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Preface

Differential equations play an important role in science, engineering and
social sciences. Many phenomena in these branches of knowledge are
interpreted in terms of differential equations and their solutions. As a
result, the study of differential equations is attaining importance. In
particular, during the last two decades many useful and interesting con-
tributions have been made in this field. It is, therefore, necessary to teach
the theory and applications to students preparing for advanced training
in applied sciences and social sciences.

The aim of this book is to bring together the qualitative theory of
differential equations systematically at an introductory level. The contents
would familiarise the readers with fundamentals, principles and methods
of modern theory of ordinary differential equations. We have introduced
here basic concepts and a fairly broad spectrum of qualitative properties
of solutions of differential equations. The theory concerning linear difter-
ential equations is mainly discussed. However, many chapters deal with
results of nonlinear equations. These results have been suitably chosen to
illustrate the intricate nature of nonlinear analysis. This choice has
remained restrictive due to the introductory level of the book.

The book contains the results of linear equations and systems, solutions
by the series method, the existence and uniqueness of nonlinear initial
value problems (both local and nonlocal) and the stability theory of linear
and nonlinear equations. At an elementary level it also includes the results
of oscillations, boundary value problems and elements of control theory.
All the results have been presented in easy and lucid language.

Each chapter contains several illustrative examples. The problems given
below the articles are simple in nature while those included in the miscel-
laneous exercises are meant to cover some aspects of the theory not
necessarily included in the chapter. Hints are provided at several places.
The problems generally can be solved with the help of the theorems
and lemmas proved in the text and hence they would lead to a better
understanding of the text and help develop the skill and intuition in the
theory of differential equations.

Many important qualitative aspects could not be included in the present
volume for want of space. The numetical techniques for solving differen-
tial equations and the study of complex differential equations are some
of the omissions among other topics. Some chapters may need further
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elaboration to get a complete picture of modern developments. Yet the
properties included in the book indicate the take-off points for modern
and advanced developments in this field.

The contents of the volume are so organized as to serve as a text to
students and teachers. The pre-requisites for an introduction to the book
are elementary courses in calculus, mathematical analysis and the theory
of matrices. The material of the text can be conveniently covered in one
or two semesters depending upon the lecture time available. The book
may be also used for shorter courses by omitting some of the chapters
without losing the continuity.

This book has been written with the support of the University Grants
Commission Scheme for the ‘Production of University Level Books by
Indian Authors’. The authors are grateful to the University Grants Com-
mission for the financial support. Our thanks are due to the review com-
mittee appointed by the UGC for their kind co-operation and constructive
comments during the preparation of this book. We also thank the
authorities of the University of Bombay and its Postgraduate Centre at
Panaji who extended considerable assistance and encouragement when we
were writing this manuscript. Qur colleagues in the department extended
their help in reading the manuscript and our thanks are also due to them.
We also thank Mr. Audhut Pai for the patient typing of the manuscript.

Readers are welcome to communicate constructive comments and point
out mistakes.

S. G. Deo
V. RAGHAVENDRA
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1(45-70/1978)

: 1
Basic Concepts and Linear
Equations of the First Order

1.1 Introduction

A physical system can be studied in various ways. One among them is to
create a similar environment in a-laboratory and then study the required
characters of the system, using calibrated tools. Based on these results
a theoretical explanation can be put forth to describe the system. This is
but a means of fitting a theory for observed facts. Another method is to
propose a theory and to verify it experimentally. Both are well-known
procedures adopted in practice. In either case the common feature is
‘““theoretical formulation’’. It is found that these formulations turn out
to be differential equations in many cases. Thus the latent significance of
differential equations in studying physical phenomena becomes apparent.
This branch of mathematics called “differential equations’ is like a
bridge linking mathematics and science with its applications. Hence, it is
rightly considered as the language of the sciences. Many branches of the
sciences have led to some kind of differential equations. The importance
of differential equations lies in the abundance of their occurrence and
their utility in understanding the sciences.

