
Mathematics with Applications SIXTH EDITION

LIAL HUNGERFORD MILLER

IN THE MANAGEMENT, NATURAL, AND SOCIAL SCIENCES

Margaret L. Lial

American River College

Thomas W. Hungerford

Cleveland State University

Charles D Miller

Sponsoring Editor: George Duda
Development Editor: Sandi Goldstein
Project Editor: Carol Zombo
Art Administrator: Jess Schaal
Text and Cover Design: Lucy Lesiak/Lesiak-Crampton Design
Cover Photo:© Richard Bryant/Esto/Arcaid
Photo Researcher: Sandy Schneider
Production Administrator: Randee Wire
Compositor: Interactive Composition Corporation
Printer and Binder: R.R. Donnelley & Sons
Cover Printer: The Lehigh Press, Inc.

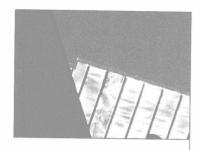
Mathematics with Applications in the Management, Natural, and Social Sciences, Sixth Edition, Copyright © 1995 by HarperCollins College Publishers.

All rights reserved. Printed in the United States of America, No part of this book may be used or reproduced in any manner whatsoever without written permission, except in the case of brief quotations embodied in critical articles and reviews. For information address HarperCollins College Publishers, 10 East 53rd Street, New York, NY 10022.

Library of Congress Cataloging-in-Publication Data

Lial, Margaret L.

Mathematics with applications in the management, natural, and social sciences / Margaret L. Lial, Thomas W. Hungerford, Charles D. Miller—6th ed.


p. cm.
Includes index.

ISBN 0-673-46943-3

1. Mathematics. I. Hungerford, Thomas W. II. Miller, Charles David, III. Title.

QA37.2.L5 1995 510—dc20

94-13576 CIP

Preface

Mathematics with Applications, Sixth Edition, is designed to provide mathematical topics needed by students in the fields of business management, social science, and natural science. The book is written at a level that makes it accessible to such students. Topics are presented by proceeding from what is already known to new material, from concrete examples to general rules and formulas. Almost every section includes pertinent applications. The only prerequisite we assume is a course in algebra. Chapter 1 provides a thorough review of algebra, and a pretest is included in the *Instructor's Guide* that accompanies the text to help determine how much review is needed for a particular student or class.

We have retained popular features from earlier editions: extensive examples; exercises keyed to the text; realistic and timely applications; end-of-chapter case studies; margin problems; highlighted rules, definitions, and summaries; and pedagogical use of color.

In this new edition, we have introduced boxes with references to graphers (graphing calculators or computers), and we discuss how they apply to the topic at hand. These are designed so an instructor may or may not choose to integrate them into the course. Where appropriate, exercise sets include clearly labeled exercises especially for graphers. Each such exercise is identified with The opening page of each applicable chapter includes a list of available technology resources that are appropriate for the chapter.

More than one-third of the exercises are new to this edition, including drill and practice problems as well as a variety of interesting applications. Many of the applications are based on current real data and come from a variety of areas of interest to students. Several new case studies that explore contemporary issues and themes are included as well. This edition includes new conceptual and

Use of Technology

New Exercises

NEW CONTENT HIGHLIGHTS

NEW FEATURES

writing exercises that require students to demonstrate an understanding of the concepts that goes beyond computational skill. Several exercise sets also include connection exercises, identified by , that integrate concepts and skills developed earlier with those just introduced or that connect the concepts presented within a chapter. Four answer checkers helped ensure that the highest level of accuracy was maintained.

