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Preface

The theory of almost periodic functions was mainly created and
published during 1924-1926 by the Danish mathematician Harald
Bohr. Bohr’s work was preceded by the important investigations of
P. Bohl and E. Esclangon. Subsequently, during the 1920s and
1930s, Bohr’s theory was substantially developed by S. Bochner, H.
Weyl, A. Besicovitch, J. Favard, J. von Neumann, V. V. Stepanov,
N. N. Bogolyubov, and others. In particular, the theory of almost
periodic functions gave a strong impetus to the development of
harmonic analysis on groups (almost periodic functions, Fourier
series and integrals on groups). In 1933 Bochner published an
important article devoted to the extension of the theory of almost
periodic functions to vector-valued (abstract) functions with values
in a Banach space.

In recent years the theory of almost periodic equations has been
developed in connection with problems of differential equations,
stability theory, dynamical systems, and so on. The circle of applica-
tions of the theory has been appreciably extended, and includes not
only ordinary differential equations and classical dynamical systems,
but wide classes of partial differential equations and equations in
Banach spaces. In this process an important role has been played
by the investigations of L. Amerio and his school, which are directed
at extending certain classical results of Favard, Bochner, von
Neumann and S. L. Sobolev to differential equations in Banach
spaces.

We survey briefly the contents of our book. In the first three
chapters we present the general properties of almost periodic func-
tions, including the fundamental approximation theorem. From the
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very beginning we consider functions with values in a metric or
Banach space, but do not single out the case of a finite-dimensional
Banach space and, in particular, the case of the usual numerical
almost periodic functions. Of the known proofs of the approximation
theorem we present just one: a proof based on an idea of Bogolyubov.
However, it should be noted that another instructive proof due to
Weyl and based on the theory of compact operators in a Hilbert
space appears in many textbooks on functional analysis.

Chapter 4 is devoted to the theory of N-almost periodic functions.
In comparison with the corresponding chapter of the book Almost-
Periodic Functions by B. M. Levitan (Gostekhizdat, Moscow (1953)),
we have added a proof of the fundamental lemma of Bogolyubov
about the structure of a relatively dense set.

Chapter 5 is concerned with the theory of weakly almost periodic
functions developed mainly by Amerio.

Chapter 6 contains, as well as traditionally fundamental questions
(the theorem of Bohl-Bohr about the integral, and Favard’s theorem
about the integral), more refined ones, for instance, the theorem of
M. 1. Kadets about the integral.

We mention especially Chapter 7 whose title is Stability in the
sense of Lyapunov and almost periodicity. The two chapters that
follow it are formally based on it. Actually, we use only the simplest
results, and when there is a need to refer to more difficult propositions
we give independent proofs. Therefore, Chapters 6-11 can be read
independently of one another.

Chapter 8 contains Favard theory, by which we mean the theory
of almost periodic solutions of linear equations in a Banach space.
In Chapter 9 the results from the theory of monotonic operators are
applied to the problem of the almost periodicity of solutions of
functional equations. In Chapter 10 we give another approach to
the problem of almost periodicity. Finally, Chapter 11 is slightly
outside the framework of the main theme of our book. In it we give
one of the possible abstract versions of the classical averaging
principle of Bogolyubov.

Chapters 1-5 were written mainly by B. M. Levitan, and Chapters
6-11 by V. V. Zhikov.

The authors thank K. V. Valikov for his assistance with the reading
of the typescript.



Translator’s note

This translation has been approved by Professor Zhikov, to whom
I am grateful for correcting my mistranslations and some misprints
in the original Russian version.

Professor Zhikov has asked me to mention that the theory of
Besicovitch almost periodic functions is not reflected fully enough
in the book, since this theory has recently been applied in spectral
theory and in the theory of homogenisation of partial differential
equations with almost periodic coefficients. The additional
references are, in the main, concerned with this theme.

L. W. Longdon
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2 Almost periodic functions in metric spaces

We prove some of the simplest properties of almost periodic
functions; these are straight-forward consequences of the definition.

