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Preface

A reader who achieves a substantial command of the material con-
tained in this book should be able to read with understanding most of
the literature in the field. Possible exceptions may be certain special
aspects of the subject such as the aeroelasticity of plates and shells or the
use of electronic feedback control to modify aeroelastic behavior. The
first author has considered the former topic in a separate volume. The
latter topic is also deserving of a separate volume.

In the first portion of the book the basic physical phenomena of
divergence, control surface effectiveness, flutter and gust response of
aeronautical vehicles are treated. As an indication of the expanding scope
of the field, representative examples are also drawn from the non-
aeronautical literature. To aid the student who is encountering these
phenomena for the first time, each is introduced in the context of a simple
physical model and then reconsidered systematically in more compli-
cated models using more sophisticated mathematics.

Beyond the introductory portion of the book, there are several
special features of the text. One is the treatment of unsteady
aerodynamics. This crucial part of aeroelasticity is usually the most
difficult for the experienced practitioner as well as the student. The
discussion is developed from the basic fluid mechanics and includes a
comprehensive review of the fundamental theory underlying numerical
lifting surface analysis. Not only the well known results for subsonic and
supersonic flow are covered; but also some of the recent developments
for transonic flow, which hold promise of bringing effective solution
techniques to this important regime.

Professor Sisto’s chapter on Stall Flutter is an authoritative account
of this important topic. A difficult and still incompletely understood
phenomenon, stall flutter is discussed in terms of its fundamental aspects
as well as its significance in applications. The reader will find this chapter
particularly helpful as an introduction to this complex subject.
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Preface

Another special feature is a series of chapters on three areas of
advanced application of the fundamentals of aeroelasticity. The first of
these is a discussion of Aeroelastic Problems of Civil Engineering Struc-
tures by Professor Scanlan. The next is a discussion of Aeroelasticity of
Helicopters and V/STOL aircraft by Professor Curtiss. The final chapter
in this series treats Aeroelasticity in Turbomachines and is by Professor
Sisto. This series of chapters is unique in the aeroelasticity literature and
the first author feels particularly fortunate to have the contributions of
these eminent experts.

The emphasis in this book is on fundamentals because no single
volume can hope to be comprehensive in terms of applications. However,
the above three chapters should give the reader an appreciation for the
relationship between theory and practice. One of the continual fascina-
tions of aeroelasticity is this close interplay between fundamentals and
applications. If one is to deal successfully with applications, a solid
grounding in the fundamentals is essential.

For the beginning student, a first course in aeroelasticity could cover
Chapters 1-3 and selected portions of 4. For a second course and the
advanced student or research worker, the remaining Chapters would be
appropriate. In the latter portions of the book, more comprehensive
literature citations are given to permit ready access to the current
literature.

The reader familiar with the standard texts by Scanlan and Rosen-
baum, Fung, Bisplinghoff, Ashley and Halfman and Bisplinghoff and
Ashley will appreciate readily the debt the authors owe to them. Recent
books by Petre* and Forschingt should also be mentioned though these
are less accessible to an english speaking audience. It is hoped the reader
will find this volume a worthy successor.

*Petre, A., Theory of Aeroelasticity. Vol. I Statics, Vol. II Dynamics. In Romanian.
Publishing House of the Academy of the Socialist Republic of Romania, Bucharest, 1966.

1 Forsching, H. W., Fundamentals of Aeroelasticity. In German. Springer-Verlag, Berlin,
1974.
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Introduction

Several years ago, Collar suggested that aeroelasticity could be usefully
visualized as forming a triangle of disciplines.

INERTIAL FORCES
(DYNAMICS)

AERODYNAMIC FORCES ELASTIC FORCES
(FLUID MECHANICS) (SOLID MECHANICS)

Acroelasticity is concerned with those physical phenomena which
involve significant mutual interaction among inertial, elastic and
aerodynamic forces. Other important technical fields can be identified by
pairing the several points of the triangle. For example,

Stability and control (flight mechanics) = dynamics -+ aerodynamics
Structural vibrations = dynamics +solid mechanics
Static aeroelasticity = fluid mechanics + solid mechanics

Conceptually, each of these technical fields may be thought of as a special
aspect of aeroelasticity. For historical reasons only the last topic, static
aeroelasticity, is normally so considered. However, the impact of
aeroelasticity on stability and control (flight mechanics) has increased
substantially in recent years, for example.

In modern aerospace vehicles, life can be even more complicated.
For example, stresses induced by high temperature environments can be
important in aeroelastic problems, hence the term

‘aerothermoelasticity’



1 Introduction

In other applications, the dynamics of the guidance and control system
may significantly affect aeroelastic problems or vice versa, hence the term

‘aeroservoelasticity’

For a historical discussion of aeroelasticity including its impact on aero-
space vehicle design, consult Chapter I of Bisplinghoff and Ashley (BA)
and AGARD C.P. No. 46, ‘Aeroelastic Effects from a Flight Mechanics
Standpoint’.

