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SMOOTH DYNAMICAL SYSTEMS

The literature on smooth dynamical systems is substantial. In selecting material
for our lectures we have set ourselves a twofold aim. On the one hand we have tended
to give a more or less connected account of a number of contemporary results associated
with general problems of the classification of dynamical systems, by describing “rough”
and “typical” properties, etc. On the other hand we wish to emphasize that the gen-
eral constructions arising here are connected with ideas going back to the classics, and
they permit us to obtain new information on qualitative properties of some long known
problems.

We have not set ourselves the objective of recounting in detail the genesis and
evolution of the ideas and notions under consideration, since this would require a sub-
stantial increase in size. The bibliographic citations we give do not pretend to be com-
plete; in addition to the few remarks and references of a historical character that are
presented by each author, we recommend consultation of the fundamental contribution
Geodesic flows on closed Riemannian manifolds of negative curvature by D. V. Anosov.
As far as we know, this paper gives the most detailed historical survey of everything
connected with the “hyperbolic” behavior of the trajectories of dynamical systems—a
property playing a basic role in the circle of questions under consideration.

V. M. Alekseevy

A. B. Katok
A. G. Kusnirenko
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§1. Simplest examples of dynamical systems

1. Let M be a C”-manifold. By a classical dynamical system on M, we mean
either a diffeomorphism ¢: M — M, or a one-parameter group of diffeomorphisms ¢,
of M, differentiable in ¢ (i.e. a family of diffeomorphisms ¢, of M, differentiable with
respect to ¢, and satisfying the condition Pty+t; = Pry © ¢r, forany ¢, ¢, ER). A
vector field X = dy/dt|,_ , may be associated with every such one-parameter group;
and, conversely, in the case where M is compact, every smooth vector field gives rise
(by a well-known theorem) to a group of diffeomorphisms of M, depending smoothly
upon the parameter #. Such a group of diffeomorphisms (or sometimes the vector field
which generates it) is called a dynamical system with continuous time, or a flow, while
the set {¢"},, of all powers of some diffeomorphism ¢ (or just this diffeomorphism
itself) is often called a dynamical system with discrete time. From every dynamical
system {g,},cg With continuous time, one can obtain a dynamical system {‘Pn-to}ne z
with discrete time, generated by the powers of the diffeomorphism ¢t but not every
system with discrete time can be obtained from some flow in this manner.

ExAMPLE 1. Rotation of a circle. M = S' = {x (mod 2m)}, p: S* — §!, ox =
x +d (mod 2m). Case a) d/2n is rational; case b) d/2m is irrational.

The set {¢"x: n € Z} (in the case of a dynamical system with discrete time), or
the set {p,x: ¢ € R} (in the case of continuous time) is called the trajectory or orbit
of the point x € M.

*Translation of Ninth Math. Summer School (Kaciveli, 1971), Izdanie Inst. Mat. Akad. Nauk
Ukrain. SSR, Kiev, 1972, pp. 52—124. MR 52 #1789.

1980 Mathematics Subject Classification. Primary 58F15; Secondary 58F25, 58 F18, 58F22.
Copyright © 1981, American Mathematical Society
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2 A. G. KUSNIRENKO

In Example 1, case a), every orbit consists of a finite number of points (the tra-
jectories are closed); in case b) all the orbits are infinite sets, and it is easily shown that
every orbit is everywhere dense in S!.

ExAMPLE 2. M =T? =8 x §' = {(x,, x,) (mod 1)}. A flow on M is given
by a system of ordinary differential equations: Jél =1, )52 = A. The corresponding
one-parameter group of diffeomorphisms of M may be written down explicitly:

x1> x, +t (mod 1)
¢t< x, + A (mod 1)'

X3

Just as in Example 1, two cases are possible: a) A is rational, and in this case all the
trajectories are closed; b) A is irrational, and in this case it is easily shown that every
trajectory is everywhere dense in T2,

There is a relation between Examples 1 and 2, which will be discussed below.

2. DEeFINITION. The point p € M is said to be a fixed point of a dynamical sys-
tem, provided the orbit of p coincides with p. In the case of continuous time, a fixed
point is often called a singular point, a stationary point, or an equilibrium position.

ExXAMPLE 3. M = §? = Riemann sphere = C. On E\oo, a dynamical system is
given by the system of two differential equations: z = z. The substitution z = 1/V
shows that ¢, is also smooth in the neighborhood of .

