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STABILITY AND HOPF BIFURCATION IN ISOTHERMAL CATALYSTS¥*
José M. Vega and Ignacio E. Parra

ABSTRACT. It is considered a well-known model
for the evolution of a distributed concentration
and a uniform temperature in an isothermal cata-
lyst, which occupies a bounded domain Q€IRP(p=
1,2,3) with smooth boundary. It is assumed that
the Sherwood number is large.

For a not too large Thiele modulus, the bound-
ary condition for the concentration is of the
Dirichlet type in first approximation. An analy-
sis of the linearized stability of the steady
state in the slab geometry (p=1), shows that
oscillatory instabilities may appear for appro-
priate values of the parameters. Bifurcation
diagrams are reminiscent of those for the
C +S.<T'eRi

For a sufficiently large Thiele modulus and
arbitrary shapes of the domain Q, an approximate
one-dimensional model is considered, which
accounts for the fact that the concentration van-
ishes, to leading order, outside a thin reaction
layer. A linearized stability analysis shows that
oscillatory instabilities may appear again.

A local Hopf bifurcation analysis is carried
out, in order to know whether such bifurcation is
sub-critical or super-critical.

1. INTRODUCTION. A well-known model, see Aris [1], for the
evolution of the concentration u and temperature v, in an iso-

thermal catalyst, is considered

ou _ _ .2 V=

e = Au - ¢"u exp(Y. = ) in @, (1)

*¥ This research was partaally supported by the Comisidn Asesora
de Investigacidén Cient{fica y Técnica under Contract N/r 2291-

83.
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du

T o(1-u) at 3Q, (2)
%% = ap(1-v) + A¢2 exp(Y!%l) fﬂ u dx. (3)

Here, n is the outward unit normal to the smooth boundary of the
bounded domain QcRP (p=1,2,3). The Damk&hler number ¢2, the
activation energy Y, and the parameters \ and u are positive.
The Serwood number, ¢, will be assumed to be large.

Such model is a first approximation, as YR »+ 0 and v » 0, of
the fully non-isothermal model, in which the temperature is
spatially distributed, and given by

LA Av+8q>2u exp(Yv—;l) in @ ; %;’; = v(1-v) at 3Q. (4)

[l B
2z

In this limit, the parameters A and u of (3) are

A= BL/VQ, H =V SQ/B,

in terms of the Prater, Lewis and Nusselt numbers, B, L and v,
and of the volume, Vn, and external area, SQ, of the domain Q.
For p=1, if @ = ]-1,1[<R, then B - Y - 2.

Let {us(x),vs} be a steady state of (1-3). If

¢§ = ¢2 exp[Y(vs—1)/vs]<<02, (5)

the boundary condition (2) may be replaced by
u=11in 3@, (6)

in first approximation (as ¢ + «), when analyzing the nonlinear
stability of the steady state under small perturbations. Model
(1,3,6) will be referred to as Model 1 in the sequel. It was
considered by Amundson and Raymond, [2], for the slab geometry
(p=1). 1In that work, it was apparently proved that the possible
instabilities of the steady state are of the non-oscillatory
type, and that they appear only at the bending points of the
response curve Vg-¢. A slippery gap in their use of Rouche's

theorem prevent their conclusion from being true. In fact, as
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we shall see in Section 2, oscillatory instabilities do take
place in a region of the response curve, if Aup > 8.889... and Y
is such that Ygq(A,u) <Y <¥g2(A,u), for some critical para-
meters, Y1 and Yecp.

If condition (5) is not satisfied, i.e., in the limit ¢g+o,
the boundary condition (6) may not be used. But, in this limit,
it is easily shown, see Murray [3], that the steady state con-
centration, ug(x), vanishes to leading order outside a thin
boundary layer, of thickness ¢;1, which is close to the boundary
of the domain. A Singular Perturbation analysis, which is a
straightforward extension of that of [3], shows that the tran-
sient concentration profile has the same structure as that of
the steady state one, if the initial values of u and v are close
to the steady state ones. 1In the distinguished limit
¢s~A~u~0, the above-mentioned analysis leads to the

following model

2
%E =28 ¢2u exp(YX:l) in ~= < £ < O, (7)
T 2 v
g
u=0at g = -o, uE =1-uat § =0, (8)
d 2 =1
T = Im(1-v) + 10° exp(v=2) 12 ude (9)
where

® = ¢/o, 1 = A SQ/a, m = p/o S T = t02, £ = no,

Q’
and n is a co-ordinate along the outward unit normal to 3Q.
Again, if @ = ]-1,1[<R, then Sq = 2. Model (7-9) will be
referred to as Model 2 in the sequel. It could be obtained
also, as a first approximation, from the non-isothermal model
(1,2,4). oObserve that Model 2 is independent of the shape of
the domain Q; it depends on the overall properties of Q, S9 and
VQ, only through the parameters 1 and m.

In Sections 2-4, we shall analyze linear stability and local
Hopf bifurcation for Model 2. For the sake of brevity, many

details of the analysis will be omitted; they may be found in
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[4]. 1In order to obtain close-form solutions of the equations,
only the slab geometry will be considered for Model 1. Some
global stability results for problem (1-3) and for: (a)
arbitrary shapes of the domain @, (b) more general type of
kinetic laws, and (c) arbitrary positive values of the Sherwood

number ¢ (not necessarily large), will be presented in [5].

2. LINEAR STABILITY FOR MODEL 1. Let us consider Model 1 in
Q = 1-1,1[CR. It may be easily seen that no properties
concerning nonlinear stability are lost if one considers the

symmetric case, i.e.,

2
%% = Q_% - ¢2u exp(YX%l) in 0 < x <1, (10)
X
du/d3x = 0 at x =0, u=1at x =1, (11)
av _ B 2 V=1, 1
it - Au(1-v) + 2x¢~ exp(y = ) fo u dx. (12)

The steady state solutions of (10-12) are given by

cosh ¢sx

¢
= . s
i, =t % )y Vg 1+2 2 tanh¢s, (13)

in terms of the parameter

¢§ = ¢2 exp[Y(vs-1)/vs].

The linearized problem around the steady state has
non-trivial solutions, of the form u-ug = U(x)exp(wt), v-vg=

V exp(wt), if and only if w satisfies

2 2 2 2 2
2hu- Y o o5 tanhv w+e_ X (m-¢s)tanh g

wlw+ip) 5 (14)
(u+2¢stanh ¢g) m+¢2 by
s

for w = 0, or
(u cosh ¢_+2¢_sinh ¢ )2
s s s

Y = - (15)
u¢s(¢s+s1nh R cosh ¢s)




