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Preface

The 12th International Symposium on Graph Drawing (GD 2004) was held dur-
ing September 29-October 2, 2004, at City College, CUNY, in the heart of
Harlem, New York City. GD 2004 attracted 94 participants from 19 countries.

In response to .the call for papers, the program committee received 86 regu-
lar submissions describing original research and/or system demonstrations. Each
submission was reviewed by at least three program committee members and com-
ments were returned to the authors. Following extensive e-mail discussions, the
program committee accepted 39 long papers (11 pages each in the proceedings)
and 12 short papers (6 pages each). In addition, 4 posters were displayed and
discussed in the conference exhibition room (2 pages each in the proceedings).

The program committee of GD 2004 invited two distinguished lecturers. Pro-
fessor Paul Seymour from Princeton University presented a new characterization
of claw-free graphs (joint work with Maria Chudnovsky). Professor Erik Demaine
from MIT reported on his joint work with Fedor Fomin, MohammadTaghi Ha-
jlaghayi and Dimitrios Thilikos, concerning fast (often subexponential) fixed-
parameter algorithms and polynomial approximation schemes for broad classes
of NP-hard problems in topological graph theory. A survey of the subject by
Professors Demaine and Hajiaghayi is included in this volume.

As usual, the annual graph drawing contest was held during the conference.
This time the contest had two distinct tracks: the graph drawing challenge and
the freestyle contest. A report is included in the proceedings.

Many people in the graph drawing community contributed to the success of
GD 2004. First of all, special thanks are due to the authors of submitted papers,
demos, and posters, and to the members of the program committee as well as
to the external referees. Many thanks to organizing committee members Gary
Bloom, Peter Brass, Stephen Kobourov, and Farhad Shahrokhi. My very special
thanks go to Hanna Seifu who was in charge of all local arrangements, Robert
Gatti who developed the software used for registration and paper submission,
and John Weber and Eric Lim who designed the logo, the webpage, and the
brochures of the conference. I am very much indebted to Dr. Joseph Barba and
Dr. Mohammad Karim, present and former Deans of the School of Engineering,
and to Dr. Gregory H. Williams, President of the City College of New York, for
their continuing support.

Thanks are due to our “gold” sponsors, the City College of New York, the
University of North Texas at Denton, and Tom Sawyer Software, and to our
“silver” sponsors, ILOG, the DIMACS Center for Discrete Mathematics and
Theoretical Computer Science, and the Computer Science Program at the CUNY
Graduate Center. Springer and World Scientific Publishing contributed to the
success of GD 2004 by sending selections of their recent publications in the
subject.
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The 13th International Symposium on Graph Drawing (GD 2005) will be
held in Limerick, Ireland, 12-14 September, 2005, with Peter Eades and Patrick
Healy as conference co-chairs.
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Reconfiguring Triangulations
with Edge Flips and Point Moves*

Greg Aloupis’, Prosenjit Bose?, and Pat Morin?

1 School of Computer Science, McGill University
athens@cs.mcgill.ca
2 School of Computer Science, Carleton University
{jit,morin}@scs.carleton.ca

Abstract. We examine reconfigurations between triangulations and
near-triangulations of point sets, and give new bounds on the number
of point moves and edge flips sufficient for any reconfiguration. We show
that with O(nlogn) edge flips and point moves, we can transform any
geometric near-triangulation on n points to any other geometric near-
triangulation on n possibly different points. This improves the previously
known bound of O(n?) edge flips and point moves.

1 Introduction

An edge flip is a graph operation that is defined on (near)-triangulations!. An
edge flip on a triangulation is simply the deletion of an edge, followed by the
insertion of another edge such that the resulting graph remains a triangulation.
The definition of an edge flip gives rise to several natural questions: Does there
always exist a sequence of flips that reconfigures a given triangulation to any
other triangulation? Are there bounds on the lengths of such sequences if they
exist? Can these sequences be computed? These questions have been studied in
the literature in many different settings. In particular, Wagner [19] proved that
given any two m-vertex triangulations G; and (s, there always exists a finite
sequence of edge flips that reconfigures G; into a graph isomorphic to Gs. Sub-
sequently, Komuro [10] showed that in fact O(n) edge flips suffice. Recently, Bose
et al. [2] showed that O(logn) simultaneous edge flips suffice and are sometimes
necessary. This setting of the problem is referred to as the combinatorial setting
since the triangulations are only embedded combinatorially, i.e. only the cyclic
order of edges around each vertex is defined.

In the geometric setting, the graphs are embedded in the plane with edges
represented by straight line segments. Pairs of edges can only intersect at their
endpoints. Edge flips are still valid operations in this setting, except that now
the edge that is added must be a line segment that cannot properly intersect any
of the existing edges of the graph. This implies that there are valid edge flips

* Research supported in part by the Natural Science and Engineering Council of
Canada.

1 A triangulation is a plane graph where every face is a triangle. In a near-
triangulation, the outer face may not be a triangle.