It is easily seen that o is a fixed point and that, for any tE R and z € C, 9z =
e'z. Thus the dynamical system under consideration has two fixed points, 0 and oo,
while for any other point z,

€6 n?d

00 as t —> +oo,

v —
o 0 as t — —oo,

We note that, unlike Examples 1 and 2, ¢, does not preserve any finite regular (i.e.,
positive on any open set) measure on S2. In fact, for £ > 0 we have the strict inclu-
sion ¢, {z: Izl > 1} C {z: |z| > 1}.

0
FIGURE 1

EXAMPLE 4. We take the dynamical system (with continuous time) of Example
1, and obtain from it, in the manner described above, the dynamical system (with dis-
crete time) {p,: ¢t € Z}. This system is generated by the diffeomorphism ¢, : ¢, ()
= and ¢,z = ez
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EXAMPLE 5. M = S', x = sin 3x. In this example there are six fixed points,
three attractive and three repulsive. All the remaining points form six trajectories.
Every nonfixed point approaches one of the attractive fixed points as ¢t — oo, and
one of the repulsive fixed points as ¢t — —oo,

FIGURE 2

EXAMPLE 6. Let M = S! and let ¢, be the one-parameter group of diffeomor-
phisms of Example 5.

a) Setyp=y,.

b) Define the diffeomorphism by the equality yx = ¢, x + 2m/3.

In Example 6a), just as in Example 5, there are three attractive and three repul-
sive fixed points, while the closure of any other trajectory contains two fixed points,
one attractive and one repulsive. In Example 6b) there are no fixed points. The orbit
of the point O consists of three points, and likewise the orbit of 7 consists of three
points.

DeErFINITION. The point x € M is said to be a periodic point of the diffeomor-
phism ¢ if there exists an #n > 0 such that ¢"x = x. The smallest such integer n is
called the period of x.

In the case of continuous time, the trajectory of the point x € M is said to be
periodic with period T (T > 0) if p;x = x and ¢x # x for 0 <t <T. The periodic
trajectories of ¢, are also known as closed trajectories.

REMARK. Among the fixed points of the diffeomorphism ¢” are included all
the periodic points of period n of the diffeomorphism ¢; but, in general, not every
fixed point of ¢"is periodic with period n.

Thus, in Example 6b), there are two periodic trajectories with period 3 (six
periodic points). For any nonperiodic point x, y"x approaches one of the periodic
trajectories as n — +oo, and the other as n — —oo,

EXAMPLE 7. As M, we take the sphere S2, smoothly imbedded in R3, as shown
in Figure 3 for case a), and in Figure 4 for case b). We consider the function f = x5l
(i.e., height) on §2, and put —x= grad f (x € S2, and the metric on S is induced by
the imbedding in R3). The trajectories of these dynamical systems are known as lines
of steepest descent.

2



A. G. KUSNIRENKO

A

c

FIGURE 3

C
FIGURE 4

Case a). There are four fixed points, 4, B, C, and D, corresponding to the criti-
cal points of the function f.

In small neighborhoods of 4 and B, all trajectories recede from the critical point
as t increases, and in a small neighborhood of C, all trajectories approach C as ¢ increases.
D is a saddle point. There are two trajectories which approach D as t — +o0, and two
trajectories which approach D as t — —=. Any other trajectory bypasses the point D
(i.e., leaves any small neighborhood of D as t — #o0). The set consisting of those
points of M which approach G as t — +oo is open and everywhere dense in M. This
set is homeomorphic to an open disk. The complement of this set is of smaller dimen-
sion than M, and consists of the fixed points 4, D, B and the two trajectories which
approach D as t — +eo. Similarly, the set consisting of those points of M which ap-
proach either 4 or B as t — —o° is open and everywhere dense in M, while the comple-
ment of this set has dimension 1.

Case b). In this example, there are six fixed points: three maximum points of f,
one minimum point of f and two saddle points. The behavior of the trajectories on M
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essentially depends upon how the separatrices emanating from the point D (that is, the
two trajectories which approach D as £ — —°) behave as ¢ —> +oo,

EXERCISE. We excise from S? a small disk around the point C. The remaining
portion of 2 is also a disk. Sketch the trajectories of system 7b) on this disk, exam-
ining the various possible cases with respect to the behavior of the separatrices emanat-
ing from the point D.

