Second Edition

COMPUTER ORGANIZATION

V. CARL HAMACHER ZVONKO G. VRANESIC SAFWAT G. ZAKY

McGRAW-HILL SERIES IN COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION

2

Second Edition

V. Carl Hamacher

Professor of Electrical Engineering and Computer Science University of Toronto

Zvonko G. Vranesic

Professor of Electrical Engineering and Computer Science University of Toronto

Safwat G. Zaky

Associate Professor of Electrical Engineering University of Toronto

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Hamburg Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto This book was set in Times Roman by Black Dot, Inc. The editors were Eric M. Munson and Linda A. Mittiga; the production supervisor was Charles Hess. New drawings were done by Wellington Studios Ltd. Halliday Lithograph Corporation was printer and binder.

COMPUTER ORGANIZATION

Copyright \circ 1984, 1978 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1234567890 HALHAL 8987654

ISBN 0-07-025683-7

Library of Congress Cataloging in Publication Data

Hamacher, V. Carl. Computer organization.
Bibliography: p. Includes index.
1. Computer architecture. I. Vranesic, Zvonko G.
II. Zaky, Safwat G. III. Title.
QA76.9.A73H35 1984 621.3819'52 83-24858
ISBN 0-07-025683-7

COMPUTER ORGANIZATION

McGraw-Hill Series in Computer Organization and Architecture

Bell and Newell: Computer Structures: Readings and Examples Cavanagh: Digital Computer Arithmetic: Design and Implementation Gear: Computer Organization and Programming Hamacher, Vranesic, and Zaky: Computer Organization Hayes: Computer Architecture and Organization Hayes: Digital System Design and Microprocessors Hwang and Briggs: Computer Architecture and Parallel Processing Kogge: The Architecture of Pipelined Computers Siewiorek, Bell, and Newell: Computer Structures: Principles and Examples Stone: Introduction to Computer Organization and Data Structures Stone and Siewiorek: Introduction to Computer Organization and Data Structures: PDP-11 Edition

McGraw-Hill Computer Science Series

Ahuja: Design and Analysis of Computer Communication Networks Barbacci and Siewiorek: The Design and Analysis of Instruction Set Processors Ceri and Pelagatti: Distributed Databases: Principles and Systems **Donovan:** Systems Programming Filman and Friedman: Coordinated Computing: Tools and Techniques for Distributed Software Givone: Introduction to Switching Circuit Theory Goodman and Hedetniemi: Introduction to the Design and Analysis of Algorithms Katzan: Microprogramming Primer Keller: A First Course in Computer Programming Using Pascal Kohavi: Switching and Finite Automata Theory Liu: Elements of Discrete Mathematics Liu: Introduction to Combinatorial Mathematics MacEwen: Introduction to Computer Systems: Using the PDP-11 and Pascal Madnick and Donovan: Operating Systems Manna: Mathematical Theory of Computation Newman and Sproull: Principles of Interactive Computer Graphics Payne: Introduction to Simulation: Programming Techniques and Methods of Analysis **Révész:** Introduction to Formal Languages **Rice:** Matrix Computations and Mathematical Software Salton and McGill: Introduction to Modern Information Retrieval Shooman: Software Engineering: Design, Reliability, and Management Tremblay and Bunt: An Introduction to Computer Science: An Algorithmic Approach Tremblay and Bunt: An Introduction to Computer Science: An Algorithmic Approach, Short Edition Tremblay and Manohar: Discrete Mathematical Structures with Applications to **Computer Science** Tremblay and Sorenson: An Introduction to Data Structures with Applications **Tucker:** Programming Languages

Wiederhold: Database Design

Wulf, Levin, and Harbison: Hydra/C.mmp: An Experimental Computer System

To Liz, Anne, and Shirley

PREFACE

This book is intended for use in a first-level course on "computer organization" in computer science and electrical engineering curricula. The book is selfcontained, assuming only that the reader has a basic knowledge of computer programming in a high-level language. Many students who study computer organization will have had an introductory course on digital logic circuits. Therefore, this subject is not covered in the main body of the book. However, we have provided an extensive appendix on logic circuits for those students who need it.

Our resolve to write a book stems from our experience in teaching computer organization to three distinct types of undergraduates: computer science specialists, electrical engineering undergraduates, and engineering science undergraduates. We have always approached the teaching of courses in this area from as practical a point of view as possible. Thus, a major choice in shaping the contents of the book was to illustrate the principles of computer organization by using a number of extensive examples drawn from commercially available computers.