- The material in Chapter 2 was rearranged to flow from topics that are familiar to those that are not. The chapter now begins with linear equations and slope, then discusses functions and their applications. The introduction to functions has been enhanced.
- The general discussion of graphing polynomials by hand has been expanded to help students better understand the shape of these graphs.
- The section on logarithmic functions has been rewritten to emphasize base 10 and base *e* logarithms.
- In Chapter 6, we rewrote the introduction to systems of equations to reflect current terminology and to include examples of "nonsquare" systems.
- The presentation of linear programming in Section 7.4 has been revised so the mechanics are discussed first, then the reasons given. The applications are presented separately in the next section. We now introduce duality and minimization problems in Section 7.6, before nonstandard problems are covered in Section 7.7.
- The topics within some of the sections in Chapter 8 were rearranged to improve the flow and keep related topics together.
- Limits at infinity and horizontal asymptotes are now discussed in Chapter 12 with curve sketching.

Several new features, designed to assist students in the learning process, have been integrated into this edition. These features are illustrated on the following two pages. In addition, changes in format enhance the book's pedagogical features and increase its accessibility.

- For Graphers These notes permit the integration of graphing calculators and computers into the courses using this text.
- Conceptual and Writing Exercises To complement the drill and application exercises, several exercises that require a deeper understanding of the concepts introduced in a section are included in almost every exercise set. Nearly half of these require the student to respond by writing a few sentences.
- Connection Exercises Exercises that require students to use skills or techniques covered in previous sections or chapters are included in some section exercises and review exercise sets. These exercises are identified with
- Graphing Calculator/Computer Exercises Exercises identified with are included in appropriate exercise sets for those using graphers. These exercises demonstrate how graphers can be used to clarify and illustrate concepts.

32 CHAPTER 1 FUNDAMENTALS OF ALGEBRA 5 Solve each inequality. Graph FOR GRAPHERS One method for solving absolute value equations with a grapher is to (a) |y-2| > 5graph each side of the equation simultaneously. Some graphers have a key (b) $|3k - 1| \ge 2$ labeled ABS that gives the absolute value of a quantity. This function is accessed through a special menu on other graphers. For instance, in Example 2, graph $y_1 = |x - 4|$ and $y_2 = 2$. Remember to key in ABS(x - 4), not (c) $|2 + 5r| - 4 \ge 1$ ABS x - 4. Then locate the x-values of the points where these two graphs intersect (are equal). Figure 1.20 shows the x-values of the intersection points intersect (are equal). Figure 1.20 since the evaluation the branch are 2 and 6. To solve the inequality |x-4| < 2, from the graph in Figure 1.20 decide on which intervals the graph of $y_1 = |x-4|$ is below (and therefore less than) the graph of $y_2 = 2$. As the figure shows, this happens for 2 < x < 6. You could also solve this inequality by graphing y = |x-4| - 2 and locating the intersection points with the x-axis. (a) All numbers in (-∞, -3) (b) All numbers in $\left(-\infty, -\frac{1}{3}\right)$ or [1, ∞) (c) All numbers in $\left(-\infty, -\frac{7}{5}\right]$ or $\left[\frac{3}{5}, \infty\right)$ intersection Intersection Y=2 7=2 $y_1 = |x - 4|, y_2 = 2$ $y_2 \le x \le 10, -2 \le y \le 6$ $-2 \le x \le 10$, $-2 \le x \le 6$ FIGURE 1.20 ► EXAMPLE 6 Solve |2 - 7m | - 1 > 4. First add 1 on both sides. |2 - 7m| > 5Now use property (4) from above to solve |2 - 7m| > 5 by solving the inequality 2 - 7m < -5 or 2 - 7m > 5. Solve each part separately. 9.1 PERMUTATIONS AND -7m < -7 or -7m > 3m > 1 or $m < -\frac{3}{2}$ Use combinations to solve each of 29. How many area codes would be possible if all restric-(See Examples 8-9 and 12-13.) The solution, all numbers in $\left(-\infty, -\frac{3}{7}\right)$ or $(1, \infty)$, is graphed in Figure 1.21. tions on the second digit were removed? tions on the second ugit were trimover. 30. A problem with the plan in Exercise 29 is that the second digit in the area code now tells the phone company equipment that a long-distance call is being made. To avoid changing all equipment, an alternative plan proposes a 4-digit area code and restricting the first and second digits as before. How many area codes would this second or the contract of 41. Management Five items are from the first 50 items on an as the defect rate. How many diffe can be chosen? 42. Social Science A group of 3 s from a group of 12 students to to FIGURE 1.21 nlan provide? biology. (a) In how many ways can this 31. Still another alternative solution is to increase the local (b) In how many ways can the g part be chosen? dialing sequence to 8 digits instead of 7. How many additional numbers would this plan create? (Assume the 43. Natural Science From a group of 16 smokers and same restrictions.) 20 nonsmokers, a researcher wants to randomly select 8 smokers and 8 nonsmokers for a study. In how many 32. Define permutation in your own words. Use permutations to solve each of the following problems. ways can the study group be selected? (See Examples 5-7.) 44. Five cards are drawn from an ordinary deck. In how many ways is it possible to draw 33. A baseball team has 20 players. How many 9-player batting orders are possible (a) all queens; (b) all face cards (face cards are the Jack, Queen, and 34. In a game of musical chairs, 12 children will sit in 11 chairs arranged in a row (one will be left out). In how many ways can the 11 children find seats? King): (c) no face card; (d) exactly 2 face cards; 35. From a carton of 12 cans of a soft drink, 2 are to be