3. In the next two examples, there naturally appear manifolds more complicated
than those in the examples already considered.

ExAMPLE 8. a) We consider the sphere $?, smoothly imbedded in R3, and a
particle moving on the surface of S? without friction and with unit velocity. The
phase space of this dynamical system is the manifold of unit vectors tangent to S?;
and, as is easily verified, this manifold is diffeomorphic to three-dimensional real pro-
jective space.

b) An analogous construction can be carried out for any surface M> C R3. The
phase space of such a dynamical system will be the three-dimensional manifold of unit
vectors tangent to M?. The metric on M? is induced by the imbedding in R3, and the
trajectories of the dynamical system so obtained correspond to the geodesics on the
Riemannian manifold M?2.

ExAMPLE 9. Let 4 be a real n x n matrix. We consider the system of linear
differential equations x = Ax in R”, and denote by ¢, the corresponding one-parameter
group of linear transformations of R”. We fix an integer k, ] <k <n — 1, and con-
sider the set of all k-dimensional linear subspaces of R”. This set may naturally be
given the structure of a smooth manifold, which is called a real Grassmann manifold,
and is denoted by G,’j . Since each diffeomorphism ¢, sends any k-dimensional subspace
into some other k-dimensional subspace, ¢, induces a new dynamical system @, on GL‘ .

REMARK. Let the vector field X on the manifold M” have the fixed point Xo5
we wish to find (locally) the k-dimensional invariant manifolds of the flow ¢, passing
through x,. In terms of local coordinates with origin at x,, the flow g, is given by
the system of differential equations x = Ax + - - - . The tangent plane to any invar-
iant k-dimensional manifold is invariant with respect to the linear system x = Ax, and
therefore constitutes a fixed point of the flow ¢, on G',j. Thus, the determination of
the fixed points of ¢, in Gi‘, constitutes a natural step in finding the invariant manifolds
passing through x,. In exactly the same manner, to investigate the behavior of k-di-
mensional manifolds which are (locally) nearly invariant, it is natural to begin by ex-
amining a small neighborhood of a fixed point of the flow ¢, in Gf, .

ExERcCISE. In the case where n = 4, k = 2, and 4 is a diagonal matrix, find the
fixed points and invariant submanifolds of ¢,. Describe the behavior of the trajectories*
in the two cases of Example 7.

*Translator’s note. Presumably this refers to the trajectories of the flow @t induced by the

linearized equations in the neighborhoods of the various fixed points, as explained in the preceding
remark.
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§2. The relation between diffeomorphisms and flows
Certain formal relations may be established between flows and diffeomorphisms.

1. Succession functions. Let the flow ¢, on an (n + 1)-dimensional manifold
have a closed trajectory y with period . We take any point x, on vy and any n-dimen-
sional area element P passing through x, and transversal to .

Let U be some sufficiently small neighborhood of x,, in P. For any point x € U,
the trajectory y,x of this point remains close to the trajectory of x, (that is, to v), and
consequently for some z, > 0 (¢, ~ T) this trajectory will (for the first time) intersect P.

Denoting this first point of intersection by ¢x, we obtain a local diffeomorphism
¢: U— P, where px, = x,.

DEFINITION. By a local diffeomorphism of a (possibly open) manifold P, we
mean a pair (U, ¢) consisting of an open set U C P and a diffeomorphism ¢: U —
oU) CP.

Let the local diffeomorphism (U, ¢) of the manifold P have a fixed point x,, and
let the local diffeomorphism (U', ¢") of the manifold P’ have the fixed point x;. We
say that the diffeomorphism ¢ at x, is differentiably equivalent to ¢ at x, if there
exists a diffeomorphism 4: V' — V', where V and V' are open sets, x, € ¥ C U and
xo € V' C U, such that

e olyne-1(r) = ¢ ° hlynp-1(v)-

EXERCISE. Let P’ be a transversal surface element at some point x, € v and let
¢': U' — P be the corresponding local diffeomorphism. Show that ¢ and ¢’ are dif-
ferentiably equivalent.