The name ‘‘differential equations’ itself suggests that these are equa-
tions wherein the unknowns are connected through the concept of
derivatives. It is presumed that readers are familiar with the notion of
ordinary and partial derivatives studied in elementary calculus. Thus an
equation involving ordinary derivatives of an unknown function (for

- which the search is being made) is called an ‘‘ordinary differential

equation’.

In elementary algebra we have already learnt the meaning of a solution
to an algebraic equation

ap* +bp4-¢c=0, a#0 (1.1)
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z (real or complex) is a solution of (1.1) if z satisfies equation (1.1) or
in other words az? 4 bz 4+ ¢ = 0. But in differential equations the situa-
tion is a bit more complicated in the sense that the solution of a differen-
tial equation is neither a real nor a complex number but a function.
When a differential equation is written out the immediate query would
be to obtain the knowledge of its solution. The unknown quantity, as we
had already stressed, is a function. For illustration, consider an equation

dx _
dt
Consider whether x(¢) = ke' (where k is a real constant) is a ‘“solution™
of (1.2) or not. The easy test for this is to verify (1.2) by differentiating

x(t) = ke'. For this two things are essential: (i) x(¢f) needs to be differen-
tiable; (ii) x(¢) should satisfy equation (1.2). We observe that

-% x(t) = % (ke) = ket = x(1).

Thus x(#) is a solution of equation (1.2). In this example, the solution is
found almost by inspection. But this is not the case with many other
equations. There are a large number of equations whose solutions are
not expressible in terms of the usual functions in elementary calculus. In
fact, many differential equations have given rise to new sets of functions.
Sometimes a solution to an equation is represented by a series. However,
it is important to note that many innocent looking equations cannot be
solved with the help of well-known functions of elementary calculus.
Such equations do occur in many physical problems and their importance
- needs no emphasis. In Sec. 1.2 we elucidate this point further by citing

examples of how differential equations arise.

X. (1.2)

1.2 How Differential Equations Arise

Differential equations occur quite frequently in our daily life. The
motion of an object can always be associated with a differential equation.
The change in prices of commodities, the flow of fluids, the concentration
of chemicals, etc., often lead to differential equations. Such equations
may depend on one or more independent variables. Further, it may
include the derivatives of the first or higher order. In order to determine
their exact physical significance the unknown function needs to satisfy
certain conditions. Some problems which lead to a differential equation
are:

(i) growth problem, (ii) electric circuits, (iii) pendulum problem, (iv) the
problem of brachistochrone, and (v) family of curves.

Growth Problem

This problem occurs in various fields like economic growth, growth of
bacteria 1n medicine, decay of radioactive elements in physics and so on.
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Today the burning problem is the growth of population and the increase
in pollution.

First, a general growth problem of some entity x is considered. At this
stage, we do not pronounce what x is. Let x(¢) denote the quantity of
the entity under consideration at time 7. An assumption is made that
““the rate of growth of x(¢) at any time ¢ is proportional to x(¢)”. In
mathematical terms this amounts to the differential equation

d”;(t’) = kx(f) (1.3)

where k 1s a constant of proportionality which is positive if the problem
deals with ‘growth’ and is negative in the case of ‘decay’. The justification
of the assumption often depends on the careful observation and analysis
of experimental results. How far the law is true is not in the domain of
mathematics.

When we consider physical problems growth and decay may occur
simultaneously. A striking example is that of population in which the death
rate acts as a decay. Let us now try to formulate a simple mathematical
model for such problems. Let x(¢) denote the population at time 7. At this
stage a similar rule is adopted, namely, the rate of decay of x at a time ¢
is proportional to x(¢). Thus for decay alone it is seen that

E{Z(tt) — .._ nx(t) | (1.4)

where n is positive. Assuming growth and decay simultaneously in view
of (1.3) for k > 0 and (1.4) we have the equation,

dfi(tg = (k — m)x(¢), x(¢) = x¢ (1.5)

where x, is the amount of x present initially at the starting time #,.
From equation (1.5) it is interesting to observe that x(7) = x, when
k = n. In other words x remains constant if the rates of growth and
decay are the same. Here x(#y) = x, denotes the initial condition. Thus

finding x(¢) in (1.5) is solving the initial value problem. The explicit
definition is given in Sec. 1.7.

