\nc\udes link t ‘ Teaches concepts of behavior-based programming
ON\- Includes history and theory of behavior-based robots
| R Provides example code for robot behaviors and behavior arbitration
S‘ MU LATOR Provides insight into building real-world robotic applications

e \CL n unw’m L ana
exteransigne o u!k
. :

. n‘l u" |
. lﬂ.ncd char humﬁ '
ﬁ% char user 1 Ut
sned char p_ uH

of [h Nin

O

{1- b )

12 '

ning behavi
" 2

ata direction, n}u”u s
1 PE 1{ diffVes BUzZZel
hze mS clock and moror PV
: S modulation

A EIdGUGdIgGUIUENG
JﬁIJJJlJI"' dotU '

JOSEPH L. JONES

Robotic Simulator by Daniel Roth



Robot
Programming

A Practical Guide to
Behavior-Based Robotics

Joseph L. Jones
Robotic Simulator by Daniel Roth

McGraw-Hill

New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan

New Delhi San Juan Seoul

Singapore Sydney Toronto



The McGraw-Hill companies

Cataloging-in-Publication Data is on file with the Library of Congress

Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights
reserved. Printed in the United States of America. Except as permit-
ted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any
means, or stored in a data base or retrieval system, without the prior
written permission of the publisher.

1234567890 DOC/DOC 09876543
ISBN 0-07-142778-3

The sponsoring editor for this book was Judy Bass and the produc-
tion supervisor was Pamela A. Pelton. It was set in Melior by Patricia
Wallenburg.

Printed and bound by RR Donnelly.

This book is printed on recycled, acid-free paper containing a
minimum of 50 percent recycled, de-inked fiber.

McGraw-Hill books are available at special quantity discounts to use
as premiums and sales promotions, or for use in corporate training
programs. For more information, please write to the Director of
Special Sales, McGraw-Hill Professional, Two Penn Plaza, New York,
NY 10121-2298. Or contact your local bookstore.

Information contained in this book has been obtained by The McGraw-
Hill Companies, Inc. (“McGraw-Hill”) from sources believed to be reli-
able. However, neither McGraw-Hill nor its authors guarantee the accu-
racy or completeness of any information published herein, and neither
McGraw-Hill nor its authors shall be responsible for any errors, omis-
sions, or damages arising out of use of this information. This work is
published with the understanding that McGraw-Hill and its authors are
supplying information but are not attempting to render engineering or
other professional services. If such services are required, the assistance
of an appropriate professional should be sought.




To Sue, Kate, and Emily



Preface

I got my first taste of robot programming in the early 1980s when
I joined the research staff at MIT’s Artificial Intelligence
Laboratory. My group was trying to solve a classic challenge in
robotics called pick-and-place—make a robot pick up an object
at one spot and put it down somewhere else. Given an object and
a destination all the robot has to do is to figure out the actual arm
and gripper motions needed to move the object to the goal—the
sort of thing any two-year-old can do. Four of us worked on the
problem for about five years.!

Other group members worked on the parts of the program that
would generate the large-scale motions of the robot arm, motions
to move the arm from one region of the workspace to another. My
job was to write the software that would enable our robot arm (see
Figure P.1) to work out how to move the last few inches toward an
object and grasp the object. The solution to the overall problem has
many constraints: the robot has to grasp the object at a viable spot;
the robot must avoid bumping into anything as it moves about; the
robot must avoid violating what are called kinematic constraints.?

1See Handey: a Robot Task Planner by Tomés Lozano-Pérez, Joseph L. Jones,
Patrick A. O’Donnell, and Emmanuel Mazer, MIT Press, 1992

%A kinematic constraint is a limitation on how a robot can move. If the robot
can say, position joint A only between the angles 0 and 120 degrees, the con-

xi



Robot Programming: A Practical Guide to Behavior-Based Robotics

xil

5

Figure P.1

This Puma model 560 with custom-built gripper was one of the manipulator
robots used in the Handey project. In the foreground the robot picks up a motor
that will be added to an assembly (contained in the white box) at the back right.
The Handey program generates all the joint motion commands needed to move
the motor from the point where it is picked up, avoiding all the obstacles, and
insert it into the assembly. (Photograph courtesy of Prof. Tomas Lozano-Pérez of
the MIT Artificial Intelligence Laboratory.)