It is easily seen that the study of the flow ¢, in the vicinity of vy is completely
equivalent to the study of the local diffeomorphism ¢. For example, the determination
of the periodic trajectories of ¢, in the vicinity of v is equivalent to the determination
of the fixed and periodic points of ¢, the stability of the periodic solution 7 is equiva-
lent to the stability of the fixed point x, of ¢, and so forth.

The local diffeomorphism ¢ is often called a succession function.

2. Global succession functions. Sometimes a construction similar to the preced-
ing may be effectively carried out in a global context. Let W**! be a compact, con-
nected (n + 1)-dimensional manifold, and ¢, a flow on it. We assume that there exists
a smooth compact n-dimensional submanifold M" C W"*! having the following prop-
erties:

1) no trajectory of ¢, is tangent to M™;

2) every trajectory has a point of intersection with M".

Then,

3) for any point x € M", there exists a minimal ¢, > 0 such that Prox €EM".
For x €M™ letting (x) be the first point of intersection of ¢,x with M™ for t >0, we
obtain a well-defined global “succession diffeomorphism.”

The manifold M" is called a global transversal for the flow ¢, on W"* 1!,
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It is easily seen that the study of the flow ¢, on W"*1 is equivalent to the study
of the diffeomorphism ¢ on M". Moreover, it can be shown that every diffeomorphism
¥ which is close to ¢ on M" is induced in the above-described manner by some flow v,
which is close to ¢, on W*t1,

EXERCISE. Let M} be a submanifold of W"*! which is C!-close to M".

a) Show that MY is a global transversal for the flow o,.

b) Show that there exists a diffeomorphism 4: M" — M’ such that the follow-
ing diagram is commutative:

Mn Y 5 Mn

N

My —— My

(here ¢, is the succession diffeomorphism on M7).

3. Suspension. We shall now show that any diffeomorphism ¢ of an arbitrary
manifold M" is the succession diffeomorphism of some flow.

Consider the manifold-with-boundary M" x [0, 1], the boundary of which con-
sists of two copies of M" (that is, M" x 0 and M" x 1), and consider the vector field
on this manifold consisting of the unit tangent vectors in the direction of the interval
[0, 1]. We now identify M" x 0 and M" x 1 by means of the diffeomorphism ¢; that
is, we regard x x 0 and ¢x x 1 as one and the same point. It is easily seen that we
thereby obtain a certain smooth manifold W"*! and a smooth flow ¢, on it; moreover,
the locus of the “pasting” operation constitutes a global transversal with succession
diffeomorphism ¢. The flow ¢, on W™ is called the suspension of the diffeomor-
phism .

EXERCISE. Show that the flow of Example 2 is the suspension of the diffeomor-
phism of Example 1.

REMARK. In fact, the preceding arguments contained a logical gap. In the set
obtained after identifying M” x 0 and M"™ x 1, the structure of a smooth manifold
does not just arise by itself, but must be introduced. We shall not do this, but rather
mention a construction of the suspension somewhat different in form from the preced-
ing one.

Consider the manifold W"+! = M" x R and the flow defined by the formula
¢ ,(x, 7) = (x, 7 + 1), and also the diffeomorphism ¢ of W1t defined by the formula
ox, 7) = (&x, 7= 1). Clearly,?t cQ =@ o 5, for any z. Now, we shall say that
points a and b of the manifold Wt are equivalent if there exists an integer n such
that = $"b. We denote by W"*! the set of equivalence classes, and by 7: W1 —
W"*1 the natural projection onto this set. It is easily seen that there exists a unique
smooth manifold structure on W"*such that 7 becomes a local diffeomorphism. From
the fact that ¢ commutes with $,, it follows that $t preserves the equivalence relation
on W**1 and consequently induces a flow on W+ (which we denote by ¢,). Finally,
it is easily seen that the equivalence classes of points of the form x x 0 (x € M")
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provide a smooth manifold in W”* 1, diffeomorphic to M", which constitutes a global
transversal for the flow y,, and that the succession diffeomorphism on this manifold
corresponds to ¢.

ExERcISE. Construct the suspension for the diffeomorphism of Example 6b).

DEFINITION. We say that the diffeomorphism ¢: M — M is contained in a flow,
if there exists a one-parameter group of homeomorphisms ¢, of M such that ¢ = o, .
If ¢, is a group of diffeomorphisms depending differentiably upon ¢, then we shall say
that ¢ is contained in a smooth flow.

