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PREFACE

Apart from being a vehicle for communicating my joy in the subject,
this book is intended to serve as a text for an introductory course on
special relativity, which is rather more conceptually and mathemati-
cally than experimentally oriented. In this context it should be
suitable from the upper undergraduate level onwards. But the book
might well be used autodidactively by a somewhat more advanced
reader. [t assumes no prior knowledge of relativity. Thus it elaborates
the underlying logic, dwells on the subtleties and apparent paradoxes,
and also contains a large collection of problems which should just
about cover all the basic modes of thinking and calculating in special
relativity. Much emphasis has been laid on developing the student’s
intuition for space-time geometry and four-tensor calculus. But the
approach is not so dogmatically four-dimensional that three-dimen-
sional methods are rejected out of hand when they yield a result more
directly. Such methods, too, belong to the basic arsenal even of
experts.

In fact, the viewpoint in the first three chapters is purely three-
dimensional. Here the reader will find a simple introduction to such
topics as the relativity of simultaneity, length contraction, time
dilation, the twin paradox, and the appearance of moving objects.
But beginning with Chapter 4 (on spacetime) the strongest possible
use is made of four-dimensional techniques. Pure tensor theory as
such is relegated to an appendix, in the belief that it should really be
part of a physicist’s general education. Still, this appendix will serve
as Chapter ‘33’ for readers unfamiliar with that theory. In Chapters 5
and 6—on mechanics and electromagnetism—a purely synthetic
four-tensor approach is adopted. Not only is this simpler and more
transparent than the historical approach, and a good example of
four-dimensional reasoning, but it also brings the student face to face
with the ‘man-made’ aspect of physical laws. In the last chapter (on
the mechanics of continua), the synthetic approach is somewhat
softened by a heuristic three-dimensional lead-in.

In the discussion of electromagnetism I have reluctantly adopted
the SI units now so widely used in spite of their awkwardness for the
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theoretician. But I have indicated how the equations can easily be
translated into their Gaussian (c.g.s.) forms in terms of which most
relativists think. A commitment to follow a consistent notation
(capital letters for four-dimensional and lowercase for three-dimen-
sional tensors) resulted in some other awkwardnesses, suchaseand b
for the electric and magnetic field vectors and w for the vector
potential (since a was already used for the acceleration). I can only
hope that the reader will give these symbols a try and not automati-
cally transcribe them.

I should perhaps say a word on the genesis of this book. It has a
predecessor after which it is loosely structured, namely my Special
Relativity (Oliver & Boyd, 1960), which went out of print in 1975,
That little book seems to have won some faithful friends and there
have been frequent requests for a new edition. But when I finally
attempted such an edition I realized how much my ideas—and
perhaps the subject itself—had changed and how impossible it was
simply to revise the old text. So I found myself much more pleasantly
engaged in writing a new book, this book, though a few of the old
arguments and problems have been taken over and, I hope, some of
the old spirit as well. There are also ties to my Essential Relativity
(Second Edition, Springer-Verlag, 1977). In a number of contexts I
became uneasily aware that I could neither improve upon, nor omit,
nor usefully paraphrase what I had already written there. So
eventually (with the publisher’s kind permission) I decided simply to
borrow the relevant passages verbatim; these may account for a total
of about ten pages of the present book. My conscience was somewhat
eased by the fact that, in its time, Essential Relativity had similarly
borrowed from the older Special Relativity.

I clearly owe much to many authors, some by now forgotten. But I
would like to acknowledge the special influence on this book of W. G.
Dixon, A. Papapetrou, R. Penrose, 1. Robinson, D. W. Sciama, R.
Sexl, J. L. Synge, H. Weyl, and N. Woodhouse. I also owe a
considerable debt to my students. As just one example I like to recall
the innocent class question “but what if . . . * which, many years
ago, precipitated the ‘length contraction paradox’—herein included.

Dallas, November 1981 Wolfgang Rindler
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I

THE FOUNDATIONS OF SPECIAL
RELATIVITY

1. Introduction

One of the greatest triumphs of Maxwell’s electromagnetic theory
(c. 1864) was the explanation of light as an electromagnetic wave
phenomenon. But waves in what? In conformity with the mechanistic
view of nature then prevailing, it seemed imperative to postulate the
existence of a medium—the ether—which would serve as a carrier for
these waves (and for electromagnetic ‘stress’ in general). This led to
the most urgent physical problem of the time: the detection of the
earth’s motion through the ether.