Yet another part of our work was to write code that would figure
out how to reposition the object in the robot’s gripper if the initial
grasp conflicted with obstacles or the robot’s kinematic limits at
the putdown point. The tricky bit was that our software was sup-
posed to be completely general—the code had to work for any
robot, in any environment, transporting any part.

In order to accomplish all these things we had to first build a
world model. A world model tells the robot the geometric shape
of every object in the robot’s workspace and where every object
is located in relation to the robot. And in the same meticulous
way that we modeled the environment, we also had to model the
robot and to program the equations that described the robot’s

trolling program must refrain from instructing the robot to move joint A to 135
degrees.



Preface

kinematics—how the robot’s joints relate to each other and in
which ways and how far each joint is able to move.

Our task was excruciating. Any small error in the world model
could cause the robot to collide with an object when the robot
tried to execute the motions it had planned. Any little mistake
in the equations that describe the robot meant the robot might
fail to reach the designated pickup-object or whack something
along the way. If one of us accidentally bumped some object in
the robot’s workspace, thus creating a mismatch between the real
world and the robot’s world model, the robot would most likely
strike that object. And, when at last the robot came up with a
successful plan for moving an object from one place to another,
the robot’s motions invariably looked awkward and unnatural.

We hoped that our work would have the practical result of mak-
ing manufacturing by robots faster and more flexible. Our soft-
ware should enable assembly line designers to describe in gener-
ic terms what they wanted the robot to do rather than telling the
robot in precise detail how to do it. Using the most sophisticat-
ed computers and the best thinking available at the time we suc-
ceeded in solving an interesting academic problem.

However, our efforts did little to change the way robots manu-
facture products. It still makes economic sense for assembly line
workers to follow the painstaking process of teaching their
robots each and every tiny motion needed to perform an assem-
bly. Robots that plan such motions by themselves can’t com-
pete—they don’t seem to add enough value to earn their keep.

At the same time that I worked on the pick-and-place problem
another team at the Al Lab tackled a different robotic challenge—
getting autonomous mobile robots to negotiate a real world envi-
ronment. The Mobile Robot? group focused on a different class of
robots in a different environment and took an approach funda-
mentally different from the one my group followed.

Insects fascinated the Mobile Robot folks. They noted that these
creatures are a marvel in a minuscule package. In a complex and

3The Mobile Robot group was established and led by Prof. Rodney Brooks.

xit



Robot Programming: A Practical Guide to Behavior-Based Robotics

xiv

dangerous world, insects manage to find food, shelter, and
mates. Insects escape from predators. Insects navigate their
world and don’t get lost. And sometimes insects even seem to
cooperate in building large structures and in performing other
impressive feats. Yet insects have the tiniest of brains. For many
insects, sight is accomplished using primitive vision systems-
systems that boast fewer pixels than a cheap video camera. What
were dumb bugs doing that put our best robots to shame?

The (partial) answer that the Mobile Robot group and others
developed is behavior-based robotics. Behavior-based robotics is
having an impact not just in academia but in the larger world as
well. Sojourner, the robot that successfully explored a little part
of Mars in 1997, used behavior-based programming to achieve
its otherworldly feat. But a little floor cleaning robot called
Roomba® provides us with a more, shall we say, down-to-earth
example of behavior-based robotics. See Figure P.2.

Many extol Roomba® Robotic FloorVac as the world’s first prac-
tical consumer robot. Indeed Roomba® has established a growing

Figure P.2

Roomba® is a widely available floor cleaning robot manufactured by iRobot,
Corporation of Burlington, MA. Roomba uses a behavior-based programming
scheme. (Photo courtesy of iRobot Corporation, Burlington, MA)

“Many people at iRobot Corporation of Burlington, Massachusetts (www.irobot
.com) made crucial contributions to the development of the Roomba® Robotic
FloorVac development. The original team included Paul Sandin, Phil Mass,
Eliot Mack, Chris Casey, Winston Tao, Jeff Ostezewski, Sara Farragher, and Joe
Jones.



Preface

presence in a habitat previously far more forbidding to robots
than even the dusty plains of Mars—the display shelves at mass-
market retailers. Like Sojourner, Roomba® abides by the princi-
ples of behavior-based robotics. Those principles endow both
robots with significant capabilities: the ability to make do with a
small, low-end processor, to respond quickly to sensory inputs;
to perform robustly; and to degrade gracefully in the presence of
inaccurate data and partial sensory failure.