Second, we feel that it is important to recognize that digital system design is not a straightforward process of applying "optimal design" algorithms. Many design decisions are based largely on heuristic judgment and tend to be a compromise between extreme alternatives. Thus it is our goal to convey these notions to the reader.

Third, we have endeavoured to provide sufficient details to force the student to dig beyond the surface when dealing with ideas that seem to be intuitively obvious. We believe that this is best accomplished by giving real examples that are adequately documented. Block diagrams are a powerful means of describing organizational features of a computer. However, they can easily lead to an oversimplified view of the problems involved. Hence, they must be accompanied by the details of implementation alternatives.

We use a number of real machines for illustrative purposes. Our main examples are drawn from the following computers: PDP-11, VAX-11, IBM 370,

HP3000, M6800, M6809, M68000, and Intel 8085. The PDP-11 is used for examples in many parts of the book. Its manageable size and complexity make it suitable for teaching purposes. Moreover, it has had considerable influence on instruction set and addressing mode design in small computers.

The book is aimed at a one-semester course in computer science or electrical engineering programs. It is suitable for both hardware- and softwareoriented students. There is a greater emphasis on hardware since we feel that this is the way computer organization should be taught. It is a mistake to describe computer structures solely through the eyes of a programmer, particularly for people who work with systems that involve a variety of equipment, interfacing, and communication facilities. However, although the emphasis is on computer hardware, we have addressed a number of software issues and discussed representative instances of software-hardware trade-offs in the implementation of various components of a computing system.

Let us review the topics covered in sequence, chapter by chapter. The first eight chapters cover the basic principles of computer organization. The remaining four chapters deal with peripheral devices, system software, microprocessors, and computer communications.

Chapter 1 provides an overview of computer structure and informally introduces a number of terms that are dealt with in more depth in the remainder of the book. A discussion is included of the basic ways that the standard functional units can be interconnected to form a complete computing system.

Chapter 2 gives a methodical treatment of addressing techniques and instruction sequencing. The PDP-11 minicomputer is used to illustrate the basic concepts. Numerous programs and program segments at the machine instruction level are used to discuss loops, subroutines, and simple input-output programming.

Chapter 3 continues the discussion of instruction sets that was begun in Chapter 2 and focuses on some of the problems encountered because of the "bit-space" limitations of short word-length machines. Instruction sets in the VAX-11, the IBM 370, and the HP3000 are introduced. They illustrate the possibilities afforded by longer word lengths and stack-oriented design. The influence of high-level language programming on the design of these machines is discussed.

Chapter 4 begins with a register-transfer-level treatment of the implementation of instruction fetching and execution in a processor. The constraints imposed by various busing arrangements are explained, followed by a discussion of both hardwired and microprogrammed control.

Chapter 5 extends the discussion of microprogrammed control. The alternatives of fully decoded command words and partially encoded command words are treated, followed by a rather detailed analysis of the "next-address" generation problem in microprogram sequencing. The use of bit slices in designing microprogrammed machines is discussed.

Input-output organization is developed in Chapter 6. The basics of I/O data

transfer synchronization are presented, and then a series of increasingly complex I/O structures is explained. Direct-memory access methods and interrupts are introduced, and then these ideas are extended to a discussion of channels. Three popular bus standards, multibus, S-100, and IEEE-488, are also presented.

Chapter 7 treats the arithmetic unit of a computer. It begins with a discussion of fixed-point add, subtract, multiply, and divide hardware, operating on 2's-complement numbers. Lookahead adders and high-speed array multipliers are included. Floating-point number representations and operations, including the IEEE standard, are presented.

Semiconductor memories are discussed in Chapter 8. Multiple-module memory systems and caches are explained as ways of increasing main memory bandwidth. Various cache mapping methods are presented and virtual-memory systems are discussed in some detail.

A variety of peripheral devices are dealt with in Chapter 9. Cathode-ray tube terminals and graphics displays are analyzed in detail. This is followed by a discussion of magnetic disks, drums, and tapes.

Chapter 10 gives an introduction to the subject of operating-system software, including linkers, loaders, and scheduling techniques.

An extensive treatment of microprocessors is provided in Chapter 11. Complete instruction sets, together with some comparative analyses, are given for Motorola's 6800, 6809, and 68000 and for Intel's 8085. Input-output aspects of microcomputer systems are emphasized.