PrOBLEM. Prove that, for any manifold M, there exists a diffeomorphism ¢:
M — M which is not contained in a flow.

Hint. Examine the set of periodic points of a diffeomorphism which is included
in a flow.

83. Spaces of dynamical systems. Equivalence relations

Let M be a compact C”-manifold. We denote by Diff"(M) (1 <r < o) the set of
C’-diffeomorphisms of M. For any k, 1 < k < r < o0, we may convert Diff"(M) into a
topological (function) space, introducing the topology of C¥-convergence (i.e. uniform
convergence together with that of all derivatives of order up to k) in Diff" (). We de-
note the topological space thus obtained by Diff}(M). The space Diff’, is a complete
metric space and possesses the structure of a Banach C*-manifold (i.e., one may choose
a neighborhood of each point which is homeomorphic to an open ball in a fixed Banach
space B such that the transition functions will be C* on B).

Let E be some equivalence relation on Diff”.

1) For example, let us say that f, g € Diff"(M) are equivalent if there exists a o
diffeomorphism #: M — M (I <r) such that the following diagram is commutative:

M—L sy

|,

M—M

This equivalence relation is called C'-conjugacy.

2) If we merely require that the mapping 4 in the previous diagram be a homeo-
morphism, then we obtain the relation of topological conjugacy.

3) If we impose further conditions on the homeomorphism %, we obtain various
other equivalence relations. For example, we may require that # be homotopic to the
identity mapping of M.

4) Below, we shall encounter still another interesting equivalence relation, known
as §2-conjugacy.

To every equivalence relation E on the set Diff"(M), there corresponds a certain
notion of stability on Diff’ (M).

DEFINITION. Let E be an equivalence relation on Diff"(M). The diffeomorphism
f € Diff", (M) is said to be E-stable if there exists a neighborhood U = U(f) of the point
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[ in the space Diff} (M) such that any diffeomorphism g € U(f) is E-equivalent to f:
gL

We emphasize that the notion of E-stability in general depends upon the choice
of the topology on Diff”.

In the case where E is the relation of topological equivalence, a stable diffeomor-
phism is said to be structurally stable or rough.

The notion of structural stability or roughness, which has turned out to be
especially fruitful, first appeared in 1937, in a paper of Andronov and Pontrjagin, in
connection with flows [1] (i.e., dynamical systems with continuous time). The defini-
tions of topological equivalence and structural stability for a flow are not entirely
parallel to the corresponding definitions for a diffeomorphism, and will be given below.

For a compact manifold M, the space of smooth flows on M may be identified
with the linear space X"(M) of C"-smooth vector fields on M. Provided with a C”-
norm, X" becomes a Banach space. Given a vector field X on M, for an arbitrary ho-
meomorphism 4 the objects X o 4 and 4 ° X are in general not defined, and we must
pass from the field X to the one-parameter group of diffeomorphisms ¢, generated by
X. Then, for any fixed ¢, the homeomorphisms ¢y © hand h ° ¢, are well-defined.
However, the definition of topological conjugacy which suggests itself (that is, {yp,}~
() = 3hVtho y,= ¢, o h) turns out to be unsuccessful, and must be modified.
For otherwise, e.g., the periods of closed trajectories turn out to be invariants, and
flows having identically disposed trajectories, and differing only in the velocity of mo-
tion along these trajectories, would not be equivalent.

DEFINITION. Two smooth flows {v;} and {¢,} on the manifold M are said to
be topologically equivalent if there exists a homeomorphism %: M — M which trans-
forms the trajectories of {p,} into the trajectories of {¥,} with preservation of orien-

tation.
DEFINITION. A flow ¢, € X is said to be structurally stable if there exists a

neighborhood U of ¢, in X"(M) such that any flow Y, € U is topologically equivalent
to o,.

DEFINITION. Two smooth flows {v;} and {y,} in X"(M) will be called C'-con-
Jugate if there exists a diffeomorphism 4 € Diff'(M) such that, for any t€R, y, =
h=1o ¢, ° h

EXERCISE. Show that the dynamical systems of Examples 1 and 2 are not rough.
Show that the systems of Examples 3—5 lack stability with respect to C'-conjugacy.