Because of its modest computational requirements and ease of
implementation, behavior-based robotics is very well suited to
the needs and abilities of hobbyists, students, and robot enthu-
siasts alike. By learning the principles of behavior-based robot-
ics you will be able to create robots that are affordable, respon-
sive, robust, fun, and maybe even useful.

Joe Jones

Xv



Acknowledgments

Many people helped to bring this book into being. Judy Bass of
McGraw-Hill provided the initial impetus by proposing that I
write a new book on robotics. The material of Chapter 8 is
derived from a project that Ben Wirz and I worked on for sever-
al years. Others made important contributions by reviewing the
manuscript and offering crucial suggestions. They include:
Adam Craft, Matt Cross, Branden Gunn, Danniel Ozick, Paul
Sandin, Steve Shamlian, Jennifer Smith, Sue Stewart, Chuck
Rosenberg, Clara Vu, Greg White, Bill Wong, and Holly Yanco.

Gratitude is also due to the growing numbers of robotics enthu-
siasts around the world—hobbyists, students, educators, and
researchers alike. These are the individuals who make robots
(and books about robots) possible; they comprise the fount from
which future progress in robotics will flow.

xvil



Introduction

There are many ways to program a mobile robot. The least com-
plex robots have programs written in solder! where sensors are
connected more or less directly to motors. At the other extreme
are robots programmed in high-level languages—languages like
Lisp and Java that are often used to support artificial intelli-
gence. But regardless of how the programming is accomplished,
all robot programs exhibit some sort of structure or architecture,

Programs composed by beginning roboticists often have a struc-
ture that might be described as ad hoc or perhaps organic—the
programs just grow. Without any overarching principles or
methodology, the programmer thinks of a feature and writes the
code that implements that feature. A second feature springs from
the fertile mind of the programmer and is combined with the
first, a third feature comes to be, and so on. As development pro-
ceeds, the organic analogy becomes more and more apropos. A
bit of code that implements one aspect of the program inter-
twines with code that implements another, magic numbers take
root, and special cases flourish and spread.

'For an approach to robotics rather different from the microprocessor-based
systems in this book you may want to investigate the innovative work of Mark
Tilden. Start at the Web site: http://www.nis.lanl.gov/projects/robot/.

xix



Robot Programming: A Practical Guide to Behavior-Based Robotics

The organic approach does work. With enough time, patience,
and code space, the programmer can coerce an organically struc-
tured robot program into producing desired results. But without
the guidance of robot-specific principles, such programs become
more and more convoluted. It always seems to take longer to
implement the next feature than it took to implement the last;
programmers often refrain from uprooting obsolete features
because bugs tend to crop up when “unused,” but highly cross-
coupled sections of code are deleted. Even when programmers
follow modern tenets of modularity and other good programming
practices, robot programs can become cumbersome and fragile.

Robot/Computer Differences

Programming trouble develops because beginning roboticists
often miss the importance of a basic fact: robots and computers
are different. The goals of a robot program and a computer pro-
gram are different; the constraints imposed on computers and
robots are different—and these differences are crucial. A roboti-
cist must understand and respect the distinctions if he or she is
to develop effective robot programs.

Serial versus Parallel

The intuition that programmers develop learning to program
computers often does not carry over to programming robots. One
aspect of programmer intuition that sometimes fails concerns
the issue of serial versus parallel execution. Serial execution is
satisfactory for most computer programs, but robot programs
demand a parallel approach.

A typical computer program is designed to compute an answer
and return a result. At their core, even highly interactive and
intensely graphical computer programs like video games follow
this basic approach. Computation proceeds in a sequence of
steps where, typically, the output of one step becomes the input
of the next step. The total time required to reach an answer is the
sum of the times taken for each step. Therefore, a faster comput-
er is always a better computer—the user of a faster computer gets
the answer more quickly than the user of a slower computer.



Introduction

Alternately, a faster computer can give a more precise answer or
can give more answers in the same time taken by a slow com-
puter. For a video game, computer speed translates directly into
better resolution and more realistic simulations.

