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PREFACE

A long time ago I started writing a book about Markov chains, Brownian
motion, and diffusion. I soon had two hundred pages of manuscript and my
publisher was @ l%ﬁfiuswstnc Some years and several drafts later, I had a
thousand pages of manuscrlpt and my publisher was less enthusiastic. So
we made it a trilogy:: 7y

Markov Chains
Brownian Motion and Diffusion
Approximating Countable Markov Chains

familiarly — MC, B & D, and ACM.

I wrote the first two books for beginning graduate students with some
knowledge of probability; if you can follow Sections 10.4 to 10.9 of Markov
Chains you’re in. The first two books are quite independent of one another,
and completely independent of the third. This last book is a anngrapm Ve
which explains one way to think about chains with instantaneous states. The
results in it are supposed to be new, except where there are specific disclaim-7; , 1%,
ers; it’s written in the framework of Markov Chains.

Most of the proofs in the trilogy are new, and I tried hard to make them
explicit. The old ones were often elegant, but I seldom saw what made them
go. With my own, I can sometimes show you why things work. And, as I will
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argue in a minute, my demonstrations are easier technically. If I wrote them
down well enough, you may come to agree.

The approach in all three books is constructive: I did not use the notion
of separability for stochastic processes and in general avoided the uncount-
able axiom of choice. Separability is a great idea for dealing with any really
large class of processes. For Markov chains I find it less satisfactory. To begin
with, a theorem on Markov chains typically amounts to a statement about a
probability on a Borel o-field. It’s a shame to have the proof depend on the
existence of an unnamable set. Also, separability proofs usually have two
parts. There is an abstract part which establishes the existence of a separable
version. And there is a combinatorial argument, which establishes some prop-
erty of the separable version by looking at the behavior of the process on a
countable set of times. If you take the constructive approach, the combina-
torial argument alone is enough proof.

When 1 started writing, 1 believed in regular conditional distributions. To
me they’re natural and intuitive objects, and the first draft was full of them. 1
told it like it was, and if the details were a little hard to supply, that was the
reader’s problem. Eventually I got ticed of writing a book intelligible only
to me. And I came to believe that in most proofs, the main point is estimat-
ing a probability number: the fewer complicated intermediaries, the better.
So I switched to computing integrals by Fubini. This is a more powerful tech-
nique than you might think and it makes for proofs that can be checked.
Virtually all the conditional distributions were banished to the Appendix.
The major exception is Chapter 4 of Markov Chains, where the vividness of
the conditional distribution language compensates for its technical difficulty.

In Markov Chains, Chapters 3 to 6 and 8 cover material not usually avail-
able in textbooks — for instance: invariance principles for functionals of a
Markov chain; Kolmogorov’s inequality on the concentration function; the
boundary, with examples; and the construction of a variety of continuous-
time chains from their,jump processes and holding times. Some of these con-
structions are part of the folklore, but I think this is the first careful public
treatment.

Brownian Motion and Diffusion dispenses with most of the customary
transform apparatus, again for the sake of computing probability numbers
more directly. The chapter on Browniah motion emphasizes topics which
haven't had much textbook coverage, like square variation, the reflection
principle, and the invariance principle. The chapter on diffusion shows how
to obtain the process from Brownian motion by changing time.

I studied with the great men for a time, and saw what they did. The trilogy
is what I learned. All I can add is my recommendation that you buy at least
one copy of each book.
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User’s guide to Markov Chains

In one semester, you can cover Sections 1.1-9, 5.1-3, 7.1-3 and 9.1-3. This
gets you the basic results for both discrete and continuous time. In one year
you could do the whole book, provided you handle Chapters 4, 6, and 8
lightly. Chapters 2-4, 6 and 8 are largely independent of one another, treat
specialized topics, and are more difficult; Section 8.5 is particularly hard.
I do recommend looking at Section 6.6 for some extra grip on Markov times.

Sections 10.1-3 explain the cruel and unusual notation, and the reference
system; 10.4-9 review probability theory quickly; 10.10-17 do the more ex-
otic analyses which I've found useful at various places in the trilogy; and
a few things are in 10.10-17 just because I like them.

- Chapter 10 is repeated in B & D; Chapters 1, 5, 7 and 10 are repeated in
ACM. The three books have a common preface and bibliography. Each has
its own index and symbol finder.
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Preface to the Springer edition

My books on Markov Chains, Brownian Motion and Diffusion, and
Approximating Countable Markov Chains, were first published in the early
1970’s, and have not been readily available since then. However, there still
seems to be some substantial interest in them, perhaps due to their construc-
tive and set-theoretic flavor, and the extensive use of concrete examples. I
am pleased that Springer-Verlag has agreed to reprint the books, making
them available again to the scholarly public. I have taken the occasion to
correct many small errors, and to add a few references to new work.