selected for testing. In how many ways can this be done? 36. In an election with 3 candidate for one office and candidates for another office, how many different ballots may be printed? 37. From a pool of 7 secretaries, 3 are selected to be assigned

to 3 managers. In how many ways can they be selected?

38. A chapter of union Local 715 has 35 members. In how many different ways can the chapter select a president, a vice-president, a treasurer, and a secretary?

 The television schedule for a certain evening shows 8 choices from 8 to 9 P.M., 5 choices from 9 to 10 P.M., and 6 choices from 10 to 11 P.M. In how many different ways could a person schedule that evening of television viewing from 8 to 11 P.M.? (Assume each program that is selected is watched for an entire hour.)

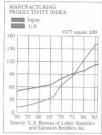
40. In a club with 15 members, how many ways can a slate of 3 officers consisting of president, vice-president, and secretary/treasurer be chosen?

(e) 1 heart, 2 diamonds, and 2 clubs.

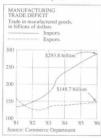
Exercises 45-64 are mixed problems that may require per ons, combinations, or the multiplication principle. (See Examples 10, 11, and 14.)

45. Use a tree diagram to find the m can be chosen from the set {L, M, N} if order is important and

(a) if repetition is allowed;


(b) if no repeats are allowed.(c) Find the number of combinations of 3 elements taken 2 at a time. Does this answer differ from (a)

46. Repeat Exercise 45 using the set {L, M, N, P}.


47. Explain the difference between a permutation and a

 Padlocks with digit dials are often referred to as "combination locks." According to the mathematical definition of combination, is this an accurate description

2.4 EXERCISES 129

34. Management The graph gives U.S. imports and exports in billions of dollars over a five-year period. Estimate the break-even point.

◆35. Management Canadian and Japanese investment in the United States in billions of dollars in 1980 and 1990 are shown in the chart.*

* Data reprinted with permission from *The World Almanac and Book of Facts*, 1992. Copyright © 1991. All rights reserved. The World Almanac is an imprint of Funk & Wagnalls Corporation.

	1980	1990
Canada	12.1	27.7
Japan	4.7	108.1

(a) Assuming the change in investment in each case is linear, write an equation in function form giving the investment in year x for each country. Let x be the number of years since 1980.

(b) Graph the functions from part (a) on the same coor-

(c) Find the intersection point where the graphs in part (b) cross and interpret your a

36. Social Science The median family income (in thousands of dollars) for the white population in the United States is given by f(x) = (4/3)x + 8, where x is the number of years since 1973. The median family income (in thousands of dollars) for the black population in the United States is given by f(x) = (2/3)x + 6. (a) Graph both functions on the same coordinate axes.

