A Practical
Course on
Operating
Systems

Colin J. Theaker
and
Graham R. Brookes

A Practical Course on
Operating Systems

Colin J. Theaker

Senior Lecturer in Computer Science,
University of Manchester

Graham R. Brookes

Senior Lecturer in Computer Science,
University of Sheftield

W

© Colin J. Theaker and Graham R. Brookes 1983

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First published 1983 by .
THE MACMILLAN PRESS LTD
London and Basingstoke
Companies and representatives
throughout the world

Printed in Great Britain by
Unwin Brothers Limited
The Gresham Press, Old Woking, Surrey

ISBN 0 333 34678 5
0 333 34679 3 pbk

Preface

An operating system is one of the most important pieces of software to
go into any modern computer system. irrespective of its size. yet
because systems seek to be transparent to the computer user. much
mystique surrounds their design. As computer systems increase in
complexity, particularly at the microprocessor level. more complexity
appears Iin the system software. The primary objective of this book is to
dispel the mystique associated with operating system design. and to
provide a greater practical understanding of the design and
implementation of operating systems.

The contents of this book are derived from a number of courses of
lectures given to undergraduate students of computer science. In its
entirety it provides suitable material for a full course on operating
systems for students who have a basic grounding in computer science.
or who have some practical experience of computing. However. less
detailed courses may be derived by choosing a sub-section of the
chapters. For example, the first four chapters provide a simple overview
of the structure of an operating system. and can therefore be used as
material for a lower level course. which seeks to provide a general
discussion of the nature and role of an operating system.

The first four chapters also provide the background for the more
detalled considerations that follow. This begins with an examination of
scheduling principles and the algorithms assoclated with scheduling. The
treatment of memory management traces much of the evolutionary path of
operating systems. from the need for base-limit registers to the design
of paged segmented machines. Subsequent chapters examine the
problems of resource management, including the protection of resources
and the avoidance of deadlocks. The problems of concurrency are then
examined. and a number of techniques for achleving cooperation and
synchronisation of processes are described. Finally, the interface most
famillar to the user. namely the job control language Is considered.

Throughout the book there are exercises for the student at the end of
each chapter, together with references in which the student can find
more detailed information on specific topics.

The authors wish to acknowledge the assistance and encouragement
of colleagues. in particular to Dr G.R. Frank. whose lectures on
operating systems at the University of Manchester provided much
inspiration for this book. and more generally to Professor D. Morris and
Professor F.H. Sumner. They thank Professor D. Howarth for helpful
suggestions in earlier drafts. Finally. they thank Margaret Huzar for her
patience in typing the manuscript of this book throughout its many
stages.

Contents

Preface

PART 1 DESIGN OF AN OPERATING “SYSTEM.

1

Basic Operating System Concepts
1= General Features
Performance Considerations
Input/Output Limited Jobs
CPU Limited Jobs
Summary

References

Problems

) e ed el
NOOsWOWN -~

Performance of Input/Output Systems

2.1 Simple Principles of Multiprogramming

2.2 The Use of Interrupts

2.3 The Concept of Buffering

2.4 Implementation of a Simple Buffering System
2.5 Summary

2.6 Problems

pooling

.1 Offline Spooling

.2 Online Spooling

.3 Design of a Simple Spooling System
Input System
Job Scheduler
Job Processor
Output Scheduler
Output System
Disc Manager
.3.7 The Coordinator
3.4 Problems

]
3
3
3

PLOWLO
WOweweo
oL ON -~

Time-Sharing Systems

4.1 Characteristics of the Time-sharing System
4.2 Design of a Time-sharing System

4.3 Problems

COONOOHLLN

PART 2 OPERATING SYSTEM TECHNIQUES

5

Buffering Techniques

7

48
7.

7

More Sophisticated Buffering Techniques
Double Buffering

Cyclic (Circular) Buffering

5.3.1 Requirements

5.3.2 Implementation

Problems

eduling - Principles

Preemptive and Non-preemptive Scheduling
Time-slicing

Choice of a Time Slice Period

Estimation of Response Time

Problems

eduling - Algorithms

Objectives of Scheduling

7.1.1 Response/turnaround time

7.1.2 Meeting user-specified deadlines

7.1.3 CPU utilisation

7.1.4 VUtilisation of other resources

Deterministic Scheduling for Independent Tasks

on a Single Processor

Simple Queuing System

Arrival distribution

Service distribution

Queue length

Waiting time

Little’s result

Utilisation factor

le—-processor Non-deterministic Scheduling

First-come-first-served scheduling

Non-preemptive shortest processing

time scheduling

7.4.3 Shortest remaining processing time scheduling

7.4.4 Comparison of response time

Single—processor Time—-sharing Systems

7.5.1 Derivation of response in a time-sharing system
with no time slicing

7.5.2 Derivation of response in a time-sharing system
using a Round Robin algorithm for time slicing

7.5.3 The overheads of preemption

References

Problems

N
OB WN =

PRrQUOOOB®

NNONNNNN

N -

Memory Management — Basic Principles

8.

