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Foreword to the German Edition

The solution of functional equations is one of the oldest topics of
mathematical analysis. D’Alembert, Euler, Gauss, Cauchy, Abel,
Weierstrass, Darboux, and Hilbert are among the great mathematicians
who have been concerned with functional equations and methods of
solving them. In this field of mathematics, as in others, the literature
has grown markedly during the past fifty years. (See the chronological
bibliography at the end of this volume.) However, results found in
earlier decades have often been presented anew because through the
years there has been no systematic presentation of this field, in spite of
its age and its importance in application.

In this monograph, an attempt is made to remedy this situation, at
least in part. Results are usually presented with proofs, in contrast to
S. PiNcHERLE’s German and French encyclopedia articles published in
1906 and 1912, which, of course, were written for a different purpose.
Earlier works (such as those by E. Czuser 1891, E. Picarp 1928,
G. H. Harpy, J. E. LirtLEwoop, and G. PorLya 1934, M. FRECHET
1938, and B. HosTinsky 1939) (see bibliography) also give some attention
to functional equations, but the special functional equations treated are
subordinate to their applications. We prefer to arrange the subject
matter according to actual types of functional equations. We also cover
a different and, as we think, somewhat broader range of problems than
does the book of M. GHERMANESCU 1960[b]. A. R. Schweitzer’s plan of
1918 to compile a bibliography of the theory of functional equations
was, alas, never carried out; therefore the list of references at the end
of this book, although incomplete, can partly serve as a bibliography too.

The term functional equation is interpreted here in its modern, more
restricted sense (cf. exact definition in the introduction, Sect. 0.1), so
that the definition does not apply to differential, integral, integro-
differential, differential functional, and similar equations. As defined,
however, the field of functional equations is still vast, and it was necessary
to limit even further the material to be treated. Although our inter-
pretation of this concept includes difference equations, we decided
to omit them because many standard treatises on the subject are available.

vii



viii Foreword to the German Edition

For consistency, and because ample systematic discussion is partly
available elsewhere, those functional equations are also omitted in which
all the unknown functions contain at least as many variables as the total
number of independent variables in the equation; for example, all
iterative equations have been left out. Since functional equations elimin-
ated by this decision have entirely different methods of solution from
all the others, this fact may be regrettable to some readers, but the
omission was necessary to keep the size of the book within reasonable
limits and to preserve systematic unity.

A number of factors were considered in organizing the subject
matter: functional equations for functions of one or several variables,
for one function, or several functions, simple and composite equations,
different elementary methods of solution and reduction to differential
and other equations, special applications of the equations, historical
considerations, and the like. The classification is not rigid; some
investigations may be considered as belonging in a particular chapter
but are treated elsewhere because of their specific relationships. Func-
tional equations for vectors and matrices of a finite number of dimensions
are treated briefly as a link between equations with one and with several
unknown functions of one and of several variables. On the other hand,
equations for operators and functionals are not considered, since
to do so would entail delving too deeply into functional analysis. As
indicated by the title, there is no treatment of functional inequalities;
an investigation of this would have to include, for example, the entire
theory of convex functions. Within its framework, the book merely
touches on the use of functional equations to define functions and their
extension from the real to the complex region, their extension to matrices
and other forms, their use in constructing functions of several variables
by means of functions of fewer variables, and similar questions—all
of them outside the scope of this book, which is limited mainly to
methods of solution.