David Freedman
Berkeley, California '

September, 1982
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INTRODUCTION TO DISCRETE
TIME

1. FOREWORD

Consider a stochastic process which moves through a countable set 7 of
states. At stage n, the process decides where to go next by a random mech-
anism which depends only on the current state, and not on the previous
history or even on the time n. These processes are called Markov chains with
stationary transitions and countable state space. They are the object of study
in the first part of this book. More formally, there is a countable set of
states I, and a stochastic process X,, X;,... on some probability triple
(Z, %, P), with X, (x) € I for all nonnegative integer n and x € 2. Moreover,
there is a function P on I X I such that

PIX pmjf Xov= & b} = PXl)):

That is, the conditional distribution of X', given X, ..., X, depends on
X,, but not on n or on Xy, ..., X, ;. The process X is said to be Markov
with stationary transitions P, or to have transitions P. Suppose I is reduced to
the essential range, namely the set of j with Z{X, = j} > 0 for some n.
Then the transitions P are unique, and form a stochastic ;gq.],;ix. Here is an
equivalent characterization: X is Markov with stationary transitions P iff

y{xn =j,forn=0,..., N} s g{XO =.]0} ley;—ol P(jny Jns1)
for all N and j, € I. If 2{X, = j} = 1 for some j € I, then X is said to start

I want to thank Richard Olshen for checking the final draft of this chapter.
1



2 INTRODUCTION TO DISCRETE TIME (1

from j or to have starting state j. This involves no real loss in generality, as
one sees by conditioning on Xj.

(1) Definition. A stochastic matrix P on I is a function on I x 1, such that:
P@i,j) =0 foralliandjinl;

and
Tt PGi,j) =1 foralliinl.

If P and Q are stochastic matrices on 1, so is PQ, where
(PQ)i, k) = Zje; P(, Q). k).

And so are P", where P! = P and P™"*! = PP".
_Here are three examples: let Y, be independent and identically distributed,
taking the values 1 and —1 with equal probability 3.

(2) Example. Let X, =1.Forn=1,2,...,let X, = Y,. Then {X,} is a

Markov chain with state space / = {—1, 1} and stationary transitions P,
where P(i,j) = } for all i and j in /. The starting state is 1.

(3) Example. Let X,=0. Forn=1,2,..., let X, = X, + Y,. Then
{X,} is a Markov chain with the integers for state space and stationary
transitions P, where

Pn,n+1)=Pn,n—1)=14%
P(n,m) =0 when|n—m| # 1.
The starting state is 0.
(4) Example. Let X, = (Y,, Y, for n=0, ], . ndhens{X .} Jis.a
Markov chain with state space I and stationary transitions P, where I is the
set of pairs (a, b) with a = +1land b= +1, and
P[(aa b)i (C, d)] =0 when b4 e
=4 whenb=c.
By contrast, let £, = Y, + Y41 Now X, is a function of X,,. But {X,} is
not Markov.

Return to the general Markov chain X with stationary ‘transitions. For
technical reasons, it is convenient to study the distribution of X rather than
X itself. The formal exposition begins in Section 3 by describing these distri-
butions. This will be repéated here, with a brief explanation of how to translate
the results back into statements about X. Introduce the space I” of I-
sequences. That is, /* is the set of functions w from the nonnegative integers
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to I. Forn =0, 1, ..., define the coordinate function &, on I by
© E ()=o) forwel

Then &, &, ... is the coordinate process. Give I® the smallest o-field
o(I®) over which each coordinate function is measurable. Thus, o(I®) is
generated-by the cylinders

{£0=i09"~s5”=i,|}.

For any i € I and stochastic matrix P on I, there is one and only one proba-
bility P, on I® making the coordinate process Markov with stationary
transitions P and starting state i. In other terms:

P{t,=i,forn=0,...,N} = 2 s b))

for all N and i, € I with i, = i. The probability P; really does depend only
onPandi.

Now I is the sample space for X, namely the space of all realizations.
More formally, there is a mapping M from Z to I®, uniquely defined by
the relation

E.(Mx) = X,(x) foralln= D.1,...and xeX.

That is, the nth coordinate of Mx is X, .(x), and Mx is the sequence of states
X passes through at x, namely: (Xp(x), X3(x), X,(x), . ..). Check that M is
measurable. Fix i € I and a stochastic matrix P on /. Suppose X is Markov
with stationary transitions P and starting state i. With respect to the distri-
bution of X, namely M-, the coordinate process is Markov with stationary
transitions P and starting state i. Therefore #M~' =P, Conversely,
PM-! = P, implies that X is Markov with stationary transitions P and
starting state i. Now probability statements about X can be translated into
statements about P, For example, the following three assertions are all
equivalent:

(5a) P&, =i for infinitely many n} = 1.

