 KNOWLEDGEBASED
PROGRAMMING

EnnTyugu

- 1
> L

Knowledge-Based
Programming

Enn Tyugu

Institute of Cybernetics
Estonian Academy of Sciences
Tallinn, USSR

TURING INSTITUTE PRESS
in association with

ADDISON-WESLEY PUBLISHING COMPANY
Wokingham, England - Reading, Massachusetts

Menlo Park, California - New York - Don Mills, Ontario
Amsterdam - Bonn - Sydney - Singapore - Tokyo
Madrid - Bogota - Santiago - San Juan

This book is based on Professor Tyugu’s work Kontseptualnoe programmirovanie,
originally published in the USSR by Nauka in 1984.

This translation © 1988 Addison-Wesley Publishers Limited.
© 1988 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission of the
publisher.

The programs in this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept any
liabilities with respect to the programs.

Cover design by Crayon Design, Henley-on-Thames.
Typeset by Advanced Filmsetters (Glasgow) Limited.
Printed in Great Britain by The Bath Press, Avon.
First printed 1987.

British Library Cataloguing in Publication Data
Tyugu, E.
Knowledge-based programming.—(Turing
Institute Press Knowledge engineering
tutorial series).
1. Computer software— Development
2. Artificial intelligence
I. Title
005.12 QA76.76.D47

ISBN 0-201-17815-X

Library of Congress Cataloging in Publication Data

Tyugu, E. Kh. (Enn Kharal *dovich), 1935-
[Kontseptual 'noe programmirovanie. English]
Knowledge-based programming/E. Tyugu.
p- cm.—(Turing Institute Press knowledge engineering
tutorial series)
Translation of: Konfseptual noe programmirovanie.
Bibliography: p.
Includes index.
ISBN 0-201-17815-X
1. Artificial intelligence— Data processing. 2. Programming
(Electronic computers) 1. Title. II. Series.
Q336.T9813 1988
006.3—dc19 87-19389
CIP

Knowledge-Based Programming

Turing Institute Press
Knowledge Engineering
Tutorial Series

Managing Editor Dr Judith Richards
Academic Editor Dr Peter Mowforth

The Turing Institute, located in Glasgow,
Scotland, was established in 1983 as a not-for-
profit company, named in honour of the late
Alan M. Turing, the distinguished British
mathematician and logician whose work has
had a lasting influence on the foundations of
modern computing.

The Institute offers integrated research and
teaching programmes in advanced intelligent
technologies —in particular, logic
programming, computer vision, robotics and
expert systems. It derives its income from
research and training contracts, both
governmental and industrial, and by
subscription from its Industrial Affiliates. It
assists Affiliates with the transfer of technology
from research to application, and provides
them with training for their technical staff, a
wide range of software tools and a
comprehensive library and infrrmation
service.

The Turing Institute is an Academic Associate
of the University of Strathclyde, and its
research staff work closely with different
departments of the University on a variety of
research programmes.

Other titles published in association with the
Turing Institute Press

Applications of Expert Systems
J. Ross Quinlan (Editor)

Structured Induction in Expert Systems
Alen D. Shapiro

Preface

This book is intended for readers who are interested in applying artificial
intelligence to programming practice. It shows how a computer can be used
even at the problem-specification phase of programming. This approach is
called knowledge-based programming.

The following features of knowledge-based programming are the most
important for us:

e using a knowledge base for accumulating useful concepts;
e programming in terms of a problem domain;

e using the computer in the whole problem-solving process beginning
with the description of a problem;

® synthesizing programs automatically.

In order to distinguish our approach to problem solving from the
approaches to program development in which knowledge is used for adapting
algorithms to particular computers and for selecting data structures suitable
for computations, we shall use a more specific term, conceptual programming,
for our approach, because it extensively uses concepts as pieces of knowledge.

In conceptual programming we define concepts for a computer and
then use them to describe the problems which are to be solved on the
computer. We also expect the computer to construct automatically the
programs for solving problems, using the knowledge we have given to it in
the specifications.