Of the many experiments devised for this purpose, we shall mention
just three. Michelson and Morley (1887, see Sec. 2), looked for a
directional variation in the velocity of light on earth. Fizeau (1860),
Mascart (1872), and later Lord Rayleigh (1902), looked for an
expected effect of the earth’s motion on the refractive index of certain
dielectrics. And Trouton and Noble (1903) tried to detect an expected
tendency of a charged plate condenser to face the ‘ether drift’. All
failed. The facile explanation that the earth might drag the ether along
with it only led to other difficulties with the observed aberration of
starlight, and could not resolve the problem.

In order to explain nature’s apparent conspiracy to hide the ether
drift, Lorentz between 1892 and 1909 developed a theory of the ether
that was eventually based on two ad hoc hypotheses: the longitudinal
contraction of rigid bodies’ and the slowing down of clocks (‘time-
dilation’)* when moving through the ether at a speed v, both by a
factor (1 —v?/c?)"/?, where c is the speed of light. This would so affect
every apparatus designed to measure the ether drift as to neutralize all
expected effects.

In 1905, in the middle of this development, Einstein proposed the
principle of relativity which is now justly associated with his name.
Actually Poincaré had discussed essentially the same principle during
the previous year, but it was Einstein who first recognized its full

! Notes throughout the book are placed at the end of the relevant section.
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significance and put it to brilliant use. In it, he elevated the complete
equivalence of all inertial reference frames to the status of an axiom or
principle, for which no proof or explanation is to be sought. On the
contrary, it explains the failure of all the ether-drift expriments, much
as the principle of energy conservation explains a priori (i.e. without
the need for a detailed examination of the mechanism) the failure of
all attempts to construct perpetual motion machines.

At first sight Einstein’s relativity principle seems to be no more than
a whole-hearted acceptance of the null results of all the ether-drift
experiments. But by ceasing to look for special explanations of those
results, and using them rather as the empirical evidence for a new
principle of nature, Einstein had turned the tables: predictions could
be made. The situation can be compared to that obtaining in
astronomy at the time when Ptolemy’s intricate geocentric system
(corresponding to Lorentz’s ‘actherocentric’ theory) gave way to the
ideas of Copernicus, Galileo,and Newton. In both cases the liberation
from a venerable but inconvenient reference frame ushered in a
revolutionary clarification of physical thought, and consequently led
to the discovery of a host of new and unexpected results.

Soon a whole theory based on Einstein’s principle (and on a ‘second
axiom’ asserting the invariance of the speed of light) was in existence,
and this theory is called special relativity. Its programme was to
modify all the laws of physics, where necessary, so as to make them
equally valid in all inertial frames. For Einstein’s principle is really
a metaprinciple: it puts constraints on all the laws of physics. The
modifications suggested by the theory (especially in mechanics),
though highly significant in many modern applications, have negli-
gible effect in most classical problems, which is of course why they
were not discovered earlier. However, they were not exactly needed
empirically in 1905 either. This is a beautiful example of the power of
pure thought to leap ahead of the empirical frontier—a feature of all
good physical theories, though rarely on such a heroic scale.

Today, over seventy years later, the enormous success of special
relativity theory has made it impossible to doubt the wide validity of
its basic premises. It has led, among other things, to a new theory of
space and time, and in particular to the relativity of simultaneity and
the existence of a maximum speed for all particles and signals, to a
new mechanics in which mass increases with speed, to the formula
E = mc?, and to de Broglie’s association of waves with particles. One
of the ironies of these developments is that Newton’s theory, which



THE FOUNDATIONS OF SPECIAL RELATIVITY 3

had always been known to satisfy a relativity principle in the classical
theory of space and time, now turned out to be in need of
modification, whereas Maxwell’s theory, with its apparent conceptual
dependence on a preferred ether frame, came through with its
formalism intact—in itself a powerful recommendation for special
relativity.

Apart from leading to new laws, special relativity leads to a useful
technique of problem-solving, namely the possibility of switching
reference frames. This often simplifies a problem. For although the
totality of laws is the same, the configuration of the problem may be
simpler, its symmetry enhanced, its unknowns fewer, and the relevant
subset of physical laws more convenient, in a judiciously chosen
inertial frame.