§4. Classification of dynamical systems

First of all, it should be observed that there is no hope of classifying all dynami-
cal systems without exception. There are many reasons for this. For example, the
structure of the set of fixed points must certainly be an invariant of the dynamical
system for any reasonable equivalence relation; however, any closed subset of a mani-
fold M is the set of fixed points of some C*-smooth dynamical system. But we are
inclined to regard the problem of describing all closed subsets of a manifold M as un-
solvable.
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However, it will be shown below that, for all systems belonging to a certain open
set which is everywhere dense in Diff/ (M) or in X" (M), the set of fixed points is finite.
Thus, we are led to the necessity of excluding from consideration a closed nowhere
dense set in the space of dynamical systems, consisting of systems for which the set of
fixed points is infinite (which we regard as an exceptional, nontypical situation). Some
other nontypical situations (also encountered only upon a closed, nowhere dense set)
will be described below.

The second remark which should be made is that, for the global study of a dyna-
mical system (on the entire manifold M), C¥-conjugacy (even for k = 1) is too fine an
equivalence relation. One of the reasons for this is that, if a dynamical system has a
fixed point, then the eigenvalues of the linear portion of the dynamical system at this
point (the rigorous definition will be given below) are C!-invariants; such invariants,
taken with respect to all fixed and periodic points, do not, in general, constitute a com-
plete set of invariants.*

ProBLEM. Consider the flow ¢ of Example 3. Show that there are flows, arbi-
trarily close to ¢ in the C*-topology, which coincide with ¢ on the sets |z| <1 and
lz| > 2, and are not C!-equivalent to ¢.

We shall now state a theorem, which is basically due (like the formulation of the
notion of roughness) to Andronov and Pontrjagin.

THEOREM (ANDRONOV-PONTRJAGIN AND DE BAGGIS-PEIXOTO). The set of
structurally stable flows is everywhere dense (and open) in X"(M?*) for any compact
two-dimensional manifold M? .

Andronov and Pontrjagin studied flows on the two-dimensional sphere and disk,
and gave a number of simple geometrical conditions, necessary and sufficient for struc-
tural stability. Peixoto [2], [3] proved that the same conditions are necessary and suf-
ficient on any compact manifold and that these conditions characterize an open every-
where dense set. The precise formulation of the Andronov-Pontrjagin conditions will
be given below.

As has become clear during the last ten years, the analogue of the Andronov-
Pontrjagin theorem, unfortunately, does not hold for manifolds of dimension greater
than two. On the one hand, this is manifested in the fact that, in attempting to gen-
eralize the geometrical conditions for roughness, we obtain only sufficient conditions,
since there exist rough systems with very complicated structures (which will be dis-
cussed below). On the other hand, we have the following result:

THEOREM OF SMALE. For any manifold M™ with m = 2, there exists an open
set in Diff (M) (1 < r < ) consisting of nonrough diffeomorphisms, and for m > 3
there exists an open set of nonrough flows in X (M).

*Translator’s note. The purport of this phrase is obscure. Perhaps the intended meaning is
“satisfactory’” or ‘““meaningful’’ rather than ‘“‘complete”.
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Smale [4] constructed an example of an open set of nonrough diffeomorphisms
in Diff(72), where T2 denotes the three-dimensional torus. Application of the suspen-
sion provided an analogous example for flows on a certain four-dimensional manifold.

The construction of the same examples on an arbitrary manifold (the greatest dif-
ferences arise for diffeomorphisms on two-dimensional (see [5]) and flows on three-
dimensional manifolds) was subseQuently carried out by a number of authors.

Concerning the formulation of the theorem of Smale, it is worth making one re-
mark. One might attempt to save the situation by introducing a finite number of in-
variants. In the problem of classifying matrices up to similarity, for example, stability
is also lacking: in the neighborhood of any matrix one can find a matrix which is not
similar to it. However, on an open, everywhere dense set of matrices there exist a fi-
nite number of invariants (the eigenvalues), which completely resolve the classification
problem on this set. But a slight modification of the construction of Smale allows one
to construct an open set of diffeomorphisms on which the number of invariants of
topological conjugacy is infinite.