But computing an answer is not the purpose of an autonomous
mobile robot. Rather, a robot seeks to achieve a goal or maintain
a state while avoiding hazards and traps—very much as a living
organism does. The robot must attend simultaneously to all of its
concerns; e.g., don’t collide with anything, don’t fall down the
steps, don’t run out of power far from the charger. Catastrophe
might result if, for example, the robot were to neglect watching
out for the edge of the stairs while concentrating exclusively on
avoiding a collision with the baseboard. A robot crash can be a
rather more serious matter than a computer crash.

Plans versus Opportunities

A typical computer program executes a plan—one thing hap-
pens after another until a result is reached. But an autonomous
robot needs to be opportunistic—sometimes the robot’s goal is
already achieved; all the robot has to do is notice. For example,
suppose we want our robot to find its way to a charger when the
batteries are low. A plan-based program deciding to recharge the
batteries might first have the robot search for a central beacon in
the room, go to the beacon, orient itself in a particular direction
(toward the charger), then proceed until the robot encounters the
local beacon that indicates the charger.

This sounds like a reasonable plan—unless the robot happens to
be positioned only a foot from the charger when the robot
decides that the batteries need recharging. In that case, the plan-
following robot first moves away from the charger to find the
central beacon, only to turn back immediately toward the charg-
er. A more sensible approach would have the robot notice that it
was next to the charger to begin with, and then act accordingly,
rather than follow a plan blindly, ignoring real-world opportu-
nities. Constant input from sensors and a programming para-
digm able to make use of the rush of data are needed to enable a
robot to take advantage of its opportunities.

xx!



Robot Programming: A Practical Guide to Behavior-Based Robotics

Graceful Degradation

Given accurate data and a logically correct program, a computer
will return a correct result. Given inaccurate data, the comput-
er’s output is unreliable. This observation gives rise to the well-
known GIGO adage, “Garbage in, garbage out.” The computer
depends on a human operator to input accurate data and has lit-
tle recourse if the data are wrong. Thus incorrect computer
responses are ascribed to “human error.”

An autonomous robot collects its own data through its sensors.
And sensors, as we shall see, often mislead. The less you pay for
a sensor, the less inclined it is toward veracity. But even very
expensive sensors provide unreliable data in common situa-
tions. Because of the unreliability of its inputs, a robot program
must be engineered in such a way that the robot works as well
as possible under the circumstances. That is, robot performance
should degrade gracefully in the presence of inaccurate or miss-
ing data. A robot program must not collapse in a heap (as a com-
puter program might) at the first sign of erroneous input.

Behavior-Based Advantages

Behavior-based approaches to robot programming excel at parallel
execution, opportunistic goal realization, and graceful degrada-
tion. Programming a robot according to behavior-based principles
makes the program inherently parallel, enabling the robot to attend
simultaneously to all the hazards it may face as well as the
serendipitous opportunities it may encounter. Further, behavior-
based robots can easily accommodate methods that allow perform-
ance to degrade gracefully in the presence of sensor error or failure.

What’s All the Fuss?

Experienced programmers may be wondering: Is there anything
new here? Isn’t an autonomous mobile robot really just an exam-
ple of an embedded system plus a real-time operating system?
Might “behavior-based programming” be nothing more than a
fancy name applied to commonplace practices?



Introduction

Mobile robots do indeed qualify as embedded systems. And
whether the robot’s software runs under a commercially sup-
plied real-time kernel or is implemented in raw code, every
robot must have some semblance of a real-time operating system.
Further, the good practices a roboticist follows in constructing a
behavior-based program are not inconsistent with the good prac-
tices an embedded system programmer might follow writing
code that controls, say, a DVD player or a cell phone.

However, by themselves, common practices for writing embedded
system code are not sufficient for constructing effective robot pro-
grams. Autonomous robots, as will become increasingly clear,
regularly confront challenges rarely faced by other embedded sys-
tems. Dealing with these challenges calls for the additional set of
organizing principles that behavior-based programming supplies.

Focus

The bebavior-based robot programming paradigm is an eminently
practical one and likewise, throughout this text, my treatment of
behavior-based robotics will focus more on practical issues than
on academic rigor.2 My intention is to provide you with important
fundamentals that will help you program robots effectively. I hope
that you will take away from your study of behavior-based robot-
ics an appreciation of the power and scope of this robot program-
ming method and that you will feel confident implementing a
behavior-based approach in your future robotic projects.