(b) Do the graphs intersect? If so, in what year was median family income the same for white and black populations?

(c) What can you infer from the two graphs in part (a)?

Management Suppose that you are the manager of a firm. You are considering the manufacture of a new product, so you ask the accounting department to produce cost estimates and the sales department to produce sales estimates. After you receive the data, you must decide whether to go ahead with production of the new product. Analyze the following data (find a break-even point then decide what you would do. (See Example 7.)

37. C(x) = 80x + 7000; R(x) = 95x; no more than 400 units can be sold.

38. C(x) = 65x + 9500; R(x) = 80x; no more than 600 units can be sold.

39. C(x) = 140x + 3000; R(x) = 125x (Hint: what does a negative value of x mean?)

40. C(x) = 1750x + 95,000; R(x) = 1750x41. Management The revenue in millions of dollars from Namagement in the revenue in limitors of contast from sales of x units at a home supplies outlet is given by R(x) = .3x. The profit in millions of dollars from sales of x units is given by P(x) = .2x - .5.

(a) Find the cost function.

(c) What is the marginal cost?

MATHEMATICS OF FINANCE

eposits \$10,000 at the beginning of ears in an account paying 5% com-He then puts the total amount on account paying 6% compounded other 9 years. Find the final amount entire 21-year period.

ds \$10,000 in 8 years ompounded quarterly so that he will

quarterly deposit if the money is compounded quarterly.

How many years would it take until the value of this investment would be greater than the amount the firm would have if it had simply invested its original \$7 million at the same rate (instead of buying lottery tickets)? (Hint: Experiment with different values of n, the number of years.)

(b) How many years would it take in part (a) at an interest rate of 12%?

58. Diane Gray sells some land in Nevada. She will be paid a lump sum of \$60,000 in 7 yr. Until then, the buyer pays

8% simple interest quarterly.

(a) Find the amount of each quarterly interest payment.

(b) The buyer sets up a sinking fund so that enough money will be present to pay off the \$60,000. The buyer wants to make semiannual payments into the sinking fund; the account pays 6% compounded semiannually. Find the amount of each payment into the fund.

(c) Prepare a table showing the amount in the sinking fund after each deposit

59. Joe Seniw bought a rare stamp for his collection. He agreed to pay a lump sum of \$4000 after 5 yr. Until then, he pays 6% simple interest semiannually.

(a) Find the amount of each semiannual interest pay-

(b) Seniw sets up a sinking fund so that enough money will be present to pay off the \$4000. He wants to make annual payments into the fund. The account pays 8% compounded annually. Find the amount of each payment

(c) Prepare a table showing the amount in the sinking

How much money must she deposit at the end of each quarter in an account paying 12% compounded quarterly

so that she will have enough to pay for her car? 57. In a recent state lottery, the jackpot was \$27 million. An Australian investment firm tried to buy all possible combinations of numbers, which would have cost \$7 million (In fact, the firm ran out of time and was unable to buy all combinations.) Suppose the investment rm had accomplished its goal and held the only winning ticket in the lottery. Assume that the firm would receive the jack-pot in payments of \$1.35 million paid at the end of each year for 20 years

S. Harv's Meats knows that it must buy a new deboner machine in 4 years. The machine ests \$12,000. In order to accumulate enough money to say for the machine, Harv decides to deposit a sum of money at the end of each 6 months in an account paying 6% compounded semiannually. How much should glech payment be?

Karin Sandberg wants to buy an \$18,000 car in 6 years

(a) Suppose each jackpot payment received by the firm is invested at 8% interest compounded annually

5.4 PRESENT VALUE OF AN ANNUITY; **AMORTIZATION**

Suppose that at the end of each year, for the next 10 years, \$500 is deposited in a savings account paying 7% interest compounded annually. This is an example of an ordinary annuity. The present value of this annuity is the amount that would have to be deposited in one lump sum today (at the same compound interest rate) in order to produce exactly the same balance at the end of 10 years. We can find a formula for the present value of an annuity as follows.