Certain restrictions are imposed in regard to the domains and the
range of functions, as well as the “regularity” of the functions figuring in
the equations; otherwise, for instance, most of the algebra would have to
be included in the treatment of functional equations of associativity,
transformation, and distributivity. However, algebraic structures with
other laws are mentioned, and most of the publications dealing with
them are included in the bibliography. Also, the independent fields of
mathematics which are largely concerned with the solution and applica-
tion of functional equations, such as the theory of continuous groups
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and the theory of geometrical objects, had to be omitted. In this connec-
tion, the booklet (J. AczfL and S. GoraB 1960) on functional equations
in the theory of geometrical objects might be mentioned. Nevertheless,
we have included in the bibliography works in this theory which utilize
principally functional equations. On the other hand, emphasis is placed
on the relation of the discipline under discussion to algebra and to many
“algebraized’’ fields of geometry (continuous groups, vector analysis,
and the like). The broad fields of application, such as probability
theory, non-Euclidean geometry, and mechanics, which have contributed
greatly to developing the discipline of functional equations, should also
play a significant role. In this book, however, the treatment of
applications is subordinated to the equations, and preliminaries and
consequences in these fields cannot be discussed in detail. Par-
ticulars of applications which are required for clarity but which
themselves do not use functional equations are sometimes given in
fine print, as are less important examples and more elaborate parts of
certain proofs.

The book, aside from the foreword, introduction, concluding remarks,
and bibliography, is divided into two parts. Smaller divisions include
chapters, sections, and subsections. The chapters are numbered in
sequence through the book, the sections are numbered within the
chapters, and the subsections within the sections. Theorems and formulas
are numbered within the subsections. For example, 1.2.3 (1) indicates
formula (1) of subsection 3 in Section 2 of Chapter | (which in turn
is in Part I). References to the bibliography are made as follows: a work
cited in the text or in a footnote, or in this foreword—for example,
A. R. ScHwerTzer 1918 [c]—will be found in the chronologically
arranged bibliography under the year (1918); within that year-group,
alphabetically under the author’s name (ScHWEITZER, A. R.); and
among that author’s references, under the letter indicated ([c]).

Unfortunately, very few existence and uniqueness theorems are
included, and very little is included about the influence of the form of
the equation on the form of the solution, since such information is
almost nonexistent. When possible, we investigate the generality of
given methods of solution. Hence, types of functional equations are
investigated with more general methods of solution, in addition to
special functional equations with individual methods of solution which
have been mainly investigated up to now. As a result, a certain order
and correlation are imposed upon this disorganized field, although the
lack of a unified theory is still quite apparent.
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Another peculiarity of functional equations, compared with differen-
tial, integral, difference, and other equations, as observed by Abel, is
that one functional equation can contain several unknown functions in
such a way that all unknown functions can be determined from it.
This fact is encountered frequently throughout the book and can serve
as a unifying principle, since such functional equations often unite
many seemingly different equations.

In systematized fields, books are often arranged so that individual
parts are independently comprehensible; here, emphasis is placed on
relations between otherwise isolated investigations. This arrangement
often makes it necessary for the reader to leaf through the book, although
nearly all chapters and many sections actually stand as independent
entities.

The origins of the investigations are, to the best of our knowledge,
always explicitly presented. The expert will also find some new material.
As a link between textbook, monograph, and reference work, this book
contains theorems with both sketchy and detailed proofs; in a few
cases proofs are omitted. The hypotheses and assertions are sometimes
formulated in advance, sometimes later, but nearly always explicitly.
There is no attempt to prove the strongest assertions under the weakest
hypotheses. Some of the numerous and diverse gaps, problems, and
conjectures which are still unresolved are explicitly formulated in this
book, which, it is hoped, will intensify interest in this field, rich in
problems and important for applications.

The expert may consider the elementary character of the book a
shortcoming, but this approach was intentional, in order to benefit the
student as much as possible. The concepts of function, monotonicity,
and continuity suffice for understanding a considerable amount of the
material; with knowledge of the concepts of integrability (measurability)
of the (partial) derivatives, of the Jacobian functional determinant, and
of the basis of real numbers, most of the text should be readily com-
prehensible, with the possible exception of certain applications. As a
matter of fact, the elementary character of the present status of the
functional equation theory has both advantages and disadvantages. The
object of this book is to win new supporters through an elementary
approach, in the hope that they, in turn, will help advance the field.