Electric Circuits

We study an electric circuit which contains in sertes a capacitor, an
inductor and a resistor along with a voltage source £ (Fig. 1.1).

Let £ be maintained at a constant potential of value E,;. The problem
is to find the current i(¢) in the system as a function of time when the
switch is put on. The physics of the problem: states that at any time ¢ the

. : di : ..
voltage across the inductor is L 7> across the resistor 1s iR and across
! ids

the capacitor is ok assuming that the switch is put on at time ¢ = 0.
0
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Thus by Kirchhoff’s voltage law, it is seen that at any time ¢

r___________“_“ — _““__+r__L“h_ l

Fig. 1.1

df . ! ids | |
Ld—t—l-Rz—l—j0 o E,. (1.6)

First we note that equation (1.6) is not a first order - differential equation
since i(t) (the unknown to be determined) occurs inside an integral. On
differentiating both sides of (1.6) it is seen that
dii di | i

Ldr2 | Rdt ' C_O'
Since the switch is on exactly at ¢ = 0, there is no flow of current at ¢ = 0.
Mathematically, this means i(0) = 0.

If t = 0 1s substituted in equation (1.6), it is seen that

di .
L7+ Ri0) = E.

since i(0) = 0, Li'(0) = E,. Thus the current i is determined by the
differential equation

d* o di | i )

Lo+ RS +5=0,
1.
i(0) = 0, ’ (1.7)
Li'(0) = E, |

It is noted here that the differential equation involves the derivative of
second order and two conditions are given to determine a solution. The
nature of such problems is discussed in Sec. 1.7. Note that initially we
have i(0) = 0 and Li’(0) = E,, and hence these conditions are called the
initial conditions. Indeed (1.7) itself is called an initial value problem.

-

Pendulum Problem

This part of the article is devoted to set up the equation of motion for
a simple pendulum. The friction due to the air is neglected. The basic
assumption is the conservation of energy. |

Let a pendulum bob be suspended from a point O and be at rest. Let
OA be the vertical position of the pendulum (see Fig. 1.2). At time ¢, P
denotes the position of the bob and let OP make an angle x with OA.
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The maximum displacement of the pendulum is denoted by B; the angle
that OB makes with OA is indicated by a. Here a is the maximum

R I
y _!_ ;E -

Fig. 1.2

displacement. The work done to change x to the value a is the work requir-
ed to raise the pendulum bob through a vertical distance / cos x — /cos a,
where / is the length of the pendulum. Since a denotes the angle for
maximum displacement, the velocity y (with which the pendulum is
swinging) is zero at x = a. The conservation of energy implies

2
Imv? = jml? (j——f) = mgl (cos x — cos a@) where m is the mass of the
simple pendulum. In other words, since / and m are never zero,
2
%l(%) = g(cos x — cos a). (1.3)
On differentiating (1.8), it i1s seen that
dx d*x . dx
ldt gz = —&simx—. (1.9)
For a swinging pendulum % is not identically zero and hence the equation
of motion for the pendulum is governed by
d*’x g . |
T2 T 7 sin x = 0, (1.10)

The Problem of Brachistochrone

This problem was first proposed by J. Bernoulli in the year 1696. As the
name indicates, the brachistochrone problem is the ‘“problem of quickest
descent’’. This problem deals with finding a curve of quickest descent
between two specified points P and Q, the condition being that P and Q
do not lie on a vertical line. In other words, a curve joining the two
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given points P and Q (which are not on the same vertical line) has to be
determined so that, an object moving from P to Q under the force of
gravity only needs the shortest time. Choosing the point P as the origin
for a co-ordinate system, and with respect to this system, let Q have the

co-ordinates (m, n). Then the solution y(x) to the brachistochrone problem
1s the solution of the problem

;'ix [F—y’(%?)] =0, 0 =0, ym)=n (1.11)

where F = J! Ty Simplifying equation (1.11) with the above value of
y .