Chapter 12 is an introduction to a number of topics in computer communications. Synchronous and asynchronous protocols for data transmission are considered. This is followed by a brief description of local area and wide area networks.

Most of the material in this book can be covered in a 12-to-15 week course, with 3 lecture hours per week. However, as well as being suited for the usual undergraduate class teaching environment, we feel that the material is appropriate for self-study by graduates who have not specialized in computers but who have taken introductory courses or have work experience in the area. The use of real (commercially available) computers in our examples makes the book attractive to the latter readership.

This second edition of the book contains substantial additions that update and extend the material of the first edition. The additional material includes the following:

- VAX-11 instruction set and addressing modes in Chapter 3
- Discussion of bit slices in Chapter 5
- Bus standards in Chapter 6
- IEEE floating-point standard in Chapter 7
- Dynamic memories and the VAX-11 virtual-memory system in Chapter 8
- M6809 and M68000 microprocessors in Chapter 11 and Appendix C
- Local area networks in Chapter 12

We should note that all of the material on I/O and buses has been consolidated in Chapter 6. A number of sections have also been extensively rewritten in order to update the material to be consistent with technology changes in the past few years.

The authors wish to express their thanks to all the people who have helped during the preparation of this second edition. We are especially grateful for the detailed, constructive criticism of the complete manuscript by Professors Harold Stone and Alfred Weaver. Professors Mary Jane Irwin and Henry Chuang provided useful suggestions in the planning stages for the second edition. Professor Tom Hull gave helpful advice on the floating-point section in Chapter 7. We also wish to acknowledge the typing work of Cathy Cheung.

> V. Carl Hamacher Zvonko G. Vranesic Safwat G. Zaky

COMPUTER ORGANIZATION

CONTENTS

	Preface	xiii
Chapter 1	Basic Structure of Computers	1
1.1	Functional Units	1
1.2		9
1.3		11
1.4	Distributed Computing	14
1.5		14
Chapter 2	Addressing Methods and	
•	Machine Program Sequencing	15
2.1	Memory Locations, Addresses, and	
	Encoding of Information	15
2.2	Main Memory Operations	18
2.3	and men orqueneng	19
2.4		27
2.5	Brite and Instituctions	29
2.6	Simple Input-Output Programming	49
2.7	Pushdown Stacks	54
2.8	Subroutines	57
2.9	8	65
2.10	Problems	66
2.11	References	73
Chapter 3	Instruction Sets	74
3.1	The PDP-11	75
3.2	Limitations of Short Word-Length Machines	79
3.3	High-Level Language Considerations	79
3.4	The VAX-11	82
3.5	The IBM 370	99
3.6	The HP 3000	103

3.7	Concluding Remarks	114
3.8	Problems	115
Chapter 4	The Processing Unit	117
4.1	Some Fundamental Concepts	118
4.2	Execution of a Complete Instruction	128
4.3	Sequencing of Control Signals	131
4.4	Concluding Remarks	141
4.5	Problems	141
Chapter 5	Microprogrammed Control	146
5.1	Microinstructions	146
5.2	Grouping of Control Signals	148
5.3	Microprogram Sequencing	151
5.4	Microinstructions with Next-Address Field	159
5.5	Prefetching of Microinstructions	162
5.6	Emulation	164
5.7	Bit Slices	165
5.8	Concluding Remarks	169
5.9	Problems	170
Chapter 6	Input-Output Organization	173
6.1	Addressing of I/O Devices	174
6.2	Data Transfer	175
6.3	Synchronization	179
6.4	Interrupt Handling	183
6.5	I/O Interfaces	194
6.6	Standard I/O Interfaces	208
6.7	I/O Channels	220
6.8 6.9	Concluding Remarks	230
6.9 6.10	Problems References	231
0.10	References	236
Chapter 7	Arithmetic	237
7.1	Number Representations	238
7.2	Addition of Positive Numbers	239
7.3	Logic Design for Fast Adders	242
7.4	Addition and Subtraction of Positive and Negative Numbers	245
7.5 7.6	Arithmetic and Branching Conditions	250
7.8	Multiplication of Positive Numbers	251
7.8	Signed-Operand Multiplication Fast Multiplication	257
7.8	Integer Division	260
7.10	Floating-Point Numbers and Operations	264 268
7.10	Concluding Remarks	208
7.12	Problems	280
7.13	References	280

