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PREFACE

This book is intended as a textbook for a first course in the theory of
functions of one complex variable for students who are mathematically
mature enough to understand and execute ¢ — 8§ arguments. The actual pre-
requisites for reading this book are quite minimal; not much more than a
stiff course in basic calculus and a few facts about partial derivatives. The
topics from advanced calculus that are used (e.g., Leibniz’s rule for differ-
entiating under the integral sign) are proved in detail.

Complex Variables is a subject which has something for all mathematicians.
In addition to having applications to other parts of analysis, it can rightly
claim to be an ancestor of many areas of mathematics (e.g., homotopy theory,
manifolds). This view of Complex Analysis as “An Introduction to Mathe-
matics” has influenced the writing and selection of subject matter for this book.
The other guiding principle followed is that all definitions, theorems, etc.
should be clearly and precisely stated. Proofs are given with the student in
mind. Most are presented in detail and when this is not the case the reader is
told precisely what is missing and asked to fill in the gap as an exercise. The
exercises are varied in their degree of difficulty. Some are meant to fix the
ideas of the section in the reader’s mind and some extend the theory or give
applications to other parts of mathematics. (Occasionally, terminology is used
in an exercise which is not defined—e.g., group, integral domain.)

Chapters I through V and Sections VI.1 and VI.2 are basic. It is possible
to cover this material in a single semester only if a number of proofs are
omitfed. Except for the material at the beginning of Section V1.3 on convex
functions, the rest of the book is independent of VI.3 and VI.4.

Chapter VII initiates the student in the consideration of functions as
points in a metric space. The results of the first three sections of this chapter
are used repeatedly in the remainder of the book. Sections four and five need
no defense; moreover, the Weierstrass Factorization Theorem is necessary
for Chapter XI. Section six is an application of the factorization theorem.
The last two sections of Chapter VII are not needed in the rest of the book
. although they are a part of classical mathematics which no one should
completely disregard.

. The remaining chapters are independent topics and may be covered in any
order desired. ‘

Runge’s Theorem is the inspiration for much of the theory of Function
Algebras. The proof presented in section VIIL.1 is, however, the classical one
involving “‘pole pushing”. Section two applies Runge’s Theorem to obtain a
more general form of Cauchy’s Theorem. The main results of sections three
and four should be read by everyone, even if the proofs are not. 4

- .Chapter IX studies analytic continuation and introduces the reader to
analytic manifolds and covering spaces., Sections one through three can
be considered as a unit and will give the reader a knowledge of analytic

= vii



viii Preface
continuation without necessitating his going through all of Chapter IX.

Chapter X studies harmonic functions including a solution of the Dirichlet
Problem and the introduction of Green’s Function. If this can be called
applied mathematics it is part of applied mathematics that everyone should
know.

Although they are independent, the last two chapters could have been
combined into one entitled “Entire Functions”. However, it is felt that
Hadamard’s Factorization Theorem and the Great Theorem of Picard are
sufficiently different that each merits its own chapter. Also, neither result
depends upon the other.

With regard to Picard’s Theorem it should be mentioned that another
proof is available. The proof presented here uses only elementary arguments
while the proof found in most other books uses the modular function.

There are other topics that could have been covered. Some consideration
was given to including chapters on some or all of the following: conformal
mapping, functions on the disk, elliptic functions, applications of Hilbert
space methods to complex functions. But the line had to be drawn somewhere
and these topics were the victims. For those readers who would like to explore
this material or to further investigate the topics covered in this book, the
bibliography contains a number of appropriate entries.

Most of the notation used is standard. The word “iff” is used in place of
the phrase “if and only if’, and the symbol [} is used to indicate the end of a
proof. When a function (other than a path) is being discussed, Latin letters
are used for the domain and Greek letters are used for the range.