Property 1. An almost periodic function f:J -» X is compact in the
sense that the set Ry is compact.

Proof. 1t is sufficient to prove that for any ¢ >0, Ry contains a finite
e-net for Ry. Let [ =(¢) be the length in Definition 3 corresponding
to a given £. We set

Rea={x¢€ Rex=f(t), -l/)2<t< 1/2}.

From the continuity of f it follows that the set Ry, is compact; we
show that it is an £-net for the set %y. Let to€ J be chosen arbitrarily,
and take an e-almost period 7 = 7, such that —l/2<to+7<1/2, thatis,

*to_l/zSTg —t0+l/2.
Then

p(f(to+7), f(to)) <e.

Because to+7e[—1/2,1/2], the set Ry is an e-net for Ry, as we
required to prove.

Remark. For numerical almost periodic functions (that is, when
X =R") and for almost periodic functions with values in a finite-
dimensional Banach space, Property 1 reduces to the following: if
f is an almost periodic function, then % is bounded.

Property 2. Let f:] > X be a continuous almost periodic function.
Then f is uniformly continuous on J.
Proof. We take an arbitrary ¢ >0 and set ¢, =¢/3 and [ = l(e1). The
function f is uniformly continuous in the closed interval [-1, 1+/],
that is, there is a positive number § = 8(e1) (without loss of generality
we may assume that § <1) such that

p(f(s"), f(s")<er 2)
whenever [s"—s'| <8, s', s"€ J. Now let t', t" be any numbers from J
for which |t'—t"|<8. We take a T=1,, with 0<t'+7, </, that is,
—t'<t.,<-t'+[. Then t"+7,e[—-1,1+1]. We set §'= t'+7, and
§"=t"+7.,. From (1), (2) and the triangle inequality we have

p(f(t"), f(E)=<p(f(t"), f(s") +p(f(s"), f(s")

+o(f(s"), f(t) <e.
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Property 3. Let f,,: ] > X,n=0,1,2, ..., be a sequence of continuous
almost periodic functions that converges uniformly on J to a function
f. Then fis almost periodic.

Proof. We take an arbitrary £ >0 and let n = n. be such that

Bup p(f(2), fa,(t))<e/3. 3)

Let 7 = 7[f,.] denote an (¢/3)-almost period of the function f,... Then
it follows from (1), (3), and the triangle inequality that

p(f(t+7), f(t)<p(f(t+7), fu.(t+7))
+p(fu (E+7), fu, (£)) +p(fu,(2), £(£))

=g

for all #eJ. This proves that f is almost periodic because the set of
almost periods 7[f, ] is relatively dense.

Property 4. Let x = f(t) be a continuous almost periodic function
with values in a metric space X, and y = g(x) be continuous on Rs
with values in a metric space X,. Then g[ f(t)] is an almost periodic
function with values in X,.

Proof. Since the set % is compact and the function g(x) is con-
tinuous on %y, g(x) is uniformly continuous on %;. Therefore, for
all £ >0 there exists a 6§ =8(¢)>0 such that for all x', x" € &, with
p(x', x")< 8 we have

p1(g(x"), g(x"))<e.
Therefore, if 7 is a §-almost period for f(¢), then

p(f(t+7), f(2)) <3,

and so

p1(g(f(t+1)), g(f(t)) <e.

Corollary. Let f be a continuous almost periodic function with values
in a Banach space X. Then |f(¢)|* is a continuous numerical almost
periodic function for all k >0.

Property 5. Suppose that f is an almost periodic function with values
in a Banach space X. If the (strong) derivative f' exists and it is
uniformly continuous on J, then f' is an almost periodic function.