We shall first concentrate on the dynamics and solid mechanics
aspects of aeroelasticity with the aerodynamic forces taken as given.
Subsequently, the aerodynamic aspects of aeroelasticity shall be treated
from first principles. Theoretical methods will be emphasized, although
these will be related to experimental methods and results where this will
add to our understanding of the theory and its limitations. For simplicity,
we shall begin with the special case of static aeroelasticity.

Although the technological cutting edge of the field of aeroelasticity
has centered in the past on aeronautical applications, applications are
found at an increasing rate in civil engineering, e.g., flows about bridges
and tall buildings; mechanical engineering, e.g., flows around tur-
bomachinery blades and fluid flows in flexible pipes; and nuclear en-
gineering; e.g., flows about fuel elements and heat exchanger vanes. It
may well be that such applications will increase in both absolute and
relative number as the technology in these areas demands lighter weight
structures under more severe flow conditions. Much of the fundamental
theoretical and experimental developments can be applied to these areas
as well and indeed it is hoped that a common language can be used in
these several areas of technology. To further this hope we shall discuss
subsequently in some detail several nonairfoil examples, even though our
principal focus shall be on aeronautical problems. Separate chapters on
civil engineering, turbomachinery and helicopter (rotor systems) applica-
tions will introduce the reader to the fascinating phenomena which arise
in these fields.

Since most aeroelastic phenomena are of an undesirable character,
leading to loss of design effectiveness or even sometimes spectacular
structural failure as in the case of aircraft wing fiutter or the Tacoma
Narrows Bridge disaster, the spreading importance of aeroelastic effects
will not be warmly welcomed by most design engineers. However, the
mastery of the material to be discussed here will permit these effects to be
better understood and dealt with if not completely overcome.



Static aeroelasticity

2.1 Typical section model of an airfoil

We shall find a simple, somewhat contrived, physical system useful for
introducing several aeroelastic problems. This is the so-called ‘typical
section” which is a popular pedagogical device.* This simplified aeroelas-
tic system consists of a rigid, flat plate airfoil mounted on a torsional
spring attached to a wind tunnel wall. See Figure 2.1; the airflow over the
airfoil is from left to right.

MO AN NNNNANNANNN N NN

U
—— a
ELASTIC CENTER OR
ELASTIC AXIS (e.a.)
AANNAANN AN

Figure 2.1 Geometry of typical section airfoil.

The principal interest in this model for the aeroelastician is the
rotation of the plate (and consequent twisting of the spring), «, as a
function of airspeed. If the spring were very stiff or airspeed were very
slow, the rotation would be rather small; however, for flexible springs or
high flow velocities the rotation may twist the spring beyond its ultimate
strength and lead to structural failure. A typical plot of elastic twist, a,, vs
airspeed, U, is given in Figure 2.2. The airspeed at which the elastic twist
increases rapidly to the point of failure is called the ‘divergence airspeed’,
Up. A major aim of any theoretical model is to accurately predict Up,. It
should be emphasized that the above curve is representative not only of
our typical section model but also of real aircraft wings. Indeed the

* See Chapter 6, BA, especially pp. 189-200.



2 Static aeroelasticity
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Figure 2.2 Elastic twist vs airspeed.

primary difference is not in the basic physical phenomenon of divergence
but rather in the elaborateness of the theoretical analysis required to
predict accurately Up, for an aircraft wing versus that required for our
simple typical section model.

To determine Up, theoretically we proceed as follows. The equation
of static equilibrium simply states that the sum of aerodynamic plus
elastic moments about any point on the airfoil is zero. By convention, we
take the point about which moments are summed as the point of spring
attachment, the so-called ‘elastic center’ or ‘elastic axis’ of the airfoil.

The total acrodynamic angle of attack, a, is taken as the sum of some
initial angle of attack, a, (with the spring untwisted), plus an additional
increment due to elastic twist of the spring, «a..

a=a,ta, (2.1.1)
In addition, we define a point on the airfoil known as the ‘aerodynamic
center’.* This is the point on the airfoil about which the aerodynamic

moment is independent of angle of attack, a. Thus, we may write the
moment about the elastic axis as

M, =M, +Le (2.1.2)

where M, moment about elastic axis or center
M, moment about aerodynamic center,
both moments are positive nose up
L 1ift, net vertical force positive up
e distance from aerodynamic center to
elastic axis, positive aft.

* For two dimensional, incompressible flow this is at the airfoil quarter-chord; for supersonic

flow it moves back to the half-chord. See Ashley and Landahl [1]. References are given at
the end of each chapter.
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