COURSE FLEXIBILITY

The book can be used for a variety of courses, including the following:

Finite Mathematics and Calculus (one year or less) Use the entire book; cover topics from Chapters 1–4 as needed before proceeding to further topics.

Finite Mathematics (one semester or two quarters) Use as much of Chapters 1-4 as needed, and then go into the topics of Chapters 5-10 as time permits and local needs require.

Calculus (one semester or quarter) Use Chapters 1-4 as necessary and then use Chapters 11-14.

College Algebra with Applications (one semester or quarter) Use Chapters 1–8 with the topics of Chapters 7 and 8 being optional.

Chapter interdependence is as follows.

Ch	apter	Prerequisite
1	Fundamentals of Algebra	None
2	Functions and Graphs	None
3	Polynomial and Rational Functions	Chapter 2
4	Exponential and Logarithmic Functions	Chapter 2
5	Mathematics of Finance	Chapter 4
6	Systems of Linear Equations and Matrices	None
7	Linear Programming	Chapters 2, 6
8	Sets and Probability	None
9	Further Topics in Probability	Chapter 8
10	Introduction to Statistics	Chapter 8
11	Differential Calculus	Chapters 2–4
12	Applications of the Derivative	Chapter 11
13	Integral Calculus	Chapters 11-12
14	Multivariate Calculus	Chapters 11-13

SUPPLEMENTS FOR THE INSTRUCTOR

Our extensive supplemental package includes an instructor's guide, answer manual, and software. A number of other related materials are available, and are also listed below.

Instructor's Guide with Tests and Solutions The Instructor's Guide with Tests and Solutions includes a lengthy set of test questions for each chapter, organized by section, plus answers to all of the test questions. It also includes one pretest, in a short-answer format. This manual also contains solutions to the even-numbered section exercises, which, with the Student's Solution Manual together provide detailed, worked-out solutions to each exercise in the book. Finally, this guide includes a list of all conceptual, writing, challenging, connection, and grapher exercises.

exercise in the book. This manual also includes a list of all conceptual, writing, challenging, connection, and grapher exercises.

Printed Test Forms This manual includes three different but equivalent

Instructor's Answer Manual This manual includes answers to every

Printed Test Forms This manual includes three different but equivalent tests for each chapter generated using the HarperCollins Test Generator/Editor for Mathematics (described below).

HarperCollins Test Generator/Editor for Mathematics with QuizMaster Available in IBM and Macintosh versions, the test generator is fully networkable. The test generator enables instructors to select questions by objective, section, or chapter, or to use a ready-made test for each chapter. The editor enables instructors to edit any preexisting data or to create their own questions. The software is algorithm driven, allowing the instructor to regenerate constants while maintaining problem type, providing a nearly unlimited number of available test or quiz items in multiple-choice and/or open-response formats for one or more test forms. The system features printed graphics and accurate mathematics symbols. QuizMaster enables instructors to create tests and quizzes using the Test Generator/Editor and save them to disk so students can take the test or quiz on a stand-alone computer or network. QuizMaster then grades the test or quiz and allows the instructor to create reports on individual students or entire classes.

Overhead Transparencies A set of two-color transparencies is available to help enhance lectures.

Student's Solution Manual This book provides solutions to the odd-numbered section exercises, odd-numbered chapter review exercises, and all case study exercises. (ISBN 0-673-46944-1)

Topics in Finite Mathematics: An Introduction to the Electronic Spreadsheet, by Sam Spero, Cuyahoga Community College (ISBN 0-065-00300-4), is a user-friendly guide designed to introduce students to the various ways one can approach problem solving with spreadsheets. Knowledge of spreadsheets is not assumed, and the approach is adaptable to all spreadsheet programs.

The Electronic Spreadsheet and Elementary Calculus, by Sam Spero, Cuyahoga Community College (ISBN 0-673-46595-0), is a companion to *Topics in Finite Mathematics: An Introduction to the Electronic Spreadsheet*. This guide helps students get started with graphing and problem solving by means of the spreadsheet. As with the companion volume, knowledge of spreadsheets is not assumed, and the approach is adaptable to all spreadsheet programs.