Proof. The proof uses the concept of an integral of a vector-valued
function. In the case of continuous functions this is very simple
because the Riemann integral exists with the usual fundamental
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properties (see, for example, G. E. Shilov, Mathematical Analysis.
Functions of a Single Variable, Part 3, Ch. 12, § 12.5). By hypothesis,
the derivative f' is uniformly continuous, and so for all £ >0 there
is a §=8(¢)>0 such that |f'(t)—f'(¢t")|<e whenever [t'—t"|<8.
Therefore, if 1/n <8, then
o[ e+7) 0] -r 0] =[s]
n 0
1/n
<n[ " IFe+m-FoOldn <e.

1/n

L (¢+m)=£()] |

Consequently, the sequence of almost periodic functions ¢,(t)=
n[f(t+1/n)—f(t)] converges uniformly on J to f'(¢). Now we only
need to use Property 3.

2 Bochner’s criterion
The main results of this section are also valid for almost
periodic functions with values in an arbitrary metric space X. But
for simplicity we shall assume that X is a Banach space. We shall

use the following notation:
X denotes a complex Banach space; x, y, z, . .. are elements of X,
and |x|| is the norm of x€X. C(X) denotes the Banach space of

continuous bounded functions f:J - X with the norm

Iflecn = sup Fl,

and €C(X) is the subspace of C(X) consisting of almost periodic
functions. Let us note that the spaces C(X) and C(X) are invariant
under translations, that is, C(X) (C(X)) contains together with
f=f(s) the function f'(s)=f(s +¢) forall teJ.

1. Bochner’s theorem. Let f: ] > X be a continuous function. For f
to be almost periodic it is necessary and sufficient that the family
of functions H ={f"Y={f(t+h)}, —0<h <, is compact mn C(X).
Proof. (a) Necessity. We assume that f is an almost periodic func-
tion (see § 1, Definition 3). We denote by {r} the set of all rational
points on J and let {f*}={f(¢+h.)} be an arbitrary sequence of
functions from H. By using Property 1 and applying the diagonal
process, we can select from the sequence {f(¢+h,)} a subsequence
(we denote it again by {f(t+ h,)}) which converges for any re{r}.
We prove that the sequence {f(¢+h,)} converges in C(X). We take
an arbitrary € >0 and let [ =/, be the corresponding length. Let
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8 =68(e) be chosen in accordance with Property 2. We subdivide the
segment [0, /] into p segments 4x (k=1, 2,...,p) of length not
greater than 8, and in each A we choose a rational point 7. Suppose
that n =n. is chosen so that

I f(re+ ) = f(ri + b))l < & (4)

forn,m=n.,and k=1,2,...,p. Forevery toe J we find a 7 = 7y such
that

0$to+’r$l (=4 —t()STS—tQ'Fl.

Suppose that the number ¢'o = to + 7 falls in the interval 4;, and that
Tk, € Ak, is the rational point chosen earlier. Then by our choice of
8 we have

[£(#'0+hn) = flreo+ ha)| <6,
£ o+ hm) —F(reg+ hm)l <e.
It follows from (4) and (5) that

Il f(to+ha)—f(to+ hm)
<||f(to+hn) = f(t'o+h)|+ [ f(#'0+ hn) = f(rio+ )|
[ f (ko + ha) = F(rro+ ho)| + | f(7ro + Bim) = f (0 + b )|
Hf(# o+ hm) = f(to+ hm)| <5e.
Since toeJ was chosen arbitrarily, the last inequality implies that
the sequence {f(t+h,)} converges in C(X), that is, the set H is
compact in C(X).

(b) Sufficiency. We assume that the family {f(¢ +h)}, —0o<h <00,
is compact in C(X) and prove that f(¢) is almost periodic (in the
sense of Definition 3, § 1). First of all we show that f is a bounded
function. For if this were not the case, then we could find a sequence
of numbers A, for which ||f(h,)||> . But then neither the sequence
{f(¢+h,)} nor any subsequence of it would be convergent at ¢ =0.
From the boundedness of f it follows that the family of functions
{f"}={f(t+h)}, —0<h <0 can be regarded as a set in C(X).