1

Swapping Strategies
8.1.1 Simple swapping system

10

1

8.1.2 A more complex swapping system
8.1.3 Further developments of the swapping system

8.2 Memory Protection

8.3 Virtual Addressing

8.4 References

8.5 Problems

Memory Management — Segmentation

9.1 Fragmentation

9.2 Program Locallty

9.3 Sharing of Code and Data

9.4 Multiple Base-limit Register Machines

9.5 Address Translation on a Multiple
Base-limit Register Machine

9.6 Shared Segments

9.6.1 All direct
9.6.2 One direct, all others indirect
9.6.3 All indirect

9.7 Common Segments

9.8 References

9.9 Problems

Memory Management — Paging Systems
10.1 Paging
10.2 Address Translation in a Paged Machine
10. 2.1 Address translation using page address registers
10. 2. 2 Address translation using current page registers
10.3 Paged Segmented Machines
10.4 Store Management in a Paged Segmented Machine
10. 4.1 Segment table base register
10. 4.2 Process segment table
10. 4. 3 System segment table
10. 4. 4 Page table
10. 4.5 Loading of current page registers
10.5 Action on a Virtual Store Interrupt
10. 5. 1 Virtual store interrupt procedure
10.5.2 Find empty page procedure
10. 5. 3 Store rejection algorithm
10. 5. 4 Disc Interrupt procedure
10.6 References
10.7 Problems

Memory Management — Algorithms and Performance
11.1 Performance
11.2 Locality
11.3 Page Replacement Algorithms
11. 3.1 Belady optimal replacement algorithm
11.8.2 Least recently used algorithm
11.3.3 First in first out algorithm
11. 3.4 Not recently used algorithm

109

12

13

14

1.

0 H

11.6

1.7

1.8
1.9

Stack Algorithms

Multiprogramming

11. 5. 1 Reducing individual swap times — prepaging
11. 5.2 Improving swap rates by multiprogramming
Thrashing

11.6.1 Thrashing prevention by load control

11. 6.2 Thrashing prevention by controlling interference

Storage Allocation Techniques
11.7.1 First fit algorithm
11.7.2 Next fit algorithm
11.7.3 Best fit algorithm
11.7.4 Worst fit algorithm
11.7.5 Buddy system
References

Problems

File Management

12.1
12.2

12.3
12. 4
12.5
12.6

Requirements of a File System
Directories and Access Rights

12. 2.1 Single-level directory structure
12. 2. 2 Hierarchical directory structure
Dumping and Archiving

Secure File Updating

References

Problems

Resource Management — Deadlocks

18.1
18.2

13.4

Allocation of Resources
Deadlocks

13. 2.1 Deadlock prevention
13. 2. 2 Deadlock detection

13. 2. 3 Deadlock avoidance
13.2.4 The bankers algorithm
References

Problems

Resource Management — Protection

14.1
14.2

14.3

4.4

Introduction to Protection Systems

A General Model of Protection Systems
14.2.1 Defining and representing domains
Interdomain Transitions

14.3.1 Domain changes only on process changes
14. 3. 2 Restricted domalin change systems
14. 3. 3 Arbitrary domain changes

An Example of a Capablility System
14.4.1 Types and access amplification
14. 4. 2 Creation of new types

14. 4.3 An example

References

Problems

118
119
120
120
121
122
123
124
125
125
125
126
126
126
127

128
128
129
130
130
131
132
134
134

135
135
136
137
138
139
140
142
143

144
144
145
146
148
149
149
151
153
154
156
156
157
157

15 Process Synchronisation - Basic Principles

16

17

15.1 Introduction
15. 1.1 Process synchronisation
15.1.2 Process competition
15.2 Flags
15.3 Semaphores
15. 3. 1 Mutual exclusion by semaphores
15. 3.2 Process communication using semaphores
15.4 Implementation of Semaphores
15.5 Semaphore Implementation for a Multiprocessor System
15. 5.1 Hardware implementation
15. 5. 2 Software implementation
15.6 Semaphore Implementation for Multiprocessing Systems
156.7 An Example in the use of Semaphores
- the Readers and Writers Problem
15.7.1 Readers have priority
15.7.2 Writers have priority
15.8 References
15.9 Problems