This book evolved from classes taught at Indiana University. I would like
to thank the Department of Mathematics for making its resources available
to me during its preparation. I would especially like to thank the students
in my classes; it was actually their reaction to my course in Complex Variables
that made me decide to take the plunge and write a book. Particular thanks
" should go to Marsha Meredith for pointing out several mistakes in an early
draft, to Stephen Berman for gathering the material for several exercises on
algebra, and to Larry Curnutt for assisting me with the final corrections of the
manuscript. I must also thank Ceil Sheehan for typing the final draft of the

manuscript under unusual circumstances.
' Finally, 1 must thank my wife to whom this book is dedicated. Her
encouragement was the most valuable assistance I received. '

John B. Conway
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Chapter 1

The Complex Number System

§1. The real numbers

We denote by R the set of all real numbers. It is assumed that each
reader is acquainted with the real number system as well as all its properties.
In particular we assume a knowledge of the ordering of R, the definitions
and properties of the supremum and infimum (sup and inf), and the com-
pleteness of R (every set in R which is bounded above has a supremum). It
is also assumed that every reader is familiar with sequential convcrgence in R
and with infinite series. Finally, no one should undertake a study of Complex
Variables unless he has a thorough grounding in functions of one real

~variable. Although it has been traditional to study functions of several real
variables before studying analytic function theory, this is not an essential
prerequisite for this book. There will not be any occasion when the deep
results of this area are needed.

§2. The field of complex numbers

We define C, the complex numbers, to be the set of all ordered pairs
(a, b) where a and b are real numbers and where addition and multiplication
are defined by:

(a, b)+(c,d) = (a+c, b+d)
(a, b) (¢, d) = (ac—bd, bc+ad)

It is easily checked that with these definitions C satisties all the axioms for a
field. That is, C satisfies the associative, commutative and. distributive laws
for addition and multiplication; (0, 0) and (1, 0) are identities for addition
and multiplication respectively, and there are mulitiplicative inverses for each
non zero element in C. ’

We will write a for the complex number (a, 0). This mapping a — (a, 0)
defines a field isomorphism of R into C so we may consider R as a subset of
C. If we put i = (0, 1) then (a, b) = a+bi. From this point on we abandon
the ordered pair notation for complex numbers.

Note that i = —1, so that the equation z+1 = 0 has a root in C. In
fact, for each z in C, z2+1 = (z+i) (z—i). More generally, if z and w are
complex numbers we obtain

22 4w? = (z+iw) (z—iw)
1



2 The Complex Number System

By letting z and w be real numbers a and b we can obtain (with both @ and
b # 0)

1 a-ib  a i b
a+ib  a*+b*  a*+b*  \a*+b?

so that we have a formula for the reciprocal of a complex number.

When we write z = a+ib (a, b € R) we call a and b the real and imaginary
parts of z and denote this by a = Re z, b = Im z.

We conclude this section by introducing two operations on C which are
not field operations. If z = x+iy(x, y € R) then we define |z| = (x?+y%)? to
be the absolute value of z and Z = x—iy is the conjugate of z. Note that

2.1 |z = zz
In particular, if z # 0 then

z
|2

N -

|z

The following are basic properties of absolute values and conjugates
whose verifications are left to the reader.

1
22 Rez = H(z+2z) and Imz = z—i(z—i).
23 (z¥w)=z+w and zZw = zZw.
24 _ |zw| = |2] |w].
2.5 lz/w] = lzl/lw.
2.6 1Z] = |z|.

The reader should try to avoid expanding z and w into their real and
imaginary parts when he tries to prove these last three. Rather, use (2.1),
(2.2), and (2.3).

Exercises
1. Find the real and imaginary parts of each of the following:

_ . 7 rai [a\3.
a R): 2 3+5i ( l+tﬁ),

7i+1’ 2

_1_: /2\6 An '
(l—"/3 ¥ i (l—+_'> for 2<n<8.
2 J2

2. Find the absolute value and conjugate of each of the following:

—24i; =35 Q+i) (4+3i); s

J—+31

(l+i)5; i



The complex' plane 3
3. Show that z is a real number if and only if z = Z.
4. If z and w are complex numbers, prove the following equations:

|z+w]® = |z]*+2Re zw+ |w|>.
|z—w|? = |z|*—2Re zw+ |w|2.
-+ w2 + lz—w® = 2+ |w]?).