In this text, I will explain robot programming theory, offer exam-
ples of successful robot programs, and relate insights that I have
found useful. But ultimately you cannot learn robot program-
ming from a book. To learn robot programming, you must pro-
gram robots. Unfortunately, because of cost and other complica-
tions, not everyone has immediate access to a programmable

“For an excellent example of a more rigorous approach see Behavior-Based
Robotics by Ronald Arkin, MIT Press, 1998. See also course notes prepared by
long-time behavior-based robotics researchers lan Horswill at http://
www.cs.northwestern.edu/academics/courses/special_topics/395-robotics/.

xxdil



Robot Programming: A Practical Guide to Behavior-Based Robotics

xxiv

mobile robot. To address this difficulty, my colleague, Daniel
Roth, has developed a robotic simulator, BSim; we have inte-
grated BSim with the text. To access BSim please visit the Web
site: www.behaviorbasedprogramming.com.

We recommend that you make a practice of running BSim fre-
quently as you work toward understanding the concepts presented
here. As a pedagogical tool, robot simulators can be quite helpful.
BSim lets you isolate- a.ipects of robot behavior and slow down
processes so that ygacan easily observe what is going on.

'However, as a prédictor of how a physical robot will interact with

physical objects, simulators are notoriously unreliable. Do not
assume that what works in simulation will work in the real world.
To fully appreciate how a robot behaves in the physical world there
is no substitute for programming an actual, physical robot.>®

Prerequisites

What do you need to know before you begin? Because robots
have such a broad appeal and attract a diverse set of enthusiasts,
it is hard to choose a firm set of prerequisite knowledge. Each
reader will bring a different set of interests, experience, and will-
ingness to acquire missing understanding. However, in general,

3For a compilation of inexpensive robots see Personal Robotics: Real Robots to
Construct, Program, and Explore the World by Richard Raucci; AK Peters, Ltd.,
1999. More recent offerings may be found by searching the Web for “Robot
Kits.” Also, try http://www.robotstore.com.

“The possibilities for experimenting with behavior-based robotics have
expanded in recent years. LEGO offers a product called Mindstorms
(http://www.legomindstorms.com) powered by the RCX, a user-programmable
controller. The RCX, though it possesses only a limited number of inputs and
outputs, facilitates the construction of many interesting robots. Enthusiasts
have greatly extended the abilities of the RCX by creating new software sys-
tems (some of them free) compatible with the controlter. One such system is
called LeJOS. This system allows you to program the RCX in Java. LeJOS even
provides libraries that promote a behavior-based approach! Look for informa-
tion on LeJOS at: http://lejos.sourceforge.net/.

5A respected organization that promotes learning about robots and behavior-
based programming is the KISS Institute for Practical Robotics; see
http://www.kipr.org/.

5For the authoritative text on building robots using the LEGO construction sys-
tem, see Robotic Explorations, Fred Martin, Prentice-Hall, Inc., 2001.



Introduction

a reader will have an easier time if he or she has a working
knowledge of algebra and trigonometry and has some experience
with vectors. You will miss little if you have yet to master linear
algebra and calculus. It will be helpful to have basic familiarity
with computer programming before reading this book, but no
great depth of experience is assumed.

Organization

In Chapter 1, we use BSim to observe the behavior of a working
system, a simulated robot. The simulated robot exhibits interest-
ing and complex interactions with its environment. To under-
stand these interactions we take a step back and ask: what exact-
ly is a robot and what are its essential components?

In Chapter 2, we review the feedback control system, a tradi-
tional method of connecting sensing to actuation. Returning to
BSim, we observe the functioning of elementary control systems.
But from the very beginning we will learn the painful lessons of
how good control systems can go bad.

In Chapter 3, we begin to build primitive behaviors, learning
about triggers and about ballistic versus servo behaviors.

Chapter 4 deals with arbiters, the software construct that all
behavior-based systems must have to manage conflicts between
behaviors.

Putting together all that we have learned, in Chapter 5, we can
write complete programs. We commence filling a bag of useful
robot programming tricks.

With the basic science now mastered, we proceed to the art of
robot programming in Chapter 6. Here we address how a prob-
lem statement can be converted into a robot program. Principles
and heuristics to guide this perilous but necessary step are
suggested.

In Chapter 7, we take a software-centered look at some common
sensors, how they function, and the ways that sensor output can
be misleading.

XXv



