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PREFACE

ICALP 88 is the 15th International Colloquium on Automata,
Languages and Programming in a series of meetings sponsored by the
European Association for Theoretical Computer Science (EATCS). It is
a broadly based conference covering all aspects of Theoretical
Computer Science including topics like Computability, Automata,
Formal Languages, Analysis of Algorithms, Computational Complexity,
Data Types and Data Structures, Theory of Data Bases and Knowledge
Bases, Semantics of Programming Languages, Program Specification,
Transformation and Verification, Foundations of Logic Programming,
Theory of Logical Design and Layout, Parallel and Distributed
Computation, Theory of Concurrency, Symbolic and Algebraic
Computation, Term Rewriting Systems, Cryptography, Theory of
Robotics.

ICALP 88 was held at the campus of the Tampere University of
Technology from July 11 to July 15, 1988. The organizing committee
consisted of T. Lepist&, P. Jarvinen, R. Kurki-Suonio, K. Ruochonen,
K.-J. Rdihd, M. Tienari, T. Granroth, P. Kaila and E. Hirvonen.

The program committee selected 46 papers from 195 extended
abstracts and draft papers submitted. Each submitted paper was
evaluated by at least four members of the program committee. The
final selection was made during a two-day selection meeting in which
the following program committee members participated: S. Abramsky, G.
Ausiello, J. Diaz, J. Gruska, W. Kuich, J. van Leeuwen, M. Nivat, J.
Paredaens, A. Paz, A. Salomaa, S. Skyum, E. Ukkonen and D. Wood. It
is a pleasure to thank all those who have submitted papers for
consideration, the members of the program committee for their help in
the evaluation of the papers and the many who assisted in this
process.

We also gratefully acknowledge all the institutions and
corporations which supported this conference.
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Finally, we would like to thank K.-J. R&ihd, K. Ruohonen and P.
Kaila, who did a beautiful job in all organizational matters related

to the conference.

July 1988 Timo Lepistd Arto Salomaa
Chairman of the Chairman of the
Organizing Committee Program Committee
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Communication Complexity of PRAMs

(Preliminary Version)

Alok Aggarwal
Ashok K. Chandra

IBM Research Division
Thomas J. Watson Research Center
P. O. Box 218, Yorktown Heights, New York 10598

Abstract: We propose a model for the concurrent read exclusive write PRAM that cap-
tures its communication and computational requirements. For this model, we present
several results, including the following:

Two n x n matrices can be multiplied in 0(n3/ p) computation time and
0(n2/p2/3) communication delay using p processors (for p < n3/ log3 2n). Fur-
thermore, these bounds are optimal for arithmetic on semirings (using +, x only). For
sorting and for FFT graphs, it is shown that communication delay of
Q(n log n/(p log(n/p)) is required for p < n/ log n. This bound is tight for FFT graphs;
it is also shown to be tight for sorting provided p < n 1-e for any fixed ¢ > 0.

Given a binary tree, r, with n leaves and height 4, let Dop,(—r) denote the minimum
communication delay needed to compute . It is shown that §( logn) < Dop,('r)
< 0(Wn), and Q(\fh_ ) < Dop, < O(h), all bounds being the best possible. We also
present a simple polynomial algorithm that generates a schedule for computing r with
at most 2D0pt('r) delay.

It is'shown that the a communication delay-computation time tradeoff given by
Papadimitriou and Ullman for a diamond dag can be achieved for essentially two values
of the computation time. We also present DAGs that exhibit proper tradeoffs for a
substantial range of time.

1. INTRODUCTION

It is becoming abundantly clear that much of the complexity in parallel computing
is due to the difficulty in communication rather than the computation itself. This issue
is likely to become more severe as the number of processors increase. Researchers have
recognized this fact, and studied the communication complexity of special purpose
interconnection networks [A80, DGS83, PS81, T84, Y79] and of VLSI chips [AUYS83,
JK84, T79]. However, except for the paper by Papadimitriou and Ullman [PU87] which
explores the communication complexity in rather broad terms, very little is known re-
garding the communication complexity of PRAMs. The purpose of this paper is to study



several aspects of this issue, and explore a few techniques that are useful in a better
understanding of the communication requirements of PRAMs.