Our main concern in this chapter will be to set Einstein’s principle
in its proper perspective and to derive from it the so-called Lorentz
transformation equations, which are the mathematical core of the
special theory of relativity. With their help we can subject the various
branches of classical physics to the test of Einstein’s principle, and
with their help, too, find the necessary modifications where the
principle is not satisfied.

! Proposed independently by Fitzgerald as early as 1889,
2 Based directly on a feature of Einstein’s special relativity of 1905.

2. Schematic account of the Michelson—Morley experiment

Certainly the most famous of all the experiments designed to measure
the ether drift was that due to Michelson and Morley, first performed
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in 1887 and repeated many times thereafter. Its essential principle was
to split a beam of light and then to send the two half-beams along
orthogonal arms of equal length, at whose ends mirrors reflected the
beams back to the starting point where they were made to interfere.
Then the entire apparatus was rotated in the plane of the arms. If this
causes a differential change in the to-and-fro light travel times along
the two arms, the interference pattern should change. Suppose
originally one of the arms, marked L, in Fig. 1, lies in the direction of
an ether drift of velocity v. Figure 1 should make it clear that the
respective to-and-fro light travel times along the two arms would then
be expected to be

L L
T1= ! + d = ZL; 212
c+v c—v c(l—v*/c?)
2L, 2L,

2= - H)ir = c(l _Uz/cz)uz’

where L, and L, are the purportedly equal lengths of the two arms.
Since T, # T,, a rotation of the experiment through 90° should
produce a shift in the interference fringes. None was ever observed,
which seems to imply v = 0. Yet at some point in its orbit the earth
must move through the ether with a speed of at least 18 miles per
second (its orbital velocity) and this should have been easily detected
by the apparatus. Of course, in Einstein’s theory, this null result is
expected a priori.

In the Lorentz theory the null result of the Michelson—Morley
experiment was explained by the contraction of the arm that moves
longitudinally through the ether, so that the actual lengths of the arms
are related by L, = L,(1 —v*/c*)'/?, which yields the observed
equality T, = T,. (It can be shown that the contraction hypothesis
ensures T, = T, for all positions of the arms.) That there is also need
of a second hypothesis—time dilation—in the Lorentz theory can be
appreciated by considering a simple thought experiment. Suppose we
could measure the original to-and-fro time T, directly with a clock,
and suppose we could then move the arm L, along with the ether so
that v becomes zero. Then the to-and-fro time should be Ty = 2L,/c
=T,(1 —v?/c*)!/?, But if nature’s conspiracy to hide the ether is
complete, we would instead measure Ty = T,. This could be accoun-
ted for by the hypothesis that a clock moving with speed v through the
ether goes slow by a factor (1 —v?/c?)!/2. For then the measured time
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in the original position is less by that factor than the actual time 7,
and is thus equal to T,

As has been stressed by Sexl, modern equivalents of the
Michelson—Morley experiment are being performed daily. For
example, the synchrony of the seven atomic clocks around the globe
that serve to define ‘International Atomic Time’ is continually tested
by an exchange of radio signals. Any interference with these signals by
an ether drift of the expected magnitude could be detected by the
clocks. Needless to say, none has been detected: day or night, summer
or winter, the signals always arrive with the same time delay. Again,
the incredible accuracy of some modern radio navigational systems
depends crucially on the directional invariance of the speed of light.

3. Inertial frames in special relativity

A frame of reference is a conventional standard of rest relative to
which measurements can be made and experiments described. For
example, if we choose a frame rigidly attached to the earth, the various
points of the earth remain at rest in this frame while the ‘fixed’ stars all
trace out vast circles in the course of each day; if, on the other hand, we
choose a frame attached to the fixed stars then these remain at rest
while points on the earth, other than those on its axis, trace out
approximate circles in the course of each day, and the earth itself
traces out an ellipse in the course of each year; and so on. Among all
possible frames there is one class which plays a special role in classical
mechanics, namely the class of inertial frames. These frames play an
even more fundamental role in the special theory of relativity and we
shall therefore define and discuss them carefully. An inertial frame is
one in which spatial relations, as determined by rigid scales at rest in the
frame, are Euclidean and in which there exists a universal time in terms
of which free particles remain at rest or continue to move with constant
speed along straight lines (i.e. in terms of which free particies obey
Newton’s first law).

