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Preface

This LNCS volume contains the papers presented at the second Workshop on
Human Motion Understanding, Modeling, Capture and Animation, which took
place on October 20th, 2007, accompanying the 11th IEEE International Con-
ference on Computer Vision in Rio de Janeiro, Brazil.

In total, 38 papers were submitted to this workshop, of which 22 papers were
accepted. We were careful to ensure a high standard of quality when selecting
the papers. All submissions were double-blind reviewed by at least two experts.
Out of the 22 accepted papers, 10 were selected for oral presentation and 12 for
posters. We thank the authors of the accepted papers for taking the reviewers’
comments into account in the final published versions of their papers. We thank
all of the authors who submitted their work, and we trust that the reviewers’
comments have been of value for their research activities.

The accepted papers reflect the state of the art in the field and cover various
topics related to human motion tracking and analysis. The papers in this volume
have been classified into three categories based on the topics they cover: human
motion capture and pose estimation, body and limb tracking and segmentation,
and activity recognition.

It was a special honor to have Prof. Demetri Terzopulos (University of Cal-
ifornia, Los Angeles) as the invited speaker at the workshop. We are especially
grateful to the members of the Program Committee for their remarkable efforts
and the quality of their timely reviews. The organization of this event would not
have been possible without the effort and the enthusiasm of several people, and
we thank all who contributed.

October 2007 Ahmed Elgammal
Bodo Rosenhahn
Reinhard Klette
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Marker-Less 3D Feature Tracking for
Mesh-Based Human Motion Capture

Edilson de Aguiar!, Christian Theobalt?, Carsten Stoll!,
and Hans-Peter Seidell

! MPI Informatik, Germany

2 Stanford University, USA
{edeaguia, stoll, hpseidel}@mpi-inf.mpg.de,

theobalt@cs.stanford.edu

Abstract. We present a novel algorithm that robustly tracks 3D tra-
jectories of features on a moving human who has been recorded with
multiple video cameras. Our method does so without special markers in
the scene and can be used to track subjects wearing everyday apparel. By
using the paths of the 3D points as constraints in a fast mesh deformation
approach, we can directly animate a static human body scan such that
it performs the same motion as the captured subject. Our method can
therefore be used to directly animate high quality geometry models from
unaltered video data which opens the door to new applications in mo-
tion capture, 3D Video and computer animation. Since our method does
not require a kinematic skeleton and only employs a handful of feature
trajectories to generate lifelike animations with realistic surface defor-
mations, it can also be used to track subjects wearing wide apparel, and
even animals. We demonstrate the performance of our approach using
several captured real-world sequences, and also validate its accuracy.

1 Introduction

Nowadays, generating realistic and lifelike animated characters from captured
real-world motion sequences is still a hard and time-consuming task. Tradition-
ally, marker-based optical motion capture systems [1] reconstruct the motion of
a moving subject by measuring the 3D trajectories of optical beacons attached
to her body. The optical markers are then mapped to a kinematic skeleton struc-
ture [2]. Marker-free methods also exist that are able to measure human motion
in terms of a kinematic skeleton without any intrusion into the scene. Thereafter,
the model geometry and the skeleton need to be connected such that the surface
deforms realistically with the body motion by specifying the influence of each
bone on both rigid and non-rigid surface deformation [3].

Stepping directly from a captured real-world sequence to the corresponding
realistic moving character is still challenging. Several methods in the litera-
ture are able to partly solve this problem. Since marker-based and marker-free
motion capture systems measure the motion in terms of a kinematic skeleton,
they have to be combined with other scanning technologies to capture the time-
varying shape of the human body surface [4,5,6]. However, dealing with people

A. Elgammal et al. (Eds.): Human Motion 2007, LNCS 4814, pp. 1-15, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 E. de Aguiar et al.

wearing arbitrary clothing from only video streams is still not possible. Time-
varying scene representations can also be reconstructed by means of shape-from-
silhouette approaches [7], or with combined silhouette- and stereo-based meth-
ods [8]. Unfortunately, the measured models often lack detail if only a small
number of input camera views is available and it is hard to preserve topological
correspondences over time. Researchers have also used physics-based methods
to track simple human motions if a kinematic skeleton is available [9]. However,
the methods can not be directly applied to objects made of a variety of different
materials, and they are not able to track arbitrarily dressed humans completely
passively.

Instead, we present a robust skeleton-less approach to automatically capture
the motion of a moving human subject and generate plausible and realistic sur-
face deformations from multiple video streams without optical markers. Our
algorithm is simple and versatile and enables us to directly animate a high qual-
ity static human scan from unaltered video footage which enables potential new
applications in motion capture, computer animation and 3D Video.