Chapter 8	The Main Memory	288
8.1	Some Basic Concepts	288
8.2	Semiconductor RAM Memories	292
8.3	Memory System Considerations	299
8.4	Semiconductor ROM Memories	303
8.5	Multiple-Module Memories and Interleaving	305
8.6	Cache Memories	306
8.7	Virtual Memories	313
8.8	Memory Management Requirements	316
8.9	The VAX-11 Virtual Memory System	317
8.10	Memory Management Hardware	324
8.11	Concluding Remarks	325
8.12	Problems	325
8.13	References	329
Chapter 9	Computer Peripherals and Work Stations	330
9.1	I/O Devices	331
9.2	On-Line Storage	346
9.3	Personal Computers	361
9.4	Engineering Work Stations	363
9.5	Concluding Remarks	364
9.6	Problems	365
9.7	References	367
Chapter 10	Software	368
10.1	Languages and Translators	369
10.2	Loaders	371
10.3	Linkers	373
10.4	Operating Systems	377
10.5	Concluding Remarks	388
10.6	Problems	389
10.7	References	391
Chapter 11	Microprocessors	392
- 11.1	Families of Microprocessor Chips	393
11.2	M6800 Microprocessor	398
11.3	M6809 Microprocessor	406
11.4	Input/Output in Microprocessor Systems	420
11.5	Motorola M68000 Microprocessor	431
11.6	Intel 8085 Microprocessor	440
11.7	Single-Chip Microcomputers	447
11.8	Applications of Microprocessors	448
11.9	Concluding Remarks	449
11.10	Problems	450
11.11	References	451

Chapter 12	Computer Communications	453
12.1	Communication with a Remote Terminal	454
12.2	Error Control	463
12.3	Multiterminal Configurations	468
12.4	Circuit and Message Switching	480
12.5	Local Area Networks	485
12.6	Concluding Remarks	489
12.7	Problems	489
12.8	References	491
	Appendixes	
Α	Logic Circuits	493
A .1	Basic Logic Functions	493
A.2	Synthesis of Logic Functions Using AND, OR, and	
	NOT Gates	496
A.3	Minimization of Logic Expressions	499
A.4	Synthesis with NAND and NOR Gates	506
A.5	Practical Implementation of Logic Gates	509
A.6	Flip-Flops	519
A.7 A.8	Registers Shift Desisters	529
A.8 A.9	Shift Registers Counters	530
A.10	Decoders	531 533
A.10 A.11	Multiplexers	535
A.11 A.12	Programmable Logic Arrays (PLAs)	535 537
A.12 A.13	Concluding Remarks	538
A.14	Problems	540
A.15	References	544
В	Instruction Set for PDP-11 Minicomputers	545
	1	515
С	Instruction Set for Motorola 68000 Microprocessor	553
	Microprocessor	
D	Character Codes and Number Conversion	571
D.1	Character Codes	571
D.2	Decimal to Binary Conversion	574
	Bibliography	577
	Index	579

CHAPTER ONE

BASIC STRUCTURE OF COMPUTERS

The objective of this chapter is to introduce some basic concepts and associated terminology. We will give only a broad overview of the fundamental characteristics of computers, leaving the more detailed and precise discussion to the subsequent chapters.

Let us first define the meaning of the word "digital computer" or simply "computer," which is often misunderstood, despite the fact that most people take it for granted. In its simplest form, a contemporary *computer* is a fast electronic calculating machine, which accepts digitized "input" information, processes it according to a "program" stored in its "memory," and produces the resultant "output" information.

1.1 FUNCTIONAL UNITS

The word computer encompasses a large variety of machines, widely differing in size, speed, and cost. It is fashionable to use more specific words to represent some subclasses of computers. Smaller machines are usually called *minicomputers*, which is a reflection on their relatively lower cost, size, and computing power. In the early 1970s the term *microcomputer* was coined to describe a very small computer, low in price, and consisting of only a few very large-scale integrated (VLSI) circuit packages.

Large computers, sometimes called *mainframes*, are quite different from minicomputers and microcomputers in size, processing power, cost, and the complexity and sophistication of their design. Yet the basic concepts are essentially the same for all classes of computers, relying on a few well-defined ideas which we will attempt to explain.

In its simplest form, a computer consists of five functionally independent main parts: input, memory, arithmetic and logic, output, and control units, as