J. Pach (Ed.): GD 2004, LNCS 3383, pp. 1-11, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 Greg Aloupis, Prosenjit Bose, and Pat Morin

in the combinatorial setting that are no longer valid in the geometric setting.
Lawson [12] showed that given any two geometric near-triangulations N; and
N, embedded on the same n points in the plane, there always exists a finite
sequence of edge flips that transforms the edge set of N; to the edge set of Na.
Hurtado, Noy and Urrutia [9] showed that O(n?) flips are always sufficient and
that £2(n?) flips are sometimes necessary.

Note that in the geometric setting, only the near-triangulations that are
defined on the specified point set can be attained via edge flips. For example, no
planar K, can be drawn on a convex set of four points without introducing a
crossing.

In order to resolve the discrepancy between the combinatorial and geometric
settings, Abellanas et al. [1] introduced a geometric operation called a point
move. A point move on a geometric triangulation is simply the modification of
the coordinates of one vertex such that after the modification the graph remains
a geometric triangulation. That is, the move is valid provided that after moving
the vertex to a new position, no edge crossings are introduced. They also showed
that with O(n?) edge flips and O(n) point moves, any geometric triangulation on
n points can be transformed to any other geometric triangulation on n possibly
different points.

The question which initiated our investigation is whether or not O(n?) edge
flips are necessary. In this paper, we show that with O(nlogn) edge flips and
point moves, we can transform any geometric near-triangulation on n points to
any other geometric near-triangulation on n possibly different points. Next, we
show that if we restrict our attention to geometric near-triangulations defined
on a fixed point set of size n, the problem is just as difficult even with the use
of point moves. Finally, we show that with a slightly more general point move,
we can remove the extra log factor from our main result.

2 Results

In the remainder of the paper, all triangulations and near-triangulations are ge-
ometric. It is assumed that the outer face any given near-triangulation is convex,
and that any two near-triangulations involved in a reconfiguration have the same
number of points on the convex hull.

We assume that the n vertices of any given triangulation are in general po-
sition. It is not difficult to see that O(n) point moves can reconfigure a triangu-
lation to this form. We begin with some basic building blocks that will allow us
to prove the main theorems.

Lemma 1. [2] A reconfiguration between two triangulations of the same point
set that is in convex position can be done with O(n) edge flips.

Lemma 2. [9] Let v1, v2 and vs be three consecutive vertices on the outer face
of a near-triangulation Ty. Let C be the path from v; to vs on the convezx hull
of all vertices but vy. A near-triangulation Ts containing all edges of C may be
constructed from Ty with t edge flips, where t is the number of edges initially
intersecting C in Tj.
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Lemma 3. Given a near-triangulation T', any vertex p € T with degree d > 3
that is inside the convex hull of the vertices of T can have its degree reduced to

3 with d — 3 edge flips.

Proof. Let P be the polygon that is the union of all triangles incident to p. By
Meister’s two-ears theorem [13], if P has more than three vertices, then it has at
least two disjoint ears2. At most one of them can contain p. Therefore p and one
of the ears form a convex quadrilateral. We may flip the edge from p to the tip of
the ear, effectively cutting the ear from P and reducing the number of vertices
of P by one. This process may be continued until P is reduced to a triangle that
contains p as desired. ]

Lemma 4. Given a near-triangulation T, any vertex p € T with degree 3 that is
inside the convez hull of the vertices of T can be moved to a new position in the
triangulation along a straight path crossing t edges, using at most 2t edge flips
and 2t + 1 point moves, assuming the path does not cross through any vertices.

Proof. Suppose that p is joined by edges to vertices v, v9 and v3. Without loss
of generality, let edge vovs intersect the path that p must follow, and let this
path continue into triangle vovsvy, as shown in Figure 1.

Clearly p can be moved anywhere within triangle v;v2v3 without the need
of any edge flips. Then it can be moved along its path, as close to edge vov3 as
necessary, so that the quadrilateral pvvsvs becomes convex. This allows edge
v2v3 to be flipped into edge pvs. Now p may continue along its path. As soon as
it enters vov3vy, edge pvy may be flipped into vov3. Now, with two edge flips and
two point moves, p has crossed through the first edge intersecting its path, and
still has degree 3. By the same argument, p may traverse its entire path with two
edge flips and two point moves for each intersecting edge. One additional point
move is required in the last triangle. Note that only three edges in the original
and final triangulations will be different. 0O

Fig. 1. A vertex p and a straight path that it must move along (dashed). p can pass
through any edge with two edge flips.

2 A triangle, defined by three consecutive vertices of a polygon, is an ear if it is empty
and the vertices form a convex angle. The second vertex is the tip of the ear.
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Lemmata 3 and 4 imply the following result:

Lemma 5. Given a near-triangulation T, any vertez in the interior of the con-
vez hull of the vertices of T with degree d can be moved to a new position in the
triangulation along a path crossing t edges, using O(d + t) edge flips and point
moves.