It is common knowledge that whereas computer performance has
increased about 1000 times, that of programmers has increased only 10 times.
This difference in performance cannot be sufficiently improved, either by
making software distribution easier, or by increasing the number of people
involved in computer programming. There are two quite promising ways of
increasing the productivity of programming:

e the development of intelligent software packages;
@ theimplementation of very high-level languages.

vi Preface

Conceptual programming is a combination of these ways which
enables a user to build his own intelligent software capable of understanding
the language of the user.

Conceptual programming is a way of using the computer as an
intelligent partner for problem solving. It includes:

1. specifying new concepts to the computer;
2. representing problems to it in terms of these concepts.

The aim of this book is to introduce conceptual programming to the
reader and to teach him how to use the computer as a partner which can
understand to a certain degree the problem to be solved. This degree of
understanding is determined by two factors:

® the available deductive mechanism;
e the amount of knowledge possessed by the computer.

The user must be aware of the computer’s degree of understanding
when he specifies problems. This is a difficulty of conceptual programming.
Common experience of programming is of no help here. A FORTRAN
programmer can be sure that the computer could execute almost any
syntactically correct FORTRAN program. In our case the syntactic correctness
of a specification of a problem is not sufficient. A problem may be unsolvable
because the knowledge included in the specification is incomplete. In this
case the specification either of the concepts intended to represent the problem
or of the problem itself must be extended. This is a completely new technique
of program development, and it is discussed throughout this book and
illustrated with a considerable number of examples.

To read this book no deep knowledge of programming or of artificial
intelligence is needed. A reader must have a general acquaintance with
computers as well as with some programming language. Some knowledge of
logic is needed, but only for Section 1.3, in which the logical basis of structural
synthesis is explained.

The first chapter contains a discussion of a formal representation of
problems, which is followed by a description of automatic program synthesis
methods for solving problems. Knowledge representation for program
synthesis is considered in the second chapter. A reader not interested in
program synthesis can skip the first two chapters, except Section 1.1, where
the problems are discussed. However, in this case he must just believe that the
problems given as examples in the book can be solved automatically.

The third chapter is a description of a language for conceptual
programming, and it must be read thoroughly in order to understand the
following chapters, where the conceptual programming technique is
presented.

The author is convinced that one can only learn to solve problems by
practice in solving them. This book therefore contains a considerable number

Preface wvii

of examples from various problem domains and special attention is paid to
the specification of useful concepts.

The fourth chapter contains specifications of many concepts from
geometry and physics which are taught to children in school. It is hoped that
this kind of knowledge will soon be a common part of the knowledge base of
every computer. A technique for building large intelligent software systems is
presented in the fifth chapter, and in the last chapter this technique is applied
to specify concepts in several different domains.

Enn Tyugu
Tallinn, USSR

Contents

Preface

Chapter 1
1.1

1.2

1.3

1.4

Chapter 2
2.1

2.2

2.3

2.4

Problems and programs

Representation of problems

1.1.1 Computational problems

1.1.2 Other problems

Logical foundations of program synthesis

1.2.1 Formal theories

1.2.2 Proofs and programs

Structural synthesis of programs

1.3.1 A language for representing synthesized programs
1.3.2 Alogical language (LL)

1.3.3 Derivation of formulae

1.3.4 Program extraction

1.3.5 Completeness of structural synthesis rules
1.3.6 Extensions of structural synthesis
Comments and references

Representation of knowledge for problem solving

Data types

2.1.1 Uninterpreted types

2.1.2 Interpreted types

2.1.3 Abstract data types

Knowledge representation

2.2.1 Semantic networks

2.2.2 Operations with semantic networks

2.23 Frames

Computational models

2.3.1 Relations

2.3.2 Simple computational models

2.3.3 Problem solving on computational models
2.3.4 Operations with computational models
2.3.5 Extensions of computational models