Process Synchronisation - Advanced Techniques
16.1 Introduction
16.2 Message Systems
16.3 Message-passing Operations
16.4 Practical Considerations
16.4.1 Form of the message
16. 4. 2 Addressing of processes
16. 4.3 Type of message—queuing discipline
16. 4. 4 Message validation / protection
16. 4. 5 Message deadlocks
16.5 Solution of the Readers and Writers Problem
using Messages
16. 5.1 Design of the controlling process
16.6 The Language Based Approach — Monitors
16. 6.1 Encapsulation
16. 6. 2 Mutual exclusion
16. 6. 3 Communication
16.7 Modula-2
16.7.1 Modules
16. 7.2 Processes — coroutines
16.7.3 An example module
16. 7.4 Devices and interrupts
16.8 References
16.9 Problems

Job Control Systems

17.1 Functions of the Job Control System
17.2 Types of Job Control Language

17.3 Requirements of Job Control Languages

158
158
159
159
161
163
164
164
165
167
167
168
169

169
170
17
172
173

174
174
175
176
177
177
178
178
179
179

180
180
183
184
185
185
186
186
187
188
189
190
190

191
19
193
194

17.

17.
17.
17.

Index

N O D

Additional Features

Standardisation

Procedural Approach to Job Control
References

Problems

195
196
196
197
197

199

Part1 Design of an Operating System

1 Basic Operating System Concepts

We shall begin our consideration of operating systems by asking the
following questions:

(1) What is an operating system?

(2) Why are operating systems needed?

(3) Do situations exist when they are not needed?
(4) How would an operating system be designed?

The first part of this book aims to provide answers to these questions.
During the course of this, we shall present a simple overview of the
design of an operating system. The subject is developed in more
detail in the second part of the book, where particular problem areas
are discussed together with algorithms used within operating systems.
Whenever possible. the book contains illustrations of a theoretical
operating system written in the style of the language Pascal.

Take the first question — ‘what is an operating system?’. In simple
terms it is just a program. but its size and complexity will depend on a
number of factors., most notably the characteristics of the computer
system. the facilities it has to provide and the nature of the applications
it has to support. For example. the operating system for a single user
microprocessor can be relatively simple in comparison with that for a
large multi-user mainframe computer.

Regardless of size. the operating system is usually the first program
loaded into the computer when the machine is started. Once loaded.
some portions of it remain permanently in memory while the computer is
running jobs. Other portions of the operating system are swapped in
and out of memory when facilities are required by the users.

To answer the second - '‘Why are operating systems needed’ - it is
worth stating the basic objectives that an operating system is seeking to
attain:

Basic Operating System Concepts 3

(1) To provide a higher level Interface so that the
hardware of the computer becomes more readily
usable.

(2) To provide the most cost effective use of the
hardware of the computer.

Operating systems attempt to satisfy both of these objectives although. In
practice. these requirements are not mutually exclusive and so a
compromise in design has to be made. In consequence. there are many
types of operating system. In this book we shall seek to illustrate the
principles behind a range of operating systems rather than provide a full
conslideration of any specific system.

As with most complex pieces of software. it is possible to regard the
structure of an operating system as a layered object. analogous to. say.
an onion. At the centre is a nucleus of basic facilities. to which
additional layers are added as required to provide more sophisticated
facilities. Some modern operating systems. such as VME/B for the ICL
2900 (Keedy. 1976:; Huxtable and Pinkerton, 1977) and UNIX (Ritchie
and Thompson, 1974). exhibit this neatly layered structure and some
machines even provide hardware support for such a layered organisation.

Rather than starting with such a system and decomposing it to
identify the important components of an operating system. the approach
we Intend to take in this book is to concentrate initially on the nucleus
of the system. Starting at the most primitive level. the hardware. we
shall consider the design of a very simple operating system., examining
Its limitations and hence identifying what improvements and enhancements
would be required to provide a powerful and sophisticated system. We
thus intend to build up the design of an operating system In an
evolutionary manner. In many respects., this reflects the historical
development that has led to the present structure of modern operating
systems.

This book Is dlvided Into two parts. In the first. we examine the
needs of a very simple system and develop Its design so that. by the
end of part 1, the framework of an operating system has been
established. In the second part. we Identlfy the deficlencies of this
system and examine techniques and algorithms that can be used to
resolve these problems.