The book is based partly on lectures delivered from 1953-1960 at
Debrecen University, and should be Judged with the indulgence due
a first attempt to summarize a large, ramified, and unsystematically
developed field. The author will welcome comments from colleagues in
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this and other disciplines concerning the content and methods used in
the book.

The author is grateful to Professors S.Golab (Kracow), M.Ghermanescu
(Bucharest), H. P. Thielman (Iowa), Dr. M. Hosszi (Miskolc),
Dr. H. Kiesewetter (Berlin), Dr. M. Kuczma (Katowice), and
Dr. E. Vincze (Miskolc) for their critical review of the first draft and
the final manuscript of the book and for their valuable comments
and suggestions. Warmest thanks go to Dr. J. Merza, who drew
the figures, and to the author’s wife, who helped to prepare the
manuscript and who, with Mr. Hosszu, compiled the author index.
Numerous colleagues supplied important literature references.

The manuscript of the book contained the dedication ‘“To my highly
esteemed and beloved teacher—ILeopold Fejér—in warmest gratitude
and friendship.” To our great sorrow, L. Fejér succumbed to a serious
illness in his 80th year, prior to publication of this work. It is dedicated
to his memory.

J. AczEL
February, 1960
Debrecen
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Although the English edition is not a new book, it is more than a
translation of J. Aczél 1961 [h]. Much new material has been added to the
text and the bibliography is almost twice its original size. Not all new
entries date from later than 1960, the year the German edition was finished,
but the many new contributions since 1960 reflect the vigorous develop-
ment of this theory. I would feel gratified if the English edition helps
continue this progress.

The principles governing the topics chosen remain essentially
unchanged. Although the presentation is more formal (separating
theorems and proofs) and generalizations for more abstract structures
are often considered, the elementary and ever-developing character of
the material is still evident. Topics such as the domains of functional
equations and noncontinuous solutions are more stressed in the new
edition.

A new feature in the Bibliography, which the reader might find helpful,
is that after each item he finds the page-numbers where that work was
quoted.

The revisions in this new edition are partly based on experiences of
further lectures in Debrecen (Hungary), Gainesville (Florida), Giessen
and Cologne (Germany), and Waterloo (Ontario). Warmest thanks go to
students and colleagues at all these places for their valuable comments.

The author is grateful to Dr. M. Kuczma (Katowice), Dr. E. Vincze
(Miskolc),and Dr. M. A. McKiernan,who read the galley proofs and the
repros, and made many important suggestions; to the translator and
referee for the English text; and to Academic Press for readily accepting
changes resulting in improvement.

Last but not least I thank those who have made valuable suggestions
and remarks on the German edition and hope they and others will
continue this activity in connection with the English edition.

J. AczEL
Waterloo, Ontario, Canada
October, 1965
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Introduction

0.1. Definition and Examples

Nearly everyone working in mathematics has encountered functional
equations, so that examples need not be given at this point. A definition
of the concept “functional equation” is difficult. A somewhat loose
paraphrase of what is generally meant by this expression follows:

Functional equations are equations, both sides of which are terms
constructed from a finite number of unknown functions (of a finite number
of wvariables) and from a finite number of independent variables. This
construction is effected by a finite number of known functions of one or
several variables (including the four species) and by finitely many sub-
stitutions of terms which contain known and unknown functions into
other known and unknown functions. The functional equations determine
the unknown functions. We speak of functional equations or systems of
functional equations, depending on whether we have one or several equations.
(Also, a single functional equation can determine several desired functions
occurring within the equation; as a result, the number of equations is
not related to the number of functions to be determined.)

Since this description, which can hardly be considered a definition,
contains the concept term, we shall begin with the definition of the
concept itself!:

1. Definition of Term. (a) The independent variables x, , x,, ..., x), are
terms.

(b) Given that A,, A,, ..., A, are terms and that F is a function
of m variables, then F(A,, ..., A,) is also a term.

(c) There are no other terms.