The main contribution of this paper is a simple and robust method to auto-
matically identify features on a moving human wearing everyday apparel, and
track their 3D trajectories. It does not employ any a priori information about
the subject, e.g. a kinematic skeleton, and can therefore be straightforwardly
applied to other subjects, e.g. animals or mechanical objects. We also present a
fast mesh deformation approach that uses only a handful of feature trajectories
to directly and realistically animate a static human body scan making it per-
forms the same motion as the captured subject. Our algorithm handles humans
wearing arbitrary and sparsely textured clothing. As an additional benefit, it
also preserves the mesh’s connectivity over time.

The remainder of this paper is structured as follows: Sect. 2 reviews the most
relevant related work and Sect. 3 briefly describes our overall framework. There-
after, Sect. 4 details our automatic approach to identify features and track their
3D trajectories without optical markers. Sect. 5 describes our fast deformation
scheme that is used to animate the static human model over the whole sequence
according to the constraints derived from the estimated 3D point trajectories.
Experiments and results with several captured real-world sequences are shown
in Sect. 6, and the paper concludes in Sect.7.

2 Related Work

In our research we capitalize on ideas that have been published in the fields of
object tracking, motion capture and scene reconstruction. For the sake of brevity,
we refer the interested reader to overview articles on object tracking [10,11]. The
following, is by no means a complete list of references from the other two research
topics, but merely a summary of the most related categories of approaches.
Human motion is normally measured by marker-based or marker-less opti-
cal motion capture systems [1] that parameterize the data in terms of kinematic
skeletons. Unfortunately, these approaches can not directly measure time-varying
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body shape and they even fail to track people wearing loose apparel. To overcome
this limitation, some methods use hundreds of optical markings [5] for deforma-
tion capture, combine a motion capture system with a range scanner (4,12} or a
shape-from-silhouette approach [6], or jointly use a body and a cloth model to
track the person [13]. Although achieving good results, most of these methods
require active interference with the scene or require hand-crafted models for each
individual.

Alternatively, shape-from-silhouette algorithms [7], multi-view stereo
approaches [14], or methods combining silhouette and stereo constraints [8] can
be used to reconstruct dynamic scene geometry. To obtain good quality results,
however, several cameras are required and it is hard to generate connectivity-
preserving dynamic mesh models.

Some passive methods extract 3D correspondences from images to track sim-
ple deformable objects [15] or cloth [16]. They can also be employed to jointly
capture kinematic motion parameters and surface deformations of tightly dressed
humans [17,18]. Researchers have also used physics-based shape models to track
textiles [19,20] or simple articulated humans [9]. Unfortunately, none of these
methods is able to track people dressed in arbitrary everyday apparel completely
passively.

In contrast, we propose a skeleton-less method to directly capture the poses of
a moving human subject and generate plausible surface deformations from only
a handful of input video streams. This is achieved by first robustly identifying
and tracking image features in 3D space. Thereafter, using the 3D trajectories of
the features as constraints in a Laplacian mesh editing setting [21], the human
model is realistically animated over time. By relying on differential coordinates,
plausible shape deformations for the human scan are computed without having
to specify explicit material parameters. Our algorithm is simple, robust, easy to
implement and works even for moving subjects wearing wide and loose apparel.

3 Overview

An overview of our approach is shown in Fig. 1. Our system expects as input
a multi-view video (MVV) sequence that shows the person moving arbitrarily.
After acquiring the sequence, silhouette images are calculated via color-based
background subtraction and we use the synchronized video streams to extract
and track features in 3D space over time.

Our hybrid 3D point tracking framework jointly uses two techniques to es-
timate the 3D trajectories of the features from unmodified multi-view video
streams. First, features in the images are identified using the Scale Invariant
Feature Transform (SIFT). Furthermore, SIFT is able to match a feature to its
corresponding one from a different camera viewpoint. This allows us to generate
a set of pairwise pixel correspondences between different camera views for each
time step of input video. Unfortunately, tracking the features over time using
only local descriptors is not robust if the human subject is wearing sparsely
textured clothing. Therefore, we use a robust dense optical flow method as an
additional step to track the features for each camera view separately to fill the
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Feature-based
Mesh Tracking

Scan moving

Human Scan

Fig. 1. Overview of our framework: given a multi-view video sequence showing a human
performing, our method automatically identifies features and tracks their 3D trajecto-
ries. By applying the captured trajectories to a static laser-scan of the subject we are
able to realistically animate a human model making it move the same as its real-world
counterpart in the video streams.

gaps in the SIFT tracking. By merging both source of information we are able
to reconstruct the 3D trajectories for many features over the whole sequence.

Our hybrid technique is able to correctly identify and track many 3D points.
In addition to the estimation of 3D point positions, our approach also calcu-
lates a confidence value for each estimation. Using confidence-weighted feature
trajectories as deformation constraints, our system robustly brings a static laser-
scanned triangle mesh M of the subject into life by making it follow the motion
of the actor recorded in the video frames.