2.3.6 Transforming computational models into axioms
2.3.7 Computational models and data flow
Comments and references

= QT SO

o<}

11

13
15
16
19
20
23

24

25
25
26
27
29
30
33
34
35
36
40
43
47
50
54
56
58

ix

x Contents

Chapter 3
3.1

3.2

3.3

34

35

3%

3.7

3.8

39

The language of knowledge-based programming

General features of the language

3.1.1 Goals of the language design

3.1.2 Objects

3.1.3 Programs

3.1.4 Syntactic notations

3.1.5 Intuitive semantics

Specifications

3.2.1 The meaning of specifications

3.2.2 Primitive types

3.2.3 Structured types

3.24 Compound names

3.2.5 Sequences

3.2.6 Name patterns

3.2.7 Copies

3.2.8 Types of objects

Relations

3.3.1 Expressions

3.3.2 Equations

3.3.3 Preprogrammed relations

3.3.4 Conditional relations

3.3.5 Subproblems

3.3.6 Relations in sequences

The inheritance specifier

3.4.1 Simple inheritance

3.4.2 Inheritance with fixed values of components
343 Amendments with additional relations
3.44 Explicit and implicit binding in amendments
3.4.5 Undefined components

3.4.6 Extending an inherited specification
Action statements

3.5.1 Problem statement

3.5.2 Assignment

3.5.3 Procedure call

3.5.4 Application of a relation

Control statements

3.6.1 Compound statement

3.6.2 Conditional statement

3.6.3 Loop statement

3.6.4 Exitstatement

Structure and semantics of programs

3.7.1 Source program

3.7.2 Results of program synthesis

3.7.3 Program size

Environment and language extensions
3.8.1 Knowledge base

3.8.2 The macroprocessor

3.8.3 Other commands

A small knowledge-based programming system

59

59
59
61
62
65
67
70
70
71
72
75
75
76
76
77
79
79
80
83
85
86
87
89
89
91
92
93
94
95
97
97
98
99
99
101
101
102
102
103
104
104
107
109
109
110
112
114
115

Contents xi

Chapter 4 Representation of basic knowledge in mathematics and physics 120
4.1 How to define new concepts 121
4.1.1 Concepts and subconcepts 121

4.1.2 Selecting useful concepts 122

4.1.3 Simple geometric figures and bodies 123
4.1.4 Putting figures together 129

4.2 Trigonometry 131
4.2.1 Sides and angles of a triangle 131

4.2.2 The complete model of a triangle 134

4.2.3 Special kinds of triangles 136

424 Examples of problems 139

4.3 Other concepts 141
4.3.1 Percentage 141
4.3.2 Divisibility 141

4.3.3 Similarity of figures 143

4.3.4 Function, its maximum and minimum 145

4.3.5 Sequences 147

43.6 A typical problem 148

4.4 Elementary physics 149
4.4.1 Units and dimensions 149

4.4.2 Mechanics 153

4.4.3 Electricity 158

444 Ideal gas 160
Chapter 5 Knowledge-based programming techniques 166
5.1 Input—output 166
5.1.1 Output of primitive values 167

5.1.2 Automatic formatting 167

5.1.3 Problem-oriented input—output specifications 169

5.2 Programmer’s data types 175
5.2.1 Stack and queue 175

5.2.2 Arrays 178

5.2.3 Files 180

5.2.4 Scalar types 182

5.2.5 References 183

5.3 System design 183
5.3.1 Analysis of a problem domain 185

5.3.2 Selecting basic concepts 187

5.3.3 Specifying concepts 189

5.3.4 The programming of relations 192

5.4 Bottom-up specification of a problem domain 192
Chapter 6 Applications 196
6.1 Data management 196
6.1.1 Database management systems 197

6.1.2 Sets and subsets 198

6.1.3 Manipulating sets 201

6.1.4 Defining various data models 204

xii Contents

6.2 Simulation problems
6.2.1 Representing structured systems and feedback
6.2.2 The concept of the process
6.3 Stochastic modelling
6.4 Optimization
6.5 Compiler construction
6.5.1 Attribute models of productions
6.5.2 The attribute model of a text
6.5.3 The attribute model of a language