To capture the communication delay in multiprocessor systems, we model both the
computational problem to be solved as well as the multiprocessing machine that is
solving it. The model is similar to that used by Papadimitriou and Ullman [PU87] but
since it differs in some essential features, it is described below.

The multiprocessing machine is taken to be a concurrent-read, exclusive write
(CREW) PRAM in which each processor is provided with an unlimited amount of local
random access memory. Processors can read simultaneously from the same location in
the global memory, but two or more are not allowed to write simultaneously into the
same location. The input variables are initially stored in the global memory, and the
final outputs must be eventually stored in the global memory. The processors are
MIMD, but work synchronously. In order to model the communication delay and
computation time, it is convenient to restrict the machine such that at every time step,
the processors do one of the following:

(i) In one communication step, a processor can write and then read a word from the

global memory, or it may do nothing.

(ii) In a computation step, a processor can perform an operation (which we describe

below) on at most two words that are present in its local memory.

The computation problem to be solved is usually presented as a directed acyclic
graph (DAG) with its nodes corresponding to operations (on at most two variables) and
its arcs corresponding to the values computed by performing such operations. Thus, the
in-degree of each node is bounded by two, and if the out-degree of any node is more
than one, then all its outgoing edges contain the same associated value. The nodes of
the DAG with in-degree zero (i. e., the leaves) are available in the global memory at
time ¢ = 0, and likewise, the nodes of the DAG with out-degree zero (i. e., the roots),
have to be eventually written into the global memory. Any processor correctly computes
the given node if and only if the following conditions are satisfied:

(a) The node is computed only after all its children have been computed.

(b) A processor can perform the operation given at the node only if the correspond-
ing values of its children reside in its local memory; it performs the operation on
these values in one computation step. A processor can write a computed value
into the global memory in a communication step, and can then read a value from
the global memory in the same step.

For the computation of a given DAG, each of its nodes is assigned to one or more
processors that compute that node. Hence, the problem of computing the DAG reduces



to that of finding a schedule for performing the operations given at the nodes which
ensures that each node of the DAG is computed correctly. Figure 1 demonstrates a nine
node DAG and a schedule that computes it in S communication steps and 3 computation
steps. This DAG can also be computed in 4 (resp. 3) communication steps and 4 (resp.
7) computation steps.

Remark: Since many algorithms for computing a given problem can be converted into
a DAG, one can usually obtain a plethora of DAGs for the same problem. Usually, we
will be concerned with a fixed DAG for a given problem, although we will sometimes
deviate and give lower bounds for a class of DAGs that can be used to solve problems
such as matrix multiplication, or sorting.

Three kinds of resources are relevant -- the number of processors used in the
multiprocessing machine, the overall computation time, and the overall communication
delay. The computation time (communication delay, resp.) of a schedule, S, is the
number of computation (communication, resp.) steps used by this schedule. The com-
putation time for the DAG is the minimum computation time over all schedules that
correctly compute the given DAG, and likewise, for communication delay. Note that
the minimum communication delay and the minimum computation time for a given
DAG may not be achievable by the same schedule.

2. MATRIX MULTIPLICATION AND RELATED RESULTS

Consider the computations of DAGs that are obtained when two n x n matrices
are multiplied using scalar multiplications and additions only. We establish an optimal
bound of ®(n2/ p~" ") on communication delay where p denotes the number of
processors and p < n3/ log 2n. Indeed, the communication delay of ©(n 2/ p2/3)
may be contrasted with the optimal speed up of G)(n3/ 'p) with respect to the number
of computation steps for the same problem. The lower bound for matrix multiplication
given in Theorem 2.3 can be extended to Boolean matrix multiplication (over a semi-
ring containing AND and OR operations), to all pair shortest path problem (where only
the semi-ring operations of MIN and + are allowed), and to transitive closure of ma-
trices (if the closure is computed over a closed semi-ring with ""+" and "x " as two op-
erations). Furthermore, the upper bound of Theorem 2.1 can be generalized to
demonstrate the optimality of the two bounds for Boolean Matrix Multiplication (within
a constant factor) and to those for comguting the all-pair shortest paths and transitive
closure within log n factors. For p < n“/ log n, a PRAM with P processors can mul-
tiply an n x n matrix with an n-dimensional vector in O(n“/ p) computation time and
with O(n 2/ p) communication delay. Since all entries of matrix are initially stored in