5. Use induction to prove that for z =z, +...+2z,; w=ww,...w,:
W = wy|...[wo[5;Z=2+;..4Z; W =W, ... W,

6. Let R(z) be a rational function of z. Show that R(z) = R(2) if all the
coefficients in R(z) are real.

§3. The complex plane

From the definition of complex numbers it is clear that each z in C can"
be identified with the unique point (Re z, Im z) in the plane R%. The addition
of complek numbers is exactly the addition law of the vector space R2.
If z and w are in C then draw the straight lines from z and w to 0 (=(0, 0)).
These form two sides of a parallelogram with 0, z and w as three vertices.
The fourth vertex turns out to be z+w.

Note also that |z—w]| is exactly the distance between z and w. With this
in mind the last equation of Exercise 4 in the preceding section states the
parallelogram law: The sum of the squares of the lengths of the sides of a
parallelogram equals the sum of the squares of the lengths of its diagonals.

A fundamental property of a distance function is that it satisfies the
triangle inequality (see the next chapter). In this case this inequality becomes

|2y =23| < |zy—2z5| + |23—2,]

for complex numbers z,, z,, z;3. By using z, —z, = (z;,—2z;3)+(z23—2,), it is
easy to see that we need only show

31 |z+w| < |z] + |w| (z, we C).
To show this first observe that for any z in C,
32 —|z| < Rez < |z]

—lz] <« Imz < |z]
Hence, Re (zw) < |zw| = |z| |w|. Thus,

|z+w[? = |z]*+2Re (zW) + |w|?
< |22 +2lz] [w+|w|?
= (|z]+[w))?,

from which (3.1) follows. (This is called the triangle inequality because, if we
represent z and w in the plane, (3.1) says that the length of one side of the
triangle [0, z, z+ w] is less than the sum of the lengths of the other two sides.
Or, the shortest distance between two points is a straight line.) On encounter-
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ing an inequality one should always ask for necessary and sufficient conditions
that equality obtains. From looking at a triangle and considering the geo-
metrical significance of (3.1) we are led to consider the condition z = tw
for some teR, t > 0. (or w =1z if w = 0). It is clear that equality will
occur when the two points are colinear with the origin. In fact, if we look
at the proof of (3.1) we see that a necessary and sufficient condition for
|z4+w| = |z] 4 |w| is that [zw| = Re (zw). Equivalently, this is zw > 0 (i.e., zW
is a real number and is non m.gauve) Multiplying, this by w/w we get
[w]*(z/w) = 0if w # 0. If

t=z/lw= (I |2> [w|2(z/w)
thent > O and z = 1w.

By induction we also get
33 |2y +z,4. . .42, < |2y 4]z +. . 4]z
Also useful is the inequality

34 - ‘ |z] = |w| I <lz—w

Now that we have given a geometric interpretation of the absolute value
let us see what taking a complex conjugate does to a point in the plane.
This is also easy; in fact, Z is the point obtained by reflecting z across the
x-axis (i.e., the real axis).

Exercises

1. Prove (3.4) and give necessary and sufficient conditions for equality.

2. Shew that equality occurs in (3.2) if and only if z,/z, = 0 for any integers
kand I, 1 < k, ! < n, for which z;, # 0.

3. Let ae R and ¢ > 0 be fixed. Describe the set of points z satisfying

|z—a|—|z+a| =

for every possible choice of a and c. Now let a be any complex number
and, using a rotation of the plane, describe the locus of poeints satisfying the
above equation.