By a criterion of Hausdorff, for all € >0 there are numbers

hi, he, ..., h, such that for all 4 € J there is a k = k(h) such that
Stu}) If(t+h)—f(t+h)|<e. (6)

(5)

From (6) we have

o I£(t+h—h)—ft)<e,
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that is, the numbers h—hi(h) (k=1,2,...,p) are e-almost periods
for f(t). Now we only need to prove that the set of numbers 4 — Ay
is relatively dense. We set
L= max |h|.
l<k=p

Then
h—LSh—hk$h+L,

and since h is arbitrary this inequality implies that every interval
of length 2L contains an e-almost period for f.

2. Now we are going to deduce further properties of almost periodic
functions that are obtained more simply from Bochner’s criterion
than from our definition.

Property 6. The sum f(t)+g(t) of two almost periodic functions is
almost periodic. The product of an almost periodic function f(t) and
a numerical almost periodic function ¢ (t) is almost periodic.
Proof. Let {h,} be an arbitrary sequence of real numbers. F irstly
we extract from it a subsequence {A’,} such that the sequence of
functions {f(¢+h',)} converges, and then a subsequence {h",} of {h',}
for which the subsequence of functions {g(¢t+h",)} is convergent.
Then, clearly, the subsequence {f(¢+A",) +g(t+h",)}is convergent.
Similarly, the product can be proved to be an almost periodic
function.

Let X1, X5, ..., X, be Banach spaces, and let X =11, Xk be their
cartesian product, that is, the Banach space with elements x =
(x1, %2, ..., x,) and the norm

n
lell= X [lexll
k=1

It follows easily from Bochner’s criterion that if f1(2), fot), ..., fu(2)
are almost periodic functions from J into X1, Xs, ..., X,, then the
function f(¢) = (fi(¢), fa(t), ..., f.(t)) is an almost periodic function
from J into X. The next property is easily deduced from this remark.

Property 7. Let f1(t), fa(t), . . ., f.(t) be almost periodic functions from
J into Banach spaces X\, X, ..., X,, respectively. Then for every
£ >0, all the functions f,(¢), f(t), . . ., f.(t) have a common relatively
dense set of e-almost periods.
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Proof. Suppose that 7 is an e-almost period for f(¢)=/(fi(¢),
f2(t)s""fn(t))’ that is;

£t +7)=fOle = 3 Ifult+7)~flB)l <e

for all ¢ € J. Obviously, for this 7 we have
: ||fk(t+7)_fk(t>“<8 (k=152’--'an)7

as we required to prove.

3. The next property gives a condition for the compactness of a set
of functions from €(X), and is known as Lyusternik’s theorem.

Lyusternik’s theorem. A set M = C(X) is compact if and only if the
following three conditions are satisfied:

(1) For every fixed to< J the set

E,={xeX:x=f(ty), feM}cX

is compact.

(2) The set M is equicontinuous, that is, for every € >0 there is a
8 =8(g) such that ||f(t')—f(t")||< e whenever |t' —t"|< 8 for all fe M.

(3) The set M is equi-almost periodic, that is, for every € >0 there
is an | =1, such that every interval (a, a +1) < J contains a common
e-almost period for all f e M.
Proof. (a) Sufficiency. The proof is exactly the same as that of the
necessity for the conditions in Bochner’s theorem.

(b) Necessity. By the criterion of Hausdorff, for every e >0 M
contains a finite e-net: f1, fs, . . ., fn. Therefore, for all fe M there is
a ko, 1 <ko<n, such that

sup [1£() = fro()l < e. (7)

For any to€ [, from (7) we obtain

1£(t0) = fro(to)l <,

and so the finite set of elements f1(¢y), fa(to), . . ., fn(to) forms a finite
e-net for the set E;,. Consequently, E;, is compact in X, that is,
condition (1) of Lyusternik’s theorem holds. Condition (2) follows
from the uniform continuity of each fi(¢) (k=1,2,...,n) on J and
from (7). Finally, condition (3) follows from (7) and Property 7.