(5b) For some Markov chain X with stationary transitions P and starting
state i,
P{X, = i for infinitely many n} = 1.

(5c) For all Markov chains X with stationary transitions P and starting

state i, ;
P{X, = i for infinitely many n} = 1.

Indeed, the set talked about in (5b) is the M-inverse image of the set talked
about in (5a); and P; = ZM.
The basic theory of these processes is developed in a rapid but complete
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way in Sections 3-9; Sections 10, 12, and 14 present some examples, while
Sections 11 and 13 cover special topics. Readers who want a more leisurely
discussion of the intuitive background should look at (Feller, 1968, XV) or
(Kemeny and Snell, 1960). Here is a summary of Sections 3-9.

2. SUMMARY

The main result in Section 3 is the strong Markov property. To state the
best case of it, let the random variable 7 on I® take only the values
0,1,..., co. Suppose the set {r = n} is in the o-field spanned by s
forn=0,1,..., and suppose

P{r < owand § =j} =1 forsomejel

Then the fragment
(501 heie 2 Er)

and the process
‘En £r+1’ Er+23 ot

are P-independent; the P.-distribution of the process is P;. This is a special
case of the strong Markov property.

(6) Nlustration. Let 7 be the least n with &, = j, and 7 = oo if there is no
such n; the assumption above is P;{r < oo} = 1.
To state the results of Section 4, write:

i—j iff P"(i,j)>0 forsome nisid ;- 25000001 5
ie>j iff i—jandj—i
iis essential iff i—j impliesj— i

(7) Ilustration. Suppose I = {1, 2, 3, 4} and P is this matrix:

O O =
B oe O
P o O
O O O

Then 1,2,3 are essential and 4 is inessential. Moreover, 1 <> 1 while 2 <> 3.

For the rest of this summary,

suppose all i € I are essential.
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Then <« is an equivalence relation. For the rest of this summary, suppose that
I consists of one equivalence class, namely,

suppose i—jand j—i forall iandjin I

Let period i be the greatest common denominator (g.c.d.) of the set of
n > 0 with P"(i, i) > 0. Then period i does not depend on i; say itis d. And
1 is the disjoint union of sets Co, Cy, . - - C,_1, such that

ieC, and P(i,j) >0 implyi€C,g1,
where @ means addition modulo d.
(8) Illustration. Suppose / = {1, 2, 3, 4} and P is this matrix:
00

o

i1
;%
0 0
0 0

op W0
o o O

Then I has period 2, and C, = {1, 2} and C; = {3, 4}.
For the rest of the summary, ;

suppose period i = 1 foralliel

To state the result of Section 5, say

i is recurrent iff PJ{&, = i for infinitely many n} = 1
iis transient iff P/, = i for infinitely many n} = 0.

This classification is exhaustive. Namely, the state i is either recurrent or
transient, according as X, P"(i,i) is infinite or finite. And all iel are
recurrent or transient together. These results follow from the strong Markov
property. Parenthetically, under present assumptions: if [ is finite, all i€/
are recurrent.

(9) Example. Suppose I={0,1,2,...}. Let 0<p,<1. Suppose
P(0,1)=1and for n = 1,2, ... suppose P(n,n + 1) = p, and P(n, 0) =
1 — p,. Suppose all other entries in P vanish; see Figure 1. The states are
recurrent or transient according as Il p,, is zero or positive.

HiNT. See (16) below. *
For the rest of this summary,

suppose all i € I are recurrent.
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] il oy B O AN BARES
e

1-p3

Figure 1

To state the result of Section 6, let Y;, Y,,... be a sequence of inde-
pendent, identically distributed random variables, taking only the values
1,2, 3, ... with probabilities py, ps, ps, - - - - Let u = X np,, and suppose

ged. {n:p, >0} =1
Let U(m) be the probability that

Y,+ -+ Y,=m forsomen=20,1,2,....
Then
lim,, ., Um) = 1/u.

This result is called the renewal theorem. It is used in Section 7, together with
strong Markov, to show that

lim,_., P*(i,)) = =(j),

where 1/m(j) is the P;-expectation of the least m > 0 with &, = j.
To state the result of Section 8, say

j is positive recurrent iff =(j)> 0
j is null recurrent iff w(j) = 0.

Then all i € I are either positive récurrent or null recurrent together.

(10) Example. Let /= {0,1,2,...}. Let p, > 0 and Z2_ p, = 1. Le
P(O,n) =p, and P(n,n —1)=1 for n=1,2,.... See Figure 2. The
states are positive recurrent or null recurrent according as Z®_ np, is finite
or infinite.



