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PREFACE

This book contains a first-year graduate course in which the basic techniques and
theorems of analysis are presented in such a way that the intimate connections
between its various branches are strongly emphasized. The traditionally separate
subjects of “real analysis” and “complex analysis” are thus united; some of the
basic ideas from functional analysis are also included.

Here are some examples of the way in which these connections are demon-
strated and exploited. The Riesz representation theorem and the Hahn-Banach
theorem allow one to “guess” the Poisson integral formula. They team up in the
proof of Runge’s theorem. They combine with Blaschke’s theorem on the zeros of
bounded holomorphic functions to give a proof of the Miintz-Szasz theorem,
which concerns approximation on an interval. The fact that I? is a Hilbert space
is used in the proof of the Radon-Nikodym theorem, which leads to the theorem
about differentiation of indefinite integrals, which in turn yields the existence of
radial limits of bounded harmonic functions. The theorems of Plancherel and
Cauchy combined give a theorem of Paley and Wiener which, in turn, is used in
the Denjoy-Carleman theorem about infinitely differentiable functions on the real
line. The maximum modulus theorem gives information about linear transform-
ations on IP-spaces.

Since most of the results presented here are quite classical (the novelty lies in
the arrangement, and some of the proofs are new), I have not attempted to docu-
ment the source of every item. References are gathered at the end, in Notes and
Comments. They are not always to the original sources, but more often to more
recent works where further references can be found. In no case does the absence
of a reference imply any claim to originality on my part.

The prerequisite for this book is a good course in advanced calculus
(set-theoretic manipulations, metric spaces, uniform continuity, and uniform
convergence). The first seven chapters of my earlier book “ Principles of Mathe-
matical Analysis ” furnish sufficient preparation.

xiii



xiv PREFACE

Experience with the first edition shows that first-year graduate students can
study the first 15 chapters in two semesters, plus some topics from 1 or 2 of the
remaining S. These latter are quite independent of each other. The first 15 should
be taken up in the order in which they are presented, except for Chapter 9, which
can be postponed.

The most important difference between this third edition and the previous
ones is the entirely new chapter on differentiation. The basic facts about differen-
tiation are now derived from the existence of Lebesgue points, which in turn is an
easy consequence of the so-called “weak type” inequality that is satisfied by the
maximal functions of measures on euclidean spaces. This approach yields strong
theorems with minimal effort. Even more important is that it familiarizes stu-
dents with maximal functions, since these have become increasingly useful in
several areas of analysis.

One of these is the study of the boundary behavior of Poisson integrals. A
related one concerns HP-spaces. Accordingly, large parts of Chapters 11 and 17
were rewritten and, I hope, simplified in the process.

I have also made several smaller changes in order to improve certain details:
For example, parts of Chapter 4 have been simplified; the notions of equi-
continuity and weak convergence are presented in more detail; the boundary
behavior of conformal maps is studied by means of Lindel6f’s theorem about
asymptotic values of bounded holomorphic functions in a disc.

Over the last 20 years, numerous students and colleagues have offered com-
ments and criticisms concerning the content of this book. I sincerely appreciated
all of these, and have tried to follow some of them. As regards the present edition,
my thanks go to Richard Rochberg for some useful last-minute suggestions, and I
especially thank Robert Burckel for the meticulous care with which he examined
the entire manuscript.

Walter Rudin
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PROLOGUE
THE EXPONENTIAL FUNCTION

This is the most important function in mathematics. It is defined, for every com-
plex number z, by the formula

exp ()= 3 5 )

n!’

The series (1) converges absolutely. for every z and converges uniformly on every
bounded subset of the complex plane. Thus exp is a continuous function. The
absolute convergence of (1) shows that the computation

© 4 0 _00_1'n n! kn—k__w(a+b)n
DD N bl W 1 Ve oy YKl =2

is correct. It gives the important addition formula
exp (a) exp (b) = exp (a + b), 2

valid for all complex numbers a and b.
We define the number e to be exp (1), and shall usually replace exp (z) by the
customary shorter expression e°. Note that e = exp (0) = 1, by (1).

Theorem

(a) For every complex z we have e* # 0.
(b) exp is its own derivative: exp’ (z) = exp (2).



2 REAL AND COMPLEX ANALYSIS

(¢) The restriction of exp to the real axis is a monotonically increasing positive
function, and

e*— o0 as x— 00, e*—0as x— —oo.

(d) There exists a positive number m such that e™/> = i and such that e* = 1 if
and only if z/(27i) is an integer.

(e) exp is a periodic function, with period 2mi.

(f) The mapping t— e maps the real axis onto the unit circle.

(9) If wis a complex number and w # 0, then w = €* for some z.

PROOF By (2), e* - e” % = e "% = ¢° = 1. This implies (a). Next,

_ —1
sxpt (s < i TREH W —0xD @) _ o o o TR =L
h—0 h h—0 h

The first of the above equalities is a matter of definition, the second follows
from (2), and the third from (1), and (b) is proved.

That exp is monotonically increasing on the positive real axis, and that
e*— oo as x— o0, is clear from (1). The other assertions of (c) are conse-
quences of e* - e™* = 1.