F we are led to the equation

y1+y) =M, y0)=0, yim) =n (1.12)
where M is a constant to be determined. Thus the unknown function y is
a solution of (1.12). Note that the conditions on y are specified at the two

end points x = 0 and x = m. Such problems are called boundary value
problems. |

Family of Curves

When a differential equation is to be found for a given system of curves,
we start with a system of curves and then seek a differential equation

which represents them. A simple illustration is to-consider a singly infinite
system of straight lines represented by

. y=mx -+ 2
where m is the slope. The equation
_ 4y dy y—2
ye=gpxt2oor =3

represents the above family of lines. This is so once we notice the fact

that the slope of a line is a constant and is given by % To elucidate
further it can be shown that the doubly infinite system of curves given by
y=Asin x+ Bcosx

can be represented by a differential equation. To do this, it is observed
that

y = A sin x + B cos x (1.13)
%_-:_—A cos x — B sin x (1.14)
2
jsz’__ —A sin x — B cos x (1.15)

Eliminating the arbitrary constants 4 and B by adding the equations
(1.13) and (1.15), the following differential equation is arrived at

d?y
d—x'—'l'y—o-
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Thus the above differential equation represents the family of curves with
which the analysis was started. These two simple illustrations drive home
the idea that differential equations may also arise out of a family of
curves.

1.3 A Simple Equation

A differential equation which involves only the first order derivative of
the unknown function is called a first order equation. In general, a first
order differential equation looks like

gix', x, ) =0.
We write the word ‘equation’ instead of ‘differential equation’ for con-
venience. Usually a first order equation is represented in the form

x" = f(t, x). (1.16)

Here it is to be noted that both g and f are known functions. Surprisingly
enough there are no standard formulae to obtain the solution of equation
(1.16) even though it looks simple. In fact, the very question of existence
of solutions of (1.16) is itself a tough problem. We postpone the discussion
of such questions to a later chapter. Section 1.3 presents a simple version
of (1.16). An equation of the type

X +e)x=0, tel (1.17)

is called a “linear homogeneous equation’’., Here Iis a nonempty interval
in a real line R, and ¢(?) is a given continuous function defined on I. The
unknown is the function x.

In all of what follows, we restrict ourselves only to equations of the
type (1.17). Examples of such equations are

Lodx .o
(i) —7 = sin (t°)x,

i) 2 =(1 + 0.

Since ¢(¢) in (1.17) is assumed to be continuous in 7, observe that the func-
tion C(t) defined by

£

C(t) = j c(s)ds, t,thel
{o
is differentiable for each r & I and C(#;) = 0. Multiplying both sides of
equation (1.17) by exp C(¢), it is seen that

exp C(1) d‘;gt) - exp C(D)[c(t)x(t)] = 0.

This is precisely

gi‘ [x(?) exp C(¥)] = O.

Integrating between 7, and ¢, it is seen that
x(t) exp C(t) — x(tp) exp C(tp) =0
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or, in other words, noting that C(¢;) = 0

x(t) = exp {—C()}x(ty); t, to < I (1.18)

Thus the existence of a solution of (1.17) passing through (#, x(#o)) has
been established. Indeed we have proved the following result.

Theorem 1.1 1If c(t) is a continuous function on I then there exists a
solution x(t) of (1.17) passing through (#y, x(#p)), and further x(#) is given
by (1.18).