Remark. For numerical almost periodic functions, condition (1) of
Lyusternik’s theorem can be restated as follows: the set E,, is

bounded.
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3. The connection with stable dynamical systems
Suppose that we are given a l-parameter group of homeo-
morphisms of a metric space X, S(¢): X >X(te]J). If for any xe X
the corresponding trajectory x* = §(¢)x is a continuous function J > X
we shall call S(¢) a dynamical system or flow.

A flow S(t) is called two-sidedly stable or equicontinuous if the
transformations S(¢) (t€J) are equicontinuous on every compact
set from X,

The next property is obtained from Bochner’s criterion.

Property 8. Every compact trajectory of a two-sidedly stable flow is
an almost periodic function.

Proof. We set f(t)=S(t)x. Since a trajectory is compact, we can
extract from any sequence {f(t,)} a fundamental subsequence { f(¢',)}.
The transformations S(t) are equicontinuous on the set R, and so

stu? p(f(t+t',), flt+t')<e

whenever p(f(t'n), f(t'n)) <8, that is, Bochner’s criterion holds.

The converse holds in a certain sense: with each almost periodic
function f:J > X can be associated a compact trajectory of a two-
sidedly stable dynamical system. For if we consider in C(X) a system
of translates, then the trajectory f*=f(s+t) is compact. Since the
distance between two elements of C(X) is invariant under a transla-
tion, we have an isometric and so two-sidedly stable flow. It is worth
noting that the difference between isometry and two-sided stability
is essentially insignificant; if a two-sidedly stable flow is defined on
a compact space X, then it can be made isometric by choosing the
following metric

d(x1, x9) = sup p(S(t)x1, S(t)x2).
€
It is easy to see that the metric d is invariant under translation and
topologically equivalent to the original metric p.

Let f:] - X be an almost periodic function. We denote by % = x(f)
the closure of the trajectory f'=f(s+t¢) in C(X), and are going to
show that % is minimal in the sense that any trajectory is everywhere
dense in it. Suppose that f =£(s) is any element from % Then for
some sequence {t,,} = J we have

su?p(f(s +t,), f(s)<1/m.
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Therefore,

A

sullop(f(s),f(s —tm))<1/m,

that is, ]‘:(s —tm) > f(s) uniformly with respect to s € J. The closure of
the trajectory f* contains f, and so it coincides with %,

4 Recurrence
The minimal property of an almost periodic function proved
in the last section is in fact a very simple property of abstract
trajectories.

1. Let X be a Hausdorff topological space.

We shall call a 1-parameter semigroup of continuous operators
S(t): X > X (¢ =0) simply a semigroup, and shall use the symbols x’,
x(t) to denote the semitrajectory S(¢)x (x € X, t=0). A function x(¢)
is called a trajectory of a semigroup S(¢) if x(t+7) (t=0) is a
semitrajectory for every re]. A set Xoc X is called invariant if
through each of its points passes at least one trajectory that is entirely
contained in Xo. An example of a closed invariant set is the closure
of a trajectory.

A set Xo<= X is called minimal if it is closed, invariant, and does
not contain proper closed invariant subsets.

Birkhoff’s theorem. If a semigroup has a compact semitrajectory,
then there exists a compact minimal set.
Proof. Let X; denote the closure of a compact semitrajectory.
Obviously, the set ();=0 S(¢)X; is compact and invariant. We order
the compact invariant sets by inclusion and apply Zorn’s lemma,
thus proving the existence of a minimal compact invariant set.

The trajectories that belong to a compact minimal set are conven-
tionally called recurrent (in the sense of Birkhoff); an example of a
recurrent trajectory is an almost periodic trajectory.

2. Suppose that we are given two semigroups defined on X and Y,
respectively. Then there is an obvious semigroup on the cartesian
product X X Y (the ‘semigroup product’).

Two trajectories x(t), y(¢) are called compatibly recurrent if the
trajectory {x(¢), y(¢)} is recurrent in X X Y. Clearly, compatible recur-
rence implies the recurrence of each component, but the converse

does not hold.