Free particles placed without velocity at fixed points in an inertial
frame will remain at those points, by definition. We can therefore
picture an inertial frame as an aggregate of actual or virtual free test-
particles mutually at rest, as determined by rigid scales. The distances
between these ‘defining’ particles satisfy the Euclidean axioms—an
important stipulation in view of later developments. Straight lines in
such a frame can be defined as geodesics (lines of minimum length)
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and free particles not belonging to the defining aggregate move along
such lines. We can further picture the defining particles as carrying
clocks that indicate the universal time throughout the frame.

Now let us see the relevance of this to special relativity. We shall
adopt the modern view (largely due to Einstein) that a physical theory
is an abstract mathematical model (much like Euclidean geometry)
whose applications to the real world consist of correspondences
between a subset of it and a subset of the real world. In line with this
view, special relativity is the theory of an ideal physics referred to an
ideal set of infinitely extended gravity-free inertial frames, such as we
described above. Why ‘gravity-free’? Classically, gravity was regarded
as an overlay which did not affect the rest of physics. So it was logical
for Newton to treat the frame of the fixed stars as inertial, in the sense
that but for gravity free particles would move uniformly relative to it.
But Einstein, in his general relativity (the details of which are beyond
the scope of this book) taught us that gravity' is curvature (of space
and time) and so affects all the rest of physics, which has no choice but
to play on a stage of space and time. In E. T. Whittaker’s phrase,
gravity ceased to be one of the players and became part of the stage.
Thus extended inertial frames cannot be realized in nature, because
gravity destroys Euclidicity. But this does not affect in any way the
logic of special relativity as an abstract theory (just as it does not
invalidate Euclidean geometry). It merely puts limitations on its
correspondence with the real world. These are spelled out by
Einstein’s equivalence principle of 1907 (on which he eventually based
his general theory of relativity): the sets of inertial frames in the real
world that correspond to (portions of ) the ideal set of inertial frames
discussed in special relativity consist of freely falling local frames. At
any given place and time in the real world there is one such set, each
member of which can be realized by an aggregate of test-particles
momentarily at rest relative to each other and falling freely under
gravity. Certainly in Newton’s theory such a set is locally equivalent to
a set of inertial frames from which gravity has been eliminated, for
in a gravitational field all particles suffer the same acceleration. Most
of us have at least vicariously experienced such frames: we need only
recall the televized pictures of space capsules in which astronauts are
weightless and, if unrestrained, move according to Newton’s first law.
Such capsules, then, are the primary reference frames in which the
laws of special relativistic physics would be expected to apply most
accurately,
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In this book all reference frames used (unless otherwise stated) will
be ideal infinitely extended gravity-free inertial frames, and all
observers will be considered to use such frames (‘inertial observers’).
Sometimes the term ‘inertial’ may be omitted, but it will always be
understood.

For our ideal frames we shall assume certain axioms. The first is
that any frame in uniform (translatory) motion relative to a given
inertial frame is itself inertial. This is certainly the case in Newton’s
theory. Conversely, a frame not moving uniformly relative to an
inertial frame cannot be inertial, for Newton'’s first law would fail in it.
So the set of ideal inertial frames consists of infinitely many members
all moving uniformly relative to each other. )

Our next axiom is that all inertial frames are spatially homo-
geneous and isotropic, not only in their assumed Euclidean geometry
but for the performance of all physical experiments. By this we mean
that the outcome of an experiment is the same whenever its initial
conditions differ only by a translation (homogeneity) and rotation
(isotropy) in some inertial frame. This is a very strong assumption,
which we are encouraged to make only in view of Einstein’s relativity
principle. It already eliminates the possible existence of an ether drift
in any inertial frame.

It may be noted that, whereas our definition of inertial frame
determines the rate of time (as that in which free particles move
uniformly), the isotropy axiom determines the clock settings. For
suppose isotropy holds in an inertial frame referred to Cartesian
coordinates x, y, zand we define a new time t' = t + kx (k = constant
> 0). Then Newton’s first law will still hold. But any given rifle will
now shoot bullets faster in the negative x-direction than in the
positive x-direction (i.e. with greater coordinate velocity).