The role played by exp C(z) is to be observed here. Roughly speaking
it has almost led to the integration of (1.17). Here exp C(¢) is called an
‘““integrating factor” for equation (1.17). The solution represented by con-
dition (1.18) is such that it passes through the point (¢y, x(#9)). This is a
given point. This pair of numbers is called initial values.

The above procedure is now applied to examples (i) and (ii) given above
when x(0) = p and y(0) = g. The solution of (i) through the point (0, p)
is

!

x(t) = p €xp “-0 sin (s%) ds, t [0, o) (1.19)

and the solution of (ii) through (0, g) is

t
(1) = q exp J (1 4+ 5)2ds
0
which reduces to

y(t) = q exp [1 1 _}_ t]’ t e [0, o). (1.20)

4
Here J sin (s°) ds cannot be expressed in terms of elementary functions
0

and hence solutions of the given differential equation may lead to a
totally new set of functions. In example (ii) the solution y(¢) is bounded
on an unbounded interval. The question is whether this boundedness is

due to the nature of ¢(¢) = (1 4 #)~2. The answer is in the affirmative. In
a0

fact, if j ¢(s) ds is finite then solutions of equation (1.17) are bounded but
0

f
we may not be in a position to eXpressJ‘ ¢(s) ds in terms of known func-
0

tions. Thus we have a qualitative property of solutions of (1.17), namely
boundedness of solutions, and a sufficient condition for boundedness is

that r: c(s) ds 1s finite.
0
Let us now consider the equation
dx(t)
dt
where ¢(7) and d(t) are known continuous functions defined on J. Equation
(1.21) is calied a non-homogeneous linear equation. Multiplying both sides

c(O)x(t) =d(), t& I,_ (1.21)
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of (1.21) by exp C(¥) it is seen that

exp {C(0} 2t exp {C(1)} ec(t)x(e) = d() exp {C(O}

The left side of the above equation is j_z [exp {C(¢)}x(¢)] and so it 1s seen
that

2 exp {COM(D] = d(r) exp (CO)), 11

Integration between 7, and ¢ now leads to

¢

exp {C()Ix(1) — exp {C(to)}x(to) = j

Since C(t9) = 0 and the exponential function never vanishes, the above
expression reduces to

d(s) exp {C(s)} ds.

t

x(t) = exp {—C(#)}x(%) + j: d(s) exp [C(s) — C(D)] ds.  (1.22)

The right side of (1.22) is a known function, since it can be computed
once C(t) and d(¢) are known. Hence, the existence of a solution of non-
homogeneous linear equation (1.21) passing through a point (¢y, x(#,)) has
been established. Hence the following theorem is proved.

Theorem 1.2 If c¢(¢t) and d(¢) are continuous functions on an interval /,
then there exists a solution of (1.21) on I passing through (#y, x(Zo)) and is
given by (1.22). |

Remark  The non-homogeneous factor or the term d(¢) in (1.21) is some-
times called the ‘“forcing term’’. Thus a linear homogeneous equation i1s
called ‘“unforced”’. °

Once the existence of solutions of equation (1.21) is established it is neces-
sary to investigate if the given equation possesses one or more solutions
passing through the given point. We consider the uniqueness of solutions
of equation (1.21) passing through the initial point (¢, xo). Suppose there
are two solutions x,(¢) and x,(¢) which satisfy equation (1.21) and also pass
through the point (#, x(#,)). Define z(¢) = x((t) — xx(¢). Clearly z(#) = 0.
Substitute x;(¢) and x,(¢) in (1.21) and subtract the expressions thus obtain-
ed to get

Z(t) + ec(®)z(t) =0, te I

In view of the relation (1.18) we have

z(t) = z(to) exp [-C()], ¢, th € 1.

Since z(%) = 0, we have z(¢) = 0 for all z € I. Hence x,(f) = x(¢) on 1.
Hence the following theorem is proved.

Theorem 1.3 The non-homogeneous linear equation (1.21) possesses a
unique solution x(¢) passing through (o, xo), where x(#5) = Xo.