Interactive Mathematics Tutorial Software with Management System This innovative package is available in IBM (both DOS and Windows formats) and Macintosh versions and is fully networkable. As with the Test Generator/Editor, this software is algorithm driven, which automatically regenerates constants so a student will not see the numbers repeat in a problem type if he or she revisits any particular section. The tutorial is objective-based,

FOR THE STUDENT

self-paced, and provides unlimited opportunities to review lessons and to practice problem solving. If students give a wrong answer, they can request to see the problem worked out and get a textbook page reference. The program is menudriven for ease of use, and on-screen help can be obtained at any time with a single keystroke. Students' scores are automatically recorded and can be printed for a permanent record. The optional **Management System** lets instructors record student scores on disk and print diagnostic reports for individual students or classes. This software may also be purchased by students for home use. (Macintosh version ISBN 0-673-55815-0; IBM version 0-673-55814-2)

GraphExplorer provides students and instructors with a comprehensive graphing utility, and is available in IBM and Macintosh formats.

StatExplorer (IBM and Macintosh), helps students enhance their understanding of statistics by exploring a wide range of statistical representations including graphs, centers and spreads, and transformations.

Explorations in Finite Mathematics (IBM format only), by David Schneider, University of Maryland (ISBN 0-673-46932-8), contains on one disk a wider selection of routines than in any similar software supplement. Included are utilities for Gaussian elimination, matrix operations, graphical and simplex methods for linear programming problems, probability, binomial distribution, simple and compound interest, loan and annuity analysis, finance table, difference equations, and more. Refined monitor display for fractions, color capabilities, choice of exact or approximate calculations with matrices, and refined printing capabilities further set this apart from other programs.

Visual Calculus (IBM format only), by David Schneider, University of Maryland, (ISBN 0-673-99015-X), is intended to enhance the visualization of the fundamental concepts of calculus. Although it has most of the computing power of standard calculus packages, it focuses on the teaching of concepts rather than on the calculations. The program can be run with a CGA, Hercules, MCGA, EGA, or VGA monitor, and can be used with or without a mouse.

Matrix with Linear Programming (IBM format only), by MaylinDittmore (ISBN 0-06-501266-6), is designed to assist the student in any course of study that involves the use of matrices. MATRIX was created not only to help the student with tedious calculations associated with matrices, but also to help them gain an understanding of and appreciation for real-world problems that can be analyzed and solved using matrices.

Developmental Mathematics: Graphing Calculator Investigations, Dennis C. Ebersole, Northampton County Area Community College (ISBN 0-06-501439-1)

College Algebra and Trigonometry: Graphing Calculator Investigations, Dennis C. Ebersole, Northampton County Area Community College (ISBN 0-06-500888-X)

These are intended to supplement a standard text by providing investigations that help students visualize key concepts, look for patterns, generalize and apply concepts.

RELATED BOOKS

ACKNOWLEDGMENTS

Mathematics with Applications, Sixth Edition, is one text within the complete line of Lial/Miller mathematics for management offerings: Finite Mathematics, Fifth Edition, Calculus with Applications, Fifth Edition, Calculus with Applications, Brief Version, Fifth Edition, and Finite Mathematics and Calculus with Applications, Fourth Edition.

We wish to thank the following instructors who reviewed the manuscript and made many helpful suggestions for improvement.