1 J. AczéL anD H. KiesewerTER 1957, D. S. MITRINOVIC AND D. Z. Poxkovi¢ 1962[a],
M. Kuczma 1964.



2 Introduction

A given term thus contains a definite number (k) of variables
and a definite number of functions (n). (In functional equations, some
of the functions are known, others are unknown.)

2. Definition of Functional Equation. A functional equation is an

equation
A, = A4,

between two terms A, and A,, which contains k independent variables
X1y Xy ooy X and n = 1 unknown functions Fy ,Fy , .., F, of j ,js s <o jn
variables respectively, as well as a finite number of known functions.

k is the rank® and n is the number of functions of the functional equation,
J = min(jy, ..., J,) is the minimal number of the variables in the functions
of the functional equation.

The fact that we are excluding the possibility of infinitely many
variables or functions as well as the possibility of known and unknown
operators and functionals excludes functional equations in the broader
sense from our definition (for example, operator equations, differential,
integral, integrodifferential, functional differential equations and the
equations of optimization in dynamic programming). It does include,
however, difference equations, iteration equations, equations defining
implicit functions, etc., so that we apply the limitation j < % in this
book, i.e.:

The rank must be larger than the minimal number of variables in the
Sfunctions of the equation.?

3. Definition of System of Functional Equations. A system of
Junctional equations consists of p > 2 functional equations, which contain
n = 1 unknown functions altogether. p is the number of equations, n the
number of functions of the system.

* W. MaIEr 1957. [We translate “‘Stufe” as “‘rank”.] For other definitions cf. A. R.
ScHwEeITZER 1916[e]; H. StemNnaus 1956; M. HosszU 1962[c]; B. SCHWEIZER AND
A. SKLAR 1962[a]; M. Kuczma 1964.

*In any event, to a certain extent these are only formal limitations: It is also possible
to write differential equations in the form of functional equations in the above sense.
For example, the differential equation

f(x) = fx)
can be written in the form
flx + ) — fx)( + 3) = F(x, )y, F(x,0) = 0, F(x, y) continuous.
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It is assumed here too that in at least one equation of the system, the rank
is greater than the minimal number of variables of the functions appearing
in this equation. It is further assumed that the ranks, numbers of
functions, minimal numbers, and the number of equations are essential,
that is, that none of the variables, functions, and equations can be
eliminated in a trivial manner; thus, no identities should occur, no
variables are to be included in functions in which they are constant, etc.

Naturally, it is permitted that the “known” functions of the above
definition appear in an arbitrary form, for example, implicitly.

The functional equations or systems must be identically satisfied for
certain values of the variables x, , x,, ..., x;, figuring in them. (Never-
theless we use the sign = and not ==.) This is their domain. It usually
consists of sets of k-tuples of real or complex numbers, but can also
be a domain in a vector space, a set of matrices, or even an abstract
algebraic system. If we do not say otherwise, the domain is supposed to
be that of real numbers or k-tuples of real numbers. Also, the range of the
unknown functions can consist of varied quantities (real or complex
numbers, vectors, matrices, elements of abstract sets, and the like).
An important additional concept is the class of admissible functions for
the desired functions. This class can be defined by the analytic proper-
ties (measurability, invertibility, boundedness, monotonicity, continuity,
integrability, differentiability, analyticity, etc.) or by initial and boundary
conditions (function values on a subset of the domain). Sometimes
conditions are given in the form of additional functional or other
equations.

A particular solution of a functional equation or of a system of
functional equations is a function or a system of functions (when n > 2)
which satisfies the equation or equations in the given domain (reduces
them to identities). The general solution is the totality of all solutions
belonging to the class of admissible functions. To solve a functional
equation, or a system, means to find the general solution. This solution
depends naturally on the domain and the class of admissible functions.

The following are examples of functional equations and of systems
of functional equations:

flx +3) = f(X)f(), (1)
J@&)? = flx + y)f(x — ), )