4 Hybrid 3D Point Tracking

Our hybrid framework jointly employs local descriptors and dense optical flow
to identify features and estimate their 3D positions over time from multiple
calibrated camera views. In contrast to many other approaches [22,23,24], we
developed an automatic tracking algorithm that works directly on the images
without any a priori knowledge about the moving subject. It is our goal to create
a simple and generic algorithm that can be used to track features on rigid bodies,
articulated objects and non-rigidly deforming subjects in the same way.

The input to our algorithm comprises of synchronized video streams recorded
from K cameras, each containing N video frames (Fig. 2a). In the first step,
we automatically identify L important features, also called keypoints, for each
camera view k and time step ¢ and generate a set of local descriptors Fy; =
{55 ..,f,ﬁt} using SIFT [25], Fig. 2b. We extract these features using the
interest point detector proposed by Lowe [26] that is based on local 3D extrema
in the scale-space pyramid built with difference-of-Gaussian filters. The local
descriptors are built as a distinctive representation of the feature in an image
from a patch of pixels in its neighborhood.
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Since the SIFT descriptors are invariant to image scale, rotation, change in
viewpoints, and change in illumination, they can be used to find corresponding
features across different camera views. Given an image Iy ;, from camera view k
and time step ¢, and the respective set of SIFT descriptors Fj ¢, we try to match
each element of Fj; with the set of keypoints from all other camera views. We
use a matching function similar to [25], which assigns a match between f,i’t and
a keypoint in F}; if the Euclidean distance between their invariant descriptor
vectors is minimum. In order to discard false correspondences, nearest neighbor
distance ratio matching is used with a threshold Tasarcy [27] .

After matching the keypoints across all K camera views at individual time
steps, we gather all R correct pairwise matches into a list of pixel correspon-
dences C; = {c}, ..., ¢} by using all reliable matches found for each time step
t (Fig. 2¢). Each element ¢} = ((camy, P}), (cam,, P})) stores the information
about a correspondence between two different camera views, i.e. that pixel P}
in camera cam,, corresponds to pixel Pg in camera view cam, at time t.

Unfortunately, tracking the features over time using only the list of corre-
spondences C' and connecting their elements at different time steps is not ro-
bust, because it is very unlikely that the same feature will be found at all time
instants. This is specially true if the captured images show subjects performing
fast movements, where features can be occluded for a long period of time, or
when the subject wears everyday apparel with sparse texture. In the latter case,
SIFT only detects a small number of keypoints per time step, which is usually
not enough for tracking articulated objects. Therefore, in order to robustly re-
construct the 3D trajectories for the features we decided to use optical flow to
track both elements of all ¢} for each camera view separately, i.e. the pixel Pf is
tracked using camera view cam, and the pixel P; using camera view cam,,.

The 2D flow-based tracking method works as follows: for each camera view k,
we track all pixels over time using the warping-based method for dense optical
flow proposed by Brox et al. [28]. After calculating the optical low of (Ij.+, Ix.t+1)
between time step ¢t and ¢ + 1 for camera k, we use o?c to warp the image Iy ;
and we verify for each pixel in the warped image if it matches the corresponding
pixel in Iy ;1. We eliminate the pixels that do not have a partner in t+1 and the
pixels that belong to the background by comparing the warped pixels with the
pre-computed silhouette SILj 1. This process is repeated for all consecutive
time steps and for all camera views. As a result, we construct a tracking list
Dy, = {E°,..., E9} with G pixel trajectories for each camera view k (Fig. 2d).
Each element E* = {F{,..., P§} contains the positions of the pixel P} for all
time steps ¢.

The last step of our hybrid tracking scheme merges the optical flow tracking
information with the list of correspondences to reconstruct the 3D trajectories for
all features. We take pixel correspondences from all time steps into account. For
instance, if a matching cj is detected by SIFT only at the end of the sequence we
are still able to recover the anterior positions of the feature by using the optical
flow information.



6 E. de Aguiar et al.

Fig. 2. Using the synchronized video streams as input (A), our hybrid approach first
identifies features in the images using SIFT (B) and then matches these features be-
tween different pairs of camera views based on their descriptors (C). In addition, we
track these features for each camera view separately using optical flow (D). At the end,
reliable 3D trajectories for the features are reconstructed by merging both information

(E).

For each entry ¢ = ((camy, P}), (cam., P})), we verify if the pixel P} is
found in Degyp,, and if the pixel P} is found in Do, - In case both elements are
found, we estimate the position of the respective 3D point, mm,.(t), for the whole
sequence (Fig. 2e), otherwise ¢} is discarded. The 3D positions are estimated by
triangulating the viewing rays that start at the camera views cam,, and cam,,
and pass through the respective image plane pixel at P} and P}. However, due to
inaccuracies, these rays will not intersect exactly at a single point. However, we
can compute a pseudo-intersection point pos] = {z,y, z} that minimizes the sum
of squared distance to each pointing ray. We also use the inverse of this distance,
cur, as a confidence measure indicating how reliable a particular feature has been
located. If cv, is below a threshold Toon  we discard it, since it indicates that
ci assigns a wrong pixel correspondence between two different camera views.