Michael J. Bradley, Merrimack College James F. Brown, Midland College James E. Carpenter, Iona College Faith Y. Chao, Golden Gate University Jan S. Collins, Embry-Riddle University Gordon Feathers, Iona College Richard E. Goodrick, University of Washington Kay Gura, Ramapo College of New Jersey Joseph A. Guthrie, University of Texas at El Paso Arthur M. Hobbs, Texas A & M University Miles Hubbard, St. Cloud State University June Jones, Macon College Akihiro Kanamori, Boston University Robert A. Moreland, Texas Tech University Elizabeth Polenzani, Pasadena City College Norman Rittgers, Pasadena City College Gordon Shilling, University of Texas at Arlington Joan M. Spetich, Baldwin-Wallace College William D. Stark, Navarro College Giovanni Viglino, Ramapo College of New Jersey Bhushan Wadhwa, Cleveland State University

We also wish to thank those who did an excellent job checking all the answers for us: Michael Bradley, Merrimack College, James Carpenter, Iona College, Dennis Kern, Sul Ross State University, and Gordon Shilling, University of Texas at Arlington.

Special thanks go to Jim Eckerman, American River College, who wrote the *Appendix on Graphing Calculators*; to Paul Eldersveld, College of DuPage, who did an outstanding job coordinating all the print ancillaries; to Paul Van Erden, American River College, who created an accurate and complete index for us; and to James Walker, American River College, who carefully compiled the index of applications. We also thank the fine, professional staff at HarperCollins for their assistance and contributions to this book: George Duda, Sandi Goldstein, Carol Zombo, Linda Youngman, Kevin Connors, and Ed Moura.

Margaret L. Lial Thomas W. Hungerford

Index of Applications

Management

Adams Old Fashioned Peanut Butter, 578 Advertising, 380, 383, 462, 478, 514, 712, 748 Airfones, 140 Airline dependability, 472, 547 Amortization, 249, 250, 252, 253, 255, 256, 260 Annuity due, 243, 245, 246, 254, 259 Apartment rental, 718, 722 Appliance reliability, 478 Approximate annual interest rate, 16, 22 Assembly lines, 519, 521, 569 Asset value, 193 Automobiles, 471, 472, 484, 579, 673 Average cost, 606, 705, 748

Backward-bending supply curves, 140 Bankruptcy, 552, 819 Beer production, 407 Break-even point, 28, 29, 75, 81, 85, 100, 125, 128, 129, 144, 179 Business computers, 861

Cable subscribers, 176 Calculators, 454 Campbell's soup, 577 Car rental, 29, 139, 682 Cargo handling errors, 478 Cat breeding, 382 Catalog sales, 616 Cellular phones, 765 Cereals, 585 China's economy, 118 Cobb-Douglas production function, 837, 839 Commodity market, 179 Compound amount, 230, 236, 237, 254, 255, 259, 662, Compound interest, 230, 236, 237 Computer failure, 471 Concours d'elegance, 176

Construction costs, 302, 412,

Consumer buying habits, 86
Consumer price index, 110
Consumers' surplus, 804, 808
Continuous compounding
interest, 232
Cost, 116, 122, 123, 124, 127,
128, 143, 144, 147, 160,
179, 276, 682, 686, 688,
703, 712, 747, 766, 767,
775, 800, 809, 830, 858
Cost-benefit function, 180
Credit applicants, 427
Credit cards, 545, 633
Crop profit, 861
Customer satisfaction, 513

Death benefit, 261
Defective items, 501, 505, 506, 510, 513, 541, 547, 582, 584, 586
Delivery charges, 134, 139, 287
Delivery vans, 273
Demand, 617, 632, 665, 705, 767, 773
Depreciation, 798
Dining out, 99
Discounted proceeds, 226, 227
Doubling function, 206

Economic lot size, 64, 718, 724, 752
Effective rate of interest, 226, 228, 232, 233, 236
Elasticity of demand, 140, 820
Electrical components, 482
Electricity consumption, 237
Employee absence, 558
Employee training, 524
Energy consumption, 118
Expenditure, 797, 807

Foreign car ownership, 143 Foreign investment, 129, 776 Fuel consumption, 277 Future value, 223, 227, 228

Gasoline additives, 394, 406 Gasoline usage, 655, 715, 721 General Electric light bulbs, 578 Gross national product, 819 Health care costs, 618 Home financing, 261 Home heating, 523 Housing starts, 747