§4. Polar representation and roots of complex numbers

Consider the point z = x+iy in the complex plane C. This point h/as
polar coordinates (r, 6): x = r cos 8, y = r sin 6. Clearly r = |z| and 6 is
the angle between the positive real axis and the line segment from O to z.
Notice that 8 plus any multiple of 27 can be‘substituted for 6 in the above
equations. The angle 6 is called the argument of z and is denoted by 6 = arg z.
Because of the ambiguity of 8, “arg” is not a function. We introduce the
notation

4.1 cis @ = cos 0+1isin 6.
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Let z, = r, cis 6,, z, = r, cis 0,. Then z,z, = ryry-cis 6 cis 6, = ryr,

[(cos 6, cos 6,—sin 8, sin 6,)+i (sin 6, cos 6,+sin 8, cos 6,)]. By the

formulas for the sine and cosine of the sum of two angles we get

4;2 . 2121 = rlrz CiS (01+02)

Alternately, arg (z,z,) = arg z, +arg z,. (What function of a real variable
takes products into sums?) By induction we get for z, =-r,cis 6, 1 < k < n.

43 . ,zlz,...z,,=‘r,r2..;.r,,cis(0,+...+0,,)
"In particular,
44 ‘ z" = 1" cis (nf),

for every iﬁtcger n > 0. Moreover if z # 0, z:[r! cis (—6)] = 1; so that
(4.4) also holds for all integers n, positive, negative, and zero, if z # 0. As a
special case of (4.4) we get de Moivre’s formula:

(cos 8+ sin 6)" = cos nf+i sin néb.

We are now in a position to consider the following problem: For a given
complex number a # 0 and an integer n > 2, can you find a number z
satisfying z" = a? How many such z can you find? In light of (4.4) the
solution is easy. Let a = |a| cis «; by (4.4), z = |a|'/" cis (1/n) fills the bill.

 However this is not the only solution because z’ = |a|'/" cis - (a+27r) also

satisfies (z')" = a. In fact each of the numbers
45 a|*/" cis;(a+21rk), 0<k<n—l,
in an nth root of a. By means of (4.4) we arrive at the following: for each

non zero number a in C there are n distinct nth roots of a; they are given by
formula (4.5).

Example

Calculate the nth roots of unity. Since 1 = cis 0, (4.5) gives these roots as
. 2w . 4n . 2
l,cis —,cis —,...,cis — (n—1).
n n n
In particular, the cube roots of unity are

1 1 3
(A +i3), — (1=i/3).
1,\/5(1+1\/§),\/2(l i/3)

Exercises

1. Find the sixth roots of unity.
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2. Calculate the following:

(a) the square roots of i

(b) the cube roots of i

(c) the square roots of \/3+3i
3. Show that if @,and b are nth and mth roots of unity, respectively, then
ab is a kth root of unity for some integer k. What is the smallest possible
value of k?
4. Use the binomial equation

(a+bV = é‘,o (Z) @bk,
) - o

and compare the real and imaginary parts of each side of de Moivre’s
formula to obtain the formulas:

where

cos nf = cos" 6— (;) cos" % sin? 0+ (Z) cos" % @sin* 6—. ..
: n n—-l s n\ n—3 (I
sin nf = (l) cos"” " @sin 0—(3) cos" ° fsin” 0+. ..

2w
5. Letz = cxs-; for an integer n > 2. Show that 1+z+...+2" ' = 0.

6. Show that ¢(r) = cis ¢ is a group homomorphism of the additive group
R onto the multiplicative group T = {z: |z| =

§5. Lines and half planes in the complex plane

Let L denote a straight line/in ‘C. From elementary analytic geometry,
L is determined by a point in L and a direction vector. Thus if a is any point
in L and b is its direction vector then

L={z=a+th: —o0 <t < o0}

Since b # 0 this gives, for z in'L,

im(557) o
o Im (:ba)

In fa:t if z is such that

then
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implies that z-= a+1th, —© < t < co. That is