§5. Fixed points and periodic trajectories

1. Let f: M" — M", fx, = x,. In local coordinates with center at X,, one may
write fx = Ax + - - - . Writing an analogous expansion in another system of local coor-
dinates, we obtain, in place of A, a matrix similar to 4. The appropriately defined
linear operator f'|, o On the tangent space TM"|, o> the matrix of which, in the basis
Xy, ...,X, (or, more precisely, in the basis a/axllxo, T a/axn|x0) is A4, is called
the “linear part” of the diffeomorphism f at the fixed point x,. The eigenvalues of
Iy o are called the eigenvalues of the diffeomorphism f at the fixed point xq. If the
point x,, is periodic, with period k, then the preceding construction can be applied to
f*. The eigenvalues of f* at X, are called the eigenvalues of the diffeomorphism f at
the periodic point x,,.

If the vector field X vanishes at the point X, then the corresponding system of
differential equations, in the local coordinates X{s...,X,,has the form x=Ax + .
Again, the matrix 4 constitutes the matrix of a properly defined linear operator X’ on
™™ lxo, and the eigenvalues of A are known as the eigenvalues of the vector field at
the stationary point Xq-

Finally, if the vector field X has a periodic trajectory v, then we apply the pre-
ceding definition to the succession function, and we shall refer to the eigenvalues of
the succession function as the eigenvalues of the periodic trajectory .

EXERCISE. Let ¢, be a flow corresponding to the vector field X, let T be the
period of v, let A;,...,\,_, be the eigenvalues of v, and let Xy €. Then 1,

Ays - -5 N\, _; are the eigenvalues of ¢, at the fixed point Xg-

DEFINITION. A nonsingular linear operator 4 (in a finite-dimensional space) is
said to be hyperbolic if its spectrum does not intersect the circle |[A| = 1.

Correspondingly, a fixed or periodic point of a diffeomorphism, or a periodic tra-
jectory of a flow, is said to be hyperbolic if none of its eigenvalues has modulus 1.
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A fixed point x,, of a flow ¢, generated by a vector field X is said to be hyper-
bolic if x, is a hyperbolic fixed point of the diffeomorphism ¢,. This condition is
satisfied if and only if the real parts of the eigenvalues of X at x,, are different from
zZero.

2. We consider the important special case where all the eigenvalues of the diffeo-
morphism ¢ at the fixed point x,, are of modulus less than 1. In this case, the local
structure of y in the neighborhood of x,, from the topological point of view, is very
simple:

THEOREM 1. If the abovementioned diffeomorphism o preserves orientation,
then, locally, ¢ is topologically conjugate to the diffeomorphism \: x — %x, x € R".
If ¢ reverses orientation, then, locally, ¢ is topologically equivalent to the diffeomor-
phism ) ° o, where o denotes the reflection with respect to the hyperplane x 1 =0.

We note that the statement of this theorem is only concerned with topological
(and definitely not with differentiable) conjugacy.
An equivalent formulation of Theorem 1 is as follows:

THEOREM 1'. Suppose that the eigenvalues of the diffeomorphisms ¢;: R} —
R} (i =1, 2) at the fixed point O have moduli less than 1. If o, and ¢, both preserve
(or both reverse) the orientation of R", then o, and ¢, are locally topologically con-
Jugate; that is, there exists a local homeomorphism h such that ¢, °h=h° ¢,.

Still another equivalent formulation is useful:

THEOREM 1". 1) If the eigenvalues of the diffeomorphism p: R® — R” at the
fixed point O are less than one in modulus, then ¢ is locally topologically conjugate to
its own linear part.

2) Any two linear diffeomorphisms of R" with eigenvalues less than one in mo-
dulus are topologically conjugate if they lie in the same connected component of the
group GL(n, R).

An analogous theorem is valid for flows:

THEOREM 2. Suppose that the linear part of a vector field X at the stationary
point 0 € R"” has eigenvalues with negative real parts. Then there exists a homeomor-
phism h, defined in some neighborhood of the origin, such that the equation (h o e~ ")x
= ¢, © h holds whenever both sides are defined.*

One may likewise formulate Theorems 2’ and 2", analogous to Theorems 1’ and
1"

ProOF oF THEOREM 2. By a theorem of Ljapunov, there exists a neighborhood
D of 0 such that ﬂt>0 ¢,D = 0. Moreover, one may assume that D is the interior of
some ellipsoid, and consequently that there exists a diffeomorphism f of the standard
sphere xf A st xfl =1 onto 3D (as f one may take, for example, the projection

*Translator’s note. ¢, of course, denotes the flow generated by X.