Input 5 b

Schedule: Comm. Step 1: Py, P,, P3, Py read a.
Comm. Step 2: Py, Py, P3, P4 read b.
Comp. Step 1: Py, P,, P3, P4 compute ¢, d, e, frespectively.
Comm. Step 3: P,, P4 write d, frespectively. Pj, P read d, f respectively.
Comp. Step 2: P; computes g, P53 computes .
Comm. Step 4: P3 writes h, Py reads it.
Comp. Step 3: Py computes v.
Comm. Step 5: Py writes v.

Figure 1: Example of a DAG and a schedule that computes it

the global memory, every PRAM algorithm would require Q(n 2/ 'p) communication
delay. Furthermore, since a total of £(n”) multiplications are required by every se-
quential program for matrix-vector multiplication (see [AHU74], pp. 428-435, for de-
tails), every PRAM algorithm would require 2(n”/p) computation steps and this
establishes optimal bounds for matrix-vector multiplication.

Theorem 2.1: Two n x n matrices can be multiplied by p processors in
O((n3/p) + log n) computation time and O((n 2/1)2/3) + log n) communication delay
using only ( x , + ).
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Proof: Partition the two n x n matrices, 4 and B, in a naturall/lglanner, into p
submatrices of sizes n/ pl/3 X n/pl/3 each,andfor 1 < i, j < p,3 let these matrices
be denoted by 4; J and B; J respectively. For 1 < i, j, k < p, let the p processors
read A4;; and B;; such that each processor %ets a unique pair of (4; s Bj 1)- Note
I & 2, 2/3 . :
that this global memory access takes O(n 3/ 'p~" ) communication delay. Now, com-
pute the matrix C; ;; = 4; ; x B;; in O(n /Pp) computatign3time. If C=4x Band
if C is also partitioned, in a natural manner, into p submatrices, Ci,k’ for
1<i, k< p1 3, then it is easy to see that C; ; = 2C; gk Now, summing these subma-
trices naively would require O(n2 log n/p”’"~) communication delay. However, using
a pipelining strategy, which we give below, these submatrices can be added in
0((n2/ §/ ) + log n) communication delay. This yields an overall communication
2/3 5 ;
delay of O((n"/p™" ") + logn) and an overall computatlgn 2/téme of
0((n3/p) + logn). For p< n3/ log3/2n, these bounds are O(n“/p™~) and

O(n 3 /p), respectively.

/3 3,

To sum the matrices CiJ,k for 1 <j< pl , and fixed i, k, use 2p1
processors such that p of these processors contain the submatrices C; Jik for
1<j< p1 3 and the 2 175 —1 processors compute a DAG in the form of a complete
binary tree that has p leaves and whose internal nodes are '+’. These processors can
now add any pl 3 elements present at the leaves in O( log p) time and, in fact, they can
pipeline n” /p elements (that reside in the processors corresponding to each leaf) so
that if at any instant, the processors that correspond to, say the /-th level of the tree are
adding the elements which would eventually yield, say, the s-th entry of C,  then at the
same instant the processors which correspond to the (I — 1)-th level, are adding the el-

ements which would eventually yield the (s + 1)-th entry of Cir- 1

For the lower bound on the communication delay for matrix multiplication, we
need the following technical Lemma; the proof of this Lemma can be found in
[HK81]:

Lemma 2.2: Let a PRAM compute the matrix multiplication of two n x n matrices,
4, B using scalar additions and multiplications only. During this computation, if any
processor reads at most s elements of 4 and B, and computes at most s })artial sums
of the product C, then this processor can compute a total of at most 2s3 % multipli-
cative terms for these partial sums. W

Theorem 2.3: Let G be any DAG with in-degree two that corresponds to an algorithm
for multiplying two n x n matrices using ( +, x ) only and p processors. Then, any