1.1 GENERAL FEATURES

Initially It Is necessary to identify the sort of services that an operating
system might provide to help the user run a program. These are
somewhat analogous to the existence of assemblers and compilers that
allow a user to write a program In languages other than binary code.

4 A Practical Course on Operating Systems

(1) Convenlent input/output operations.
Users do not want to know the details of how a particular peripheral
has to be driven In order to read or print a character. Clearly., a
higher-level interface than this must be provided for the user.

(2) Fault monitoring.

No matter how proficient the programmer. it is impossible for anyone
to write faultless programs all the time. It is therefore essential for
the system to cater for errors arising in a program. When errors
are detected. the operating system Intervenes to print suitable
monitoring information to help the user find the source of the fault.
Various levels of monitoring information may be printed. some by the
operating system, some by the compiler or run-time support system
of the programming language.

(3) Multi-access.
Allowing several people to use the computer simultaneously is more
convenient for the users, even though some users might suffer a
longer response time at their terminal than they would if they had
sole use of the computer.

(4) File systems.
The operating system maintains the directory and security of a user’'s
flles. Centralised control is necessary in order to allow several users
to share the same hardware while maintaining a secure file system
where the files of each user are protected from invalid access. An
operating system might also provide utilities for accessing and
manipulating the files (for example. editors).

1.2 PERFORMANCE CONSIDERATIONS

An Important requirement of operating systems is to make the most
cost-effective use of the computer hardware. This was particularly
Important in the early days of computing when the cost of even the most
primitive of machines was quite substantial. Although technological
advances have made modern microprocessor-based systems far more
cost-effective, the problem of achleving good performance still remains
with the larger minl and mainframe machines. In examining the problem
of achleving good performance from a computer system, consider the
system shown In figure 1.1.

To allow each user sole access to the computer hardware would
mean In practice that the computer would be Idle for long periods of
time. For example. when the user was loading a program Iinto the
machine. It would be doing no other useful work. Even when a computer
Is running a Job Its efficiency may be very poor. Consider the example
of running a simple assembler. The assembler might be organised to
read a card from the card reader, generate the necessary Instruction
and plant it in memory. and print the line of assembly code on the

Basic Operating System Concepts 5

Backing store
(for example, discs)

)

CPU & Card reader
memory

Line printer

Operators’
terminal

Figure 1.1 A simple computer system

lineprinter. Thus. in the scqucncc of processing each line there are
three phases of operation:

| INPUT PHASE | PROCESS PHASE | OUTPUT PHASE |
(Read a card) (Assemble the instructions) (Print the line)

Assuming that the computer system has the characteristics of. say. a
large minicomputer:

Card reader 300 cards/min
Lineprinter 300 lines/min
Central processing unit (CPU) 1 pus/instruction

Also, assuming that it takes about 10000 instructions to assemble
each line. then the times for each of the three phases to process a
card are:

(1) Input phase 200 ms
(2) Process phase (10000 * 1) pus = 10 ms
(3) Output phase 200 ms

The CPU. which is only actively in use during the process phase, Is
busy for only 10 ms in every 410 ms.

The efficiency for CPU utilisation is defined by the following formula:

6 A Practical Course on Operating Systems

Useful computing time
Total time used

Efficiency = * 100 per cent
Using the characteristics above yields an efficiency given by:

10

210 100 = 2.4 per cent

Efficiency =

It is clearly very ineffective to use the CPU at such a low efficiency.

1.3 INPUTIOUTPUTVLIMITED JOBS

: LS. XS
We can readily see some possible improvements that might increase the
utilisation of the computer system. It has been assumed in the

calculations that the input phase (that is, the card reader) was started
only when the process and output phases were complete. This would be
achieved with the following control sequence for the card reader:

read card : REPEAT
start reader
WHILE reader not finished DO nothing
UNTIL reader not in error

process card

This sequence. which results in the timing shown in figure 1.2, has the
disadvantage that the card reader is idle during the time when the card
is being processed and printed.

Read card 1 Read card 2
Card reader | — | P

| I I

[! '
Process card 1 l Process card 2
CPU — | —
I | I
I | I
|

. . l Print card 1 I Print card 2
Line printer

Figure 1.2 Process sequence for a simple system

The obvious way to speed this up is to copy the card image on to
an Intermediate area from where it can be processed and then to restart
the reader immediately. The sequence that controls the card reader now
becomes:

