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Preface

This is a set of lecture notes that I have written for a course taught at City
University of Hong Kong in the last few years. It is a course for beginning
graduate students majoring in Analysis or Applied Mathematics. The book
consists of six chapters, and each chapter deals with a specific topic. They
are quite independent of each other; and can be used in any order that
the instructor wishes. The idea is to give students a broad view of the
mathematics that is frequently used in applications. Each chapter has
only four sections, and I did not go into depth in any one of the topics in
these chapters. But, the mathematics presented in the book is not simple,
and requires a good knowledge of advanced calculus, ordinary differential
equations and functions of a complex variable at the undergraduate level.
This book can be used either as a text book or as a reference book for self-
reading. Readers, who wish to learn more about any one of these subjects
touched upon in this book, can find plenty of references at the end of each
chapter.
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Chapter 1

COMPLEX ANALYSIS

1.1. CAUCHY’S THEORM

One of the most useful applications of complex analysis is the evaluation
of definite integrals. For instance, the following examples can be found in
nearly all standard books on the subject:

o s
/ S = =, (1.1.1)
0 T 2
o0 a—1
/ e P - 0<a<l, (1.1.2)
oo 1+ sinam
o0 —a
/ T e = a>0, (1.1.3)
—os T4t a a
<1 T
==y (1.1.4)
/_oo 1+ a? V2

see, e.g., [5, pp. 137 & 139] and [13, pp. 231 & 235]. In this section, we
wish to illustrate the method of complex integration by studying a slightly
more complicated integral; namely, the integral

b logt dt
o VE=a)o=t)t—2
where 0 < a < b < oo,z ¢ (a,b) and | arg z| < 7, which occurred in a recent
study of the asymptotic behavior of the Stieltjes-Wigert polynomials [21].
The main tools in complex integration are the following two results; see [2].

I(z) = (1.1.5)

Theorem 1.1.1. (Cauchy’s theorem) Let v be the oriented piecewise
smooth boundary of a compact subset K of an open set ), and let f(z)
be an analytic function in Q). Then

/f(z)dz:O. (1.1.6)

1



2 LECTURE NOTES ON APPLIED ANALYSIS

Theorem 1.1.2. (Cauchy’s integral formula) Let v be the positively ori-
ented piecewise smooth boundary of a compact subset I of an open set Q,
f(2) be an analytic function in Q, and zo be an interior point of K. Then,

R 0 (CO NP (1.1.7)

27 Jy 2 — 20

To evaluate the Cauchy-type integral I(z) in (1.1.5), we first need an
auxiliary result on the integral

x °° 1 ds
I"(z2) = / R
0o V(a+s)(b+s)s+tz
Lemma 1.1. For any 0 < a < b < 0o,z ¢ [a,b] and |arg z| < 7, we have
I
(z—a)(z—0b)
[z + Vab+ /(z — a)(z — b)]?
x log =
(Va+ Vb)2z
where the branches of the square root and the logarithm are taken to be
positive when z € (b, 00).

(1.1.8)

I*(z) =
(1.1.9)

L]

Proof. Make the change of variable

s_b—a t+1 _a+b
4 Ut 2

This transformation takes the s-interval [0, 00) onto the t-interval [1/¢, 00),

where ¢ = (Vb — v/a)/ (Vb + \/a). Simple calculation gives

. o0 dt
e e e T

by 5 [—(z—b;a):t Z—a)z—b)|,

:b—a

and note that
4
ty —t_ = z—a)(z —0b).
; —— V= -b)

Here, we take the branch of the square roots to be positive when z € (b, 00).

By partial fractions,

I"(2)
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An integration then yields
1 z+Vab++/(z —a)(z —b)
I"(z) = log :
(z—a)(z—b) z+Vab—\/(z—a)(z—b)
Note that I*(z) is positive when z € (b,00). Thus, we need to take the

branch of the logarithm on the right-hand side to be also positive when
z € (b,0). The last equation is clearly equivalent to (1.1.9). |

To evaluate the integral I(z) in (1.1.5), we consider the contour integral

J(z) = log ¢ % 2 € C\(—00,0]U[a,b], (1.1.10)
cV(€—a){-b)C—2

where C' is a positively oriented contour consisting of a large circle I'p =
{z : |z] = R}, two straight lines ¥, and ¥_, one above and one below
the cut along the negative real-axis, and a closed curve I" embracing a cut
along the interval [a, b]; see Figure 1.1. In (1.1.10), the square root and the
logarithm take their principal values. By Cauchy’s integral formula,
log z

Vi(z—a)(z— b)-

On the large circle Tg, it is easily seen that the integrand in (1.1.10) is
dominated by (log R)/R?; thus,

log d
08¢ ¢ :O(lOgR) (1.1.12)
rr V(iz—a)(z—b)¢—2 R
as B — oo. We deform the curve I' into two straight line segments
joining a and b. Due to the cut along the interval [a, b], we have \/( —b =
Vb —Ce'™? for ¢ on the upper edge of the cut and /¢ — b = /b — Ce~"/2

for ¢ on the lower edge of the cut. Thus,

1 d 2 b log t dt
08¢ ¢ .2 = (1.1.13)

ry(C—a)(-b¢—2 iJo Vit—a)b—t)t—=z’
where the path of integration on the left-hand side is oriented in the clock-
wise direction. Also, since log ¢ = log [(| + im for ¢ € ¥4, we have
log ¢ d¢ ,/°° 1 ds
= 27

sits. V(C—a)((—b)C—2 o V(a+s)(b+s)s+
when R — oo. A combination of (1.1.10), (1.1.11), (1.1.12) and (1.1.13)
gives the following result.

J(z) = 2mi (1.1.11)

- (11.19)

Lemma 1.2. For any 0 < a < b < o0,z ¢ [a,b] and |argz| < =, the
integral I(z) in (1.1.5) is given by
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Fig. 1.1. Contour C.

™

[,,+\/_+\/z—a z—b]2}
(Va+ vb)2z
(1.1.15)

where the branches of the square root and the logarithm are taken as in
Lemma 1.1.

Another important consequence of Cauchy’s theorem is the residue theo-
rem [11,13], which can quickly lead to interesting applications. The residue
of a function f(z) at an isolated singularity zg is the coefficient a_; in its

Laurent expansion
o0

f(Z): Z an(’_zo) . (1.1.16)
n=-—00
In terms of an integral, we also have
17
R > = . .
es (f, 20) = 5 Af(z)dz, (1.1.17)

where v is a simple, closed, and positively oriented curve encircling zo and
not any other singularity. The symbol on the left-hand side of (1.1.17)
denotes the residue of f at zy. Furthermore, from (1.1.16) we have

Res (f;z0) = lim (z — 20)f(2), (1.1.18)
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if the limit on the right-hand side exists.

Theorem 1.1.3. (Residue Theorem) Let vy be the positively oriented piece-
wise smooth boundary of a compact subset K of an open set Q, and let

Z1,++ ,zn be n distinct points in K. Let f(z) be an analytic function in Q
except for isolated singularities at zy,--- ,z,. Then,
n
/f(z)dz =2mi »_Res (f,2). (1.1.19)
R i=1
As a simple example, let us evaluate the integral
% cos A
I0) = / COSAL e, A0, (1.1.20)

which will be used as an illustration of “Exponential Asymptotics” in a
later chapter. Since the integrand is an even function, we have

1 [*° cosAz
= — —dx. 1.1.21

Let v be the curve shown in Figure 1.2, where R > 1. By the residue

theorem,
ev\z ez/\z
——dz=27mi Res | ——,1 ).
L 14 22 ' (1 T 22 )

Each of the integrals on the three lines not on the real-axis can easily be
shown to be O(1/R). Thus, as R — oo, we have

(o] ei)\.t ei/\z
/ 2(1:1::27ri Res —2,2' :
o, LA 1+2

Since 1+ 22 = (2 —i)(z + i), the residue on the right-hand side is given by

ei/\z e»/\

lim(z —1 = —.
m(z-0172 =5

Coupling the two results gives

o0 ei/\z
/ dz = me™>
Z .

—o6 L+ Z

Taking just the real part, we obtain from (1.1.21)

I(\) = Ze A> 0. (1.1.22)

Sometimes for purposes of computation, it is convenient to formulate
the residue theorem in a different form. Suppose f(z) is an analytic function
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Fig. 1.2. Contour 7.

except for a finite number of isolated singularities in C, and put z = 1/2".

Then,
1 /1),
f(z)dz = —szf<—z_’>dz

In view of (1.1.16), the last equation suggests that we define the residue of
f at infinity to be the residue of the function

9(z) = —% <l> (1.1.23)

at z = 0. If Z anz" is the Laurent expansion of f(z) in a neighborhood

n=—oo
of infinity, then the residue of f at oo is —a_;. In terms of an integral, one

can derive from (1.1.17) and (1.1.23)

Res (f, 00) 27m/f (1.1.24)

where I" can be a sufficiently large positively oriented circle not containing
any isolated singularities of f. It can also be shown that

Res (f, 00) llm{ zf(2)}, (1.1.25)

provided the limit exists. By applying the residue theorem (Theorem 1.1.3)
to the curve in Figure 1.3, we obtain the alternative formulation

/ f(z)dz = —2mi Z Residues of f outside 7 including oco. (1.1.26)
¥
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3 %
@z

Fig. 1.3. Residues outside ~.

As an illustration, let us evaluate the integral

/lz —a)(b—
/ (z a) 2) d’”, O<a<b<oo, (1.1.27)

where z is any complex number #0 and ¢ [a,b]. Put
R(z) == /(2 —a)(z—b) (1.1.28)
for z in C cut along the line segment [a,b], and define R(z) =
(x —a)(b—x)e*™2 for x in (a,b) with + and — signs corresponding,
respectively, to the upper and lower edges of the cut. Let ¥ be a clockwise
oriented curve enclosing the interval [a,b] but not 0 and z. Then, we can
write I(z) as

1 1 [ R(C) d¢
()= — | 2L 1.
7r() 2mi J5; ¢ (—z (1.1.29)
It is clear that outside 7, there are poles at 0, z and co. Thus, by (1.1.26),
we have
1 R(() 1 > ( (€) 1 > (R(C) 1
—I1(z) =R + R R — ;
=L e c—e< ¢ ¢-z) TE\TC =2 TE&\¢ =2
(1.1.30)
that is,

I(z) = _n[1 VA, ’?(Z —b _ \/E] (1.1.31)
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Since \/(z — a)(z — b) = —vab + 1““’2 + -+ -, taking the limit as z — 0

gives
1(0) :n[% : a_\/z_: - 1]. (1.1.32)

To conclude this section, we mention an expansion of the form
Zf z,7) / cot(mt) f(z, t)dt, (1.1.33)

where f(z,t) depends on a real or complex parameter z, and is an analytic
function of the complex variable ¢, and where I is a loop contour enclosing
the points t = 0,1,2,-- -, but not enclosing —1, —2, —3, - - - or the singulari-
ties of f(z,t). This result is known as the Watson transformation [24, pp. 34
& 44], and can be easily verified by observing that the residue of cot 7t at
t = jis 1/m. In a similar manner, one can also establish

;(—l)jf(z,j) = %/rcsc(mt)f(z,t)dt. (1.1.34)

As an illustration, we consider the sum

o~ (=1
S(z)=_§_:zg+j2, (1.1.35)
J=0
where z is a complex parameter # 0,+1,4+2 ---. Direct application of

(1.1.34) would not lead to the result we wish to derive; instead, we make a
slight modification of the method. Clearly, S(z) can also be expressed as

S()=55+5 Z (1) f(z,9), (1.1.36)
j=—0o0
where

Let J,, denote the contour shown in Figure 1.4, where n is an arbitrary
positive integer bigger than |[Re(iz)| and ¢ is an arbitrary positive number
satisfying ¢ < Im(iz).
By the residue theorem,
n
; , 1 [ csc(mt)
—-1)’ zZ, = — dt
> e =g [ S

i=—n