As a final axiom we assume that inertial frames are temporally
homogeneous, i.e. that identical experiments (relative to an inertial
frame) performed at different times yield identical results. In
particular, this implies that all methods of time keeping based on
repetitive processes are equivalent, and it denies such possibilities
(envisaged by E. A. Milne) as that inertial time—relative to which free
particles move uniformly—falls out of step over the centuries with
atomic time, e.g. that indicated by a caesium clock.

! Actually, the rate of change of gravity.
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4. FEinstein’s two axioms for special relativity

As we have seen, Einstein’s reaction to the failure of all attempts to
detect the ether frame was radical. He advanced the following
principle of relativity: the laws of physics are identical in all inertial
Jrames, or, equivalently, the outcome of any physical experiment is the
same when performed with identical initial conditions relative to any
inertial frame.

Note that this is a generalization to the whole of physics of a relativ-
ity principle long known to be satisfied by Newtonian mechanics. Such
a generalization is strongly supported by the essential unity of physics.
For it would be very disturbing if, for example, the electromagnetic
laws governing the behaviour of matter on the atomic scale possessed
different invariance properties from the mechanical laws that govern
its macroscopic behaviour. Einstein also cited instances of manifest
relativity from electromagnetism. For example, the current induced in
a conductor by a magnet is the same whether the conductor is at rest
and the magnet moving, or vice versa.

Other a priori arguments can be adduced to justify the adoption of
Einstein’s relativity principle. But in our present development it is in
fact already implicit in the homogeneity and isotropy axioms for
inertial frames." The demonstration of this depends on the simple
lemma? that ‘between’ any two inertial frames S and S’ there exists an
inertial frame $” relative to which S and S’ have equal and opposite
velocities. For proof, consider a one-parameter family of inertial
frames moving collinearly with S and §’, the parameter being the
velocity relative to S. It is then obvious from continuity that there
must be one member of this family with the required property (see
Fig. 2.) Now imagine two intrinsically identical experiments E and E’
being performed in S and S, respectively. We can transform E', by a
spatial translation and rotation and a temporal translation, in §’, into
a position where it differs from E only by a 180" rotation in 8”. Thus,

S S S

G- 2

Fic. 2
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by the assumed homogeneity and isotropy of S’ and S”, the outcome
of E and E’' must be the same, which establishes Einstein’s principle (in
the form of our second formulation).

The acceptance of this principle—Einstein’s first axiom—seems
harmless enough until we come to his second axiom: There exists an
inertial frame in which light signals in vacuum always travel rec-
tilinearly at constant speed c, in all directions, independently of the
motion of the source. (The value of ¢ 15 29979245 ... x10® ms™ 1,
but ¢ =3 x 10° ms™! is good enough for many applications.)

By itself, this axiom is also perfectly reasonable. Even Einstein’s
contemporaries, familiar with Maxwell’s electromagnetic theory of
light, did not expect the speed of light to depend on the speed of the
source, and they had empirical evidence for this axiom in their
pseudo-inertial terrestrial frame of reference. In particular, the
direction-independence had been very accurately tested by the
Michelson—Morley experiment. But when combined with the first
axiom, the second leads to the following apparently absurd state of
affairs, which we shall call the law of light propagation:

Light signals in vacuum are propagated rectilinearly, with the same
speed c, at all times, in all directions, in all inertial frames.

Thus if a light signal recedes from me and I transfer myself to ever
faster-moving inertial frames in pursuit of it, I shall not alter the
velocity of that light signal relative to me by one iota. This is totally
irreconcilable with our classical concepts of space and time. But it was
a mark of Einstein’s genius to realize that those concepts were
dispensable, and could be replaced by others. The final form of those
others is due to the mathematician Minkowski, and consists in a
certain blend of space and time into a four-dimensional ‘spacetime’
(1908), as we shall see in due course.

A first logical consequence of Einstein’s two axioms was the
elimination of the ether concept from physics. Each inertial frame
now has the properties with which the ether was credited, and so it
makes no sense to single out one inertial frame arbitrarily and call it
the ether frame. It is true that Lorentz’s theory—gentler to the
classical prejudices than Einstein’s, and observationally equivalent to
it—kept the ether idea alive a few years longer. But soon Einstein’s far
more elegant and powerful ideas prevailed, and Lorentz’s theory,
together with the ether concept, fell into oblivion.

Finally, in spite of its historical and heuristic importance, we must