Appendix A Proof of SSR completeness
Appendix B Natural deduction and normal form of derivations
Bibliography

Index

207
207
214
216
218
220
221
222
226

230

233

237

240

Chapter 1
Problems and Programs

Programming can be considered to be the first stage of problem solving, in
which a plan of action for solving a problem is developed. Given this view, the
process of transcribing a program into a programming language acceptable
to a computer is only the last and the simplest task of programming. We may
draw an analogy between a programmer and a production engineer who
designs a tooling process for a machine part. Both of them must take into
account the available facilities and make a reasonable plan to produce a
result. The result considered by the production engineer is a machine part,
usually specified by a drawing. For a programmer, the result is described by a
problem specification. We start this book with a discussion of problems and
present a precise definition of computational problems, that is, of those
problems the book is intended to deal with.

1.1 Representation of problems

According to the point of view taken in this book, programming starts from a
problem and not from an algorithm or a flow chart. Therefore, we must define
the notion of problem as precisely as possible. It is a difficult task because the
world where the problems arise is extremely diverse, and it may even be
impossible to find a universal form applicable to all problems. We shall start
with computational problems, and later show that a large number of
problems can be represented in a similar way.

1.1.1 COMPUTATIONAL PROBLEMS

Computational problems contain variables and the variables are denoted by
identifiers, for instance, AX, xI, x, AREA. We assume that values of variables
are data — in particular, pieces of text and numbers. The values may vary both
in form and in meaning, i.e. they may be of various types. A more detailed

1

2 Knowledge-Based Programming

discussion of variables, values and data types will be presented in the second
chapter. We shall represent a computational problem in the following form:

compute yI,...,yn from x1,..., xm knowing M.

The identifiers xI,...,xm, yl,...,yn, M are variables. The words compute,
from and knowing have predefined meanings which must be understood by a
problem solver. They show that this is a problem statement and they separate
the different kinds of variables from each other:

e input variables: x1,...,xm;
e outputvariables: yI,...,yn;
° variable M, the value of which represents the problem conditions.

There are no explicit associations between the problem conditions denoted by
M and input and output variables of the problem. Nevertheless, we assume
that the problem conditions contain all necessary specifications for the input
and output variables. In particular, we assume that problem conditions
determine the set of variables from which the input or output variables may
be drawn.

The data which constitutes the value of M represents the knowledge
needed for solving the problem. Hence, the whole complexity of a problem
description is hidden in the value of M. New results in artificial intelligence,
especially in knowledge representation, can be used for encoding the
knowledge needed for problem solving and this will be discussed in the
second chapter.

Let us consider some examples of computational problems.

1. Compute the area of a triangle from its sides — this problem can be
represented using variables S,a,b,c to denote the area and sides of a
triangle:

compute S from a,b,c knowing triangle.

It is important to remember that the concept of a triangle must be
specified for the solver before this problem can be solved, and it must
contain just the same variables S,a,b,c for the area and sides.

2. Construct a proof of a formula in a theory: this problem is represented
by problem conditions:

compute proof from formula knowing theory.
3. Find the names of all young employees of an institute knowing the staff

of the institute and the conditions which determine a young employee.
In this case we must take care over the form of output of the problem.

Problems and Programs 3

We specify a variable which we shall call
names-of-young-employees.

(This is also an identifier.) This variable will have a set of names of all
young employees as the value. Denoting the problem conditions as
staff we can write the problem as follows:

compute names-of-young-employees knowing staff.

This problem statement does not contain input variables — all the
knowledge needed for solving is hidden in problem conditions called

staff.

Let us introduce a shorter form of a problem representation:
Ml=x1,...,xm—>yl,...,yn)

where the variables M, x1,...,xm,yl,..., yn have the same meaning as before.
Let us denote the fact that a problem is solvable by writing

solvable M|—x1,...,xm — yl,..., yn).

Actually, this is a predicate which has three arguments:

° problem conditions M;
e list of input variables (x1,...,xm);
e list of output variables (y1,..., yn).

It is true if and only if the value of M is such that on its basis a program can be
constructed which solves the problem.