For any real number t, (1) shows that e~ is the complex conjugate of e.
Thus

|eit|2=eiz_g‘_=eit,e =eir—ir=e =1’
or
lef| =1 (¢ real). 3)

In other words, if ¢ is real, " lies on the unit circle. We define cos ¢, sin ¢ to
be the real and imaginary parts of e":

cos t = Re [e'], sin t = Im [e"] (¢ real). @)
If we differentiate both sides of Euler’s identity
et=cost+isint, (5)
which is equivalent to (4), and if we apply (b), we obtain
cos' t +isin' t =ie" = —sin t + i cos ,
so that
cos’ = —sin, sin’ = cos. (6)

The power series (1) yields the representation

2 ot
COSt=1—§+‘T!-a+"‘. (7
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Take t = 2. The terms of the series (7) then decrease in absolute value (except
for the first one) and their signs alternate. Hence cos 2 is less than the sum of
the first three terms of (7), with t = 2; thus cos 2 < —4. Since cos 0 = 1 and
cos is a continuous real function on the real axis, we conclude that there is a
smallest positive number ¢, for which cos t, = 0. We define

T =2t,. (8)
It follows from (3) and (5) that sin t, = + 1. Since
sin’ (t) =cost >0

on the segment (0, t,) and since sin 0 = 0, we have sin t, > 0, hence sin t, =
1, and therefore

HR = 9

It follows that e® =i?= —1, €™ =(—1)> = 1, and then e*™" =1 for
every integer n. Also, (e) follows immediately:

ez+21ri = ezeZn:i = ¢%. (10)

If z = x + iy, x and y real, then e* = e*e”; hence | ¢°| = e*. If ¢ = 1, we there-
fore must have e* = 1, so that x = 0; to prove that y/2z must be an integer, it
is enough to show that e # 1if 0 < y < 2=, by (10).

Suppose 0 < y < 2%, and

eVt =y + v (u and v real). (11)
Since 0 < y/4 < n/2, we have u > 0 and v > 0. Also
e” = (u + iv)* = u* — 6uv? + v* + diuv(u? — v?). (12)

The right side of (12) is real only if u? = v?; since u? + v? = 1, this happens
only when u? = v? =1, and then (12) shows that

e’ = —1#1.

This completes the proof of (d).

We already know that t— e maps the real axis into the unit circle. To
prove (f), fix w so that |w| = 1; we shall show that w = ¢" for some real t.
Write w = u + iv, u and v real, and suppose first that 4 > 0 and v > 0. Since
u < 1, the definition of = shows that there exists a t, 0 < ¢t < n/2, such that
cos t = u; then sin? t = 1 — u? = v?, and since sint >0 if 0 <t < /2, we
have sin t = v. Thus w = e”.

If u < 0 and v > 0, the preceding conditions are satisfied by —iw. Hence
—iw = e for some real t, and w = ¢“*™2), Finally, if v < 0, the preceding
two cases show that —w = e for some real t, hence w = e®*™, This com-
pletes the proof of (f).

If w#0, put @ =w/|w|. Then w =|w|a. By (c), there is a real x such
that |w| = e*. Since |a| = 1, (f) shows that a = ¢ for some real y. Hence
w = e**¥ This proves (g) and completes the theorem. /1
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We shall encounter the integral of (1 + x2)~! over the real line. To evaluate
it, put @(t) = sin t/cos t in (—n/2, n/2). By (6), ' = 1 + ¢>. Hence ¢ is a mono-

tonically increasing mapping of (— /2, n/2) onto (— oo, o), and we obtain

©  dx M2 p'(t) dt 52
J T & = J‘ T—T = dt =m.
—o L+ X —z2 1+ 0%(2) —n/2



CHAPTER

ONE
ABSTRACT INTEGRATION

Toward the end of the nineteenth century it became clear to many mathemati-
cians that the Riemann integral (about which one learns in calculus courses)
should be replaced by some other type of integral, more general and more flex-
ible, better suited for dealing with limit processes. Among the attempts made in
this direction, the most notable ones were due to Jordan, Borel, W. H. Young,
and Lebesgue. It was Lebesgue’s construction which turned out to be the most
successful.

In brief outline, here is the main idea: The Riemann integral of a function f
over an interval [a, b] can be approximated by sums of the form

3. f(em(E)

where E,, ..., E, are disjoint intervals whose union is [a, b], m(E;) denotes the
length of E;, and t; € E; for i = 1, ..., n. Lebesgue discovered that a completely
satisfactory theory of integration results if the sets E; in the above sum are
allowed to belong to a larger class of subsets of the line, the so-called
“measurable sets,” and if the class of functions under consideration is enlarged to
what he called “measurable functions.” The crucial set-theoretic properties
involved are the following: The union and the intersection of any countable
family of measurable sets are measurable; so is the complement of every measur-
able set; and, most important, the notion of “length” (now called “measure”)
can be extended to them in such a way that

mE, U E, U EyuU-)=mE,) + mE,)+ mE;)+ -