5.1 L={z:Im(Z—;—‘—l> =o}.

_What is the locus of each of the sets

Frm(57)> o
frm(5) <o}

As a first step in answering this question, observe that since b is a direction
we may assume |b| = 1. For the moment, let us consider the case where
a=0, and put H, = {z: Im (z/b) > 0}, b =cis B. If z =r cis 6 then
z¢b = rcis (0 —p). Thus, z is in H, if and only if" sin (§—pB) > 0; that is, when
B < 6 < m+pB. Hence H, is the half plane lying to the left of the line L if

Ho

we are “walking along L in the direction of 4.” If we put

() >}

then it is easy to see that H, = a+ H, = {a+w: we H,}; that is, H, is the
translation of H, by a. Hence, H, is the half plane lying to the left of L.

Similarly, ,
K, = {z: Im (z—;‘—I) < U}

is the half plane on the right of L.

Exercise »
1. Let C be the circle {z: [z—c| =r}, r > 0; let @ = c+r cis « and put
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e fem(5) =)

where b = cis B. Find necessary and sufficient conditions in terms of B that
L, be tangent to C at a.

- §6. The extended plane and its spherical representation

Often in complex analysis we will be concerned with functions that be-
come infinite as the variable approaches a given point. To discuss this situa-
tion we introduce the extended plane which is CU {0} = C_,. We also
wish to introduce a distance function on C, in order to discuss continuity
properties of functions assuming, the value infinity. To accomplish. this
and to give a concrete picture of C, we represent C,, as the unit sphere
in R3,

= {(xy, x5, x3) e R*: xf+x§+x§ =1}
Let N = (0, 0, 1); that is, N is the north pole on S. Also, identify C with

{(x,, x5, 0): x;, x, € R} so that C cuts S along the equator. Now for each
point z in C consider the straght line in R* through z and N. This intersects

the sphere in exactly one point Z # N.'If |z| > 1| then Z is in the northern
hemisphere and if |z| < 1 then Z is in the southern hemisphere; also, for
|z| = 1, Z = z. What happens to Z as |z| - o? Clearly Z approaches N;
hence, we identify N and the point oo in C Thus C,, is represented as
the sphere S.

Let us explore this representatlon Put z = x+iyand let Z = (x;, x,, X3)
be the corresponding point on S. We will find equations expressing x,, x5,
and x; in terms of x and y. The line in R* through z and N is given by
{tIN+(1—1)z: —0 < t < o}, or by

6.1 , {((1=Dx,(1=1t)y,1): —00 < t < 00}.

Hence, we can find the coordinates of Z if we can find the value of ¢ at
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which this line intersects S. If ¢ is this value then

1= (=022 +(1=1)? 412
= (1=-0%z*+1*
From which we get
1—1% = (1-1)%z|%

Since 1 # 1 (z # o0) we arrive at

. |z|* -1
P41
Thus
2x 2y [z]2 =1
62 - x, = =
NEE U T T e B T P
But this gives 7
z+432 : z—-Z |z]2=1
6-3 = = = —_—,
TEEPE T @R T e

If the point Z is given (Z # N) and we wish to find z then by setting
t = x5 and using (6.1), we arrive at

6.4 z= —7

Now let us define a distance function between points in the extended
plane in the following manner: for z, z’ in C,, define the distance from z to z’,
d(z, z'), to be the distance between the corresponding points Z and Z’ in R>.
If Z = (>, x5, x3) and Z’ = (x{, x;, x;) then :

6.5 d(z, 2') = [(x, = x{)* +(x; = x3)" + (x5 = x) ]
Using the fact that Z and Z are on .S;, (6.5) gives

6.6 ' [z, 2)]F = 2=200,X] + XX+ X33

By using equation (6.3) we get

2|z—2'|

[(+zP) A+ (z,2' € C)

6.7 diz,z') =

In a similar manner we get for z in C
2

6.8 d(z, CD) = mﬁ_

This correspondence between points of S and C, is called the stereographic
projection.