Computational problems with identical problem conditions can be
compared with each other and some conclusions about their complexity can
be drawn. Let in(P) denote a set of input variables and out(P) denote a set of
output variables of a computational problem P. We say that a problem P1 is
less than P2 (P1 < P2) if and only if in(PI) = in(P2), out(P1) < out(P2) and
both problems have identical problem conditions. This ordering is
reasonable. Indeed, if the problem P2 can be solved, then PI can be solved
also because, due to out(PI) = out(P2), the solution of P2 contains the
solution of PI.

There is also another ordering of problems — PI « P2 if and only if
in(P2) < in(P1) and out(P1) < out(P2), where one of the inclusions is strict and
the problems have identical problem conditions. In this case the
correspondence between solvability and ordering is not so straightforward.
Sometimes a problem with a larger set of input variables may be more difficult
to solve due to the redundancy and contradictions of input variables.

4 Knowledge-Based Programming

1.1.2 OTHER PROBLEMS

Not all computational problems fit directly into the form specified above. For
instance, the problem:

compute everything-that-can-be-computed from x1, ..., xm knowing M

is different. In order to formalize this problem in our way, we must introduce
a new variable — everything-that-can-be-computed.

The value of this variable is a set of computable variables with their
computed values, i.e. a set of pairs of the form

{variable name) = {(value).

If we are interested only in a solution of a problem for particular values
vl,...,um of the input variables xI,...,xm and not in a program for
computing values of yI,..., yn from any given values of xI,...,xm, then we
can include the following equations among the problem conditions:

xIl = vl,
xm = vm.

Then the problem representation will not contain input variables, being
simply

compute yI,..., yn knowing M,
or in the abbreviated form:
(Mt—=yl,...,yn).

Introducing new variables can be useful in various cases when something
must be computed. One more example of a problem of that kind is

compute all-that-is-needed from x1, ..., xm knowing M.

all-that-is-needed must be specified by the value of M. In particular, all
changes caused by new values of x1,..., xm may be asked for. (This particular
problem is rather difficult to solve.)

There are problems of a quite different nature — the problems in which
some real-world activities are needed. For example, to bring a small green box
from the leftmost room of a building. Generally speaking, these are not
problems for a computer, but a computer can be used to plan the solution of
such problems. The plan which is needed can be designated by a variable, and

Problems and Programs &

this will be an output variable of the problem for the computer. However, in
this case some difficulties may arise, because the problem conditions may
change during the course of action. In other words, the problem conditions
are not sufficient to form the whole plan. In this case planning and real-world
activities can be performed alternately and repetitively. Planning for a single
stage of activities is done with the assumption that the environment does not
change, and consequently the problem conditions are fixed for that stage.

In this section we have shown that many essentially different problems
can be represented in the form

Mb=x1,...,xm—yl,...,yn).

We discussed some modifications of this problem (omitting input
variables and asking for all that can be computed) and proposed a method of
introducing a new variable to denote the desired result. The main restriction
on the use of this problem representation is the requirement that problem
conditions must be completely specified before the solution planning begins.

We have barely touched here on the problem conditions M. (We shall
also call this problem specification.) The remaining part of this chapter and
the second chapter are devoted mainly to the question of how to represent
and use knowledge about problems. This subject concerns just the problem
conditions M.

1.2 Logical foundations of program synthesis

There are three different approaches to program synthesis:

® deductive synthesis, which uses automatic deduction of a proof of
solvability of a problem and derives a program from the proof;

e inductive synthesis, where a program is built on the basis of examples of
input—output pairs or examples of computations;

e transformational synthesis, where a program is derived stepwise from a
specification by means of transformations.

In this book we shall use deductive synthesis of programs. In this case
the way from a problem to a program is as follows:

problem in source form —

problem represented in a formal theory —
proof of solvability of the problem —
program.

The first step — transforming a problem into a language of a formal theory —
can be done by means of a translation technique. The most complicated step
is the construction of a solvability proof of the problem. In order to discuss

