = U753 D°(8, T),

where lN)O(t, T') stands for the pre-default value of the bond, which is given by the
following equality: R R R

DU(t,T) = By Eq- (B | Fb).
Since F is the Brownian filtration, the process D°(¢,T)/B; is a continuous, strictly
positive, F-martingale. Therefore, the pre-default bond price DY(¢,T') is a continu-

ous, strictly positive, F-semimartingale. In the special case, when [ is deterministic,
we have DO(t,T) = e't=I'r B(t, T).