Lemma 6. An edge can be constructed between a convex hull vertex and any
other vertez in a triangulation using O(n) edge flips, with the aid of one moving
point that is moved O(n) times.

Proof. Let v; be the hull vertex. First suppose that the second vertex is an
interior point. Then it will play the role of the moving point, and we will label
it p. We can move p directly towards v;, until it is located within a triangle that
has v; as a vertex. Now v; and p must be joined with an edge. Next we move p
back along the same line to its original position, always maintaining edge v;p. To
do this, we consider the set of triangles that intersect p’s path, as in Lemma 4.
The point p can always enter a triangle intersecting the path back to its original
location. The difference is that once it has crossed an intersecting edge, we do
not restore the edge. This means that p will accumulate edge degree. An issue
that needs to be taken care of is that of maintaining a triangulation when p is
about to lose visibility to another vertex. This occurs when one of its incident
edges is about to overlap with another edge in the triangulation, as shown in
Figure 2.

Suppose that edge pvs is about to overlap with edge vsvs. Vertices vs and
vy cannot be on opposite sides of the remaining path that p must traverse,
otherwise vzvs may be flipped. The point p must share an edge with v4 in this
configuration. Points p and v3 are also part of another triangle, along with some
vertex v* which may be anywhere on the path from v; to vs. These two triangles
must form a convex quadrilateral pv*v3vy, otherwise p would have already lost
visibility to v*. Thus pvs may be flipped into vs4v*, which means that vz is
removed from the polygon that intersects p’s path. The result is that when p
reaches its original position, it leaves a fan® behind it, which includes edge v, p.

Fig. 2. Maintaining a triangulation while extending edge vip: p has moved from a
position close to v1 (shown white), and still has to traverse the dashed segment to its
original position. Edge pvs causes a problem if p is to continue.

3 A fan is a star-shaped polygon with a vertex as its kernel.
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Overall one edge flip is used when p enters a new triangle, and at most one flip
is used for every edge that attaches to p.

If both vertices of the edge that we wish to construct are on the hull, then
we can take any point p within the hull and move it close to v; and onto the
segment between the two hull vertices. p can then move along this segment to
the second hull vertex until it is connected to both. At this moment, p may be
perturbed so that the three vertices form a triangle. This triangle might contain
other edges incident to p. Lemma 2 implies that these edges may be removed so
that the desired edge can be constructed with O(n) edge flips. O

2.1 Triangulations
With the basic building blocks in place, we now prove one of our main results.

Theorem 1. With O(nlogn) edge flips and point moves, we can transform any
geometric triangulation on n points to any other geometric triangulation on n
possibly different points.

Proof. We transform one triangulation to another via a canonical configuration.
As shown in Figure 3, the interior vertices form a backbone (i.e. their induced
subgraph is a path). The top of the backbone is joined to the topmost hull vertex
v1, and all interior vertices are joined to the other two hull vertices, v; and vg.

The canonical configuration is constructed in a divide-and-conquer manner.
We perform a radial sweep from v;, to find the median vertex interior to the
convex hull, vps. After constructing edge v1vp we move vy, directly away from
v; towards the base vpvg, maintaining vyvas until triangle vyv,vg contains no
interior points. By Lemma 6, we use O(n) operations to accomplish this. Now, we
transform vyvprvr, and vivpvR into backbone configurations by induction since
they are smaller instances of the same problem. The resulting configuration is
shown in Figure 4.

We now show that the two sides may be merged using O(n) operations.
As shown in Figure 5a, we first move the lowest vertex of a backbone into a
position that is close to the base and is along the extension of edge vyvps. This
requires one edge flip. The vertices on the left/right backbones are processed in

M

VL R

Fig. 3. The canonical configuration used for triangulations.
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Fig. 4. The configuration of a triangulation prior to merging the backbones on each
side of the median vertex vas.

(®)

Fig. 5. Merging two backbones into one.

ascending order, and are always moved just above the previous processed vertex,
as shown in Figure 5b. Each vertex will require two point moves and one edge
flip. Thus v1vLvR is reconfigured into canonical form, and by a simple recurrence
the number of edge flips and point moves used is O(nlogn). It is trivial to move
a canonical triangulation to specific coordinates using n point moves. Thus the
transformation between any two triangulations may be completed. O

2.2 Near-Triangulations

If the initial graph is a near-triangulation, Theorem 1 does not directly apply.
Some care must be taken to handle a non-triangular outer face. Details are given
in the proof of the following theorem:

Theorem 2. With O(nlogn) edge flips and point moves, we can transform any
geometric near-triangulation on n points to any other geometric near-triangula-
tion on n possibly different points.

Proof. As in the case with triangulations, we transform one near-triangulation
to another via a canonical configuration. In the primary canonical configuration,
shown in Figure 6, one chosen hull vertex (v;) is joined by chords to all other