IBM Europe, 617

823, 85

Ice cream production, 415
Incentive compensation plan, 100
Income, 797
Income tax, 29
Individual retirement accounts, 839
Input-output analysis, 317, 324, 325, 332
Insta-tune franchise fee, 99
Insurance, 361, 512, 522, 532, 536
Interest revenue, 238
Inventory, 276, 288, 291, 293, 297, 407
Investment, 20, 276, 276, 324, 328, 331, 332, 410, 437, 540, 542, 545, 589, 819,

Labor, 857
Labor-management relations, 546
Land usage, 378
Land value, 673
Lawn seed mixtures, 407
Learning curve, 192
Leontief's Model of the American Economy, 335
Levi Strauss accounts, 537
Loans, 276, 407
Long distance calling, 29

Magazine reading, 430
Mailing cost, 678
Maintenance, 799, 800, 807
Manufacturing wage, 786
Marginal average profit,
655
Marginal average cost, 653,
655
Marginal cost, 613, 624, 627,
633, 640, 646, 665
Marginal productivity, 817,

818, 819, 845, 846, 849

Magazine contest entries,

Marginal profit, 633, 643, 646, 647, 666, 672, 688

Marginal revenue product, 663, 665, 672

Marginal revenue, 632, 642, 647, 666, 672, 688

McDonald's contest, 537

Merit pay, 413

Mineral depletion, 826

Money devaluation, 187

Mortgage defaults, 478

National debt, 196
Natural resource consumption, 798
Negative interest, 237

Oil distribution, 347 Oil price and optimal speed, 753 Oil shipments, 330 Ordinary annuity, 241, 242, 244, 246, 259

Package requirements, 723, 751, 752, 858
Peach harvest, 722
Plant food, 394, 406
Point of diminishing returns, 733
Postage costs, 839
Postal requirements, 716, 858
Present value, 224, 228, 234, 235, 236, 237, 259
Present value of an annuity, 248, 252, 254, 255, 256, 259
Price elasticity of demand, 689

Price performance ratio, 206 Price to earnings ratio, 425 Proceeds, 228, 255, 259 Producers' surplus, 805, 808 Product improvement, 541 Product-exchange function, 174, 177 Production, 276, 277, 287

Production, 276, 277, 287, 288, 324, 328, 329, 330, 332, 345, 347, 361, 362, 363, 382, 383, 394, 409, 410, 470, 807, 849 Production costs, 296, 305, Profit, 38, 39, 157, 161, 163, 179, 356, 361, 540, 606, 617, 702, 704, 705, 712, 713, 728, 747, 751, 767, 775, 798, 857, 858
Profit-volume, 1130
Purchases, 450

Quaker Oats cereal, 568

Rental, 119, 160 Repair costs, 809 Repair reliability, 483 Restaurant seating, 722 Revenue, 161, 162, 617, 662, 673, 713, 717, 722, 723, 765, 812, 858 Routing, 321, 325, 333 Rule of 78, 22

Sales, 110, 116, 121, 126, 127, 130, 176, 188, 191, 194, 206, 277, 296, 305, 607, 616, 646, 671, 688, 773, 819, 820, 823, 824, 849 Sales decline, 64 Sales tax, 682 Savings, 800, 801, 802, 807, 808, 824 Scrap value, 188 Seating capacity, 276 Selling time, 161 Shopping center rentals, 295 Simple discount notes, 225 Simple interest, 223, 225, 227, 254, 255, 259 Sinking fund, 243, 244, 245, 246, 255, 259 Soft drinks, 406, 437, 510, Solar collectors, 861 Steel production, 412 Stock reports, 329, 330, 458, 460 Storage capacity, 358 Straightline depreciation, 100 Supermarket scanners, 511, 512 Supply, 823 Supply and demand, 94, 99, 142, 143, 158, 162, 180,

Technologic advances, 820 Telephone surveys, 287 Textbook requirements, 723 Tipping price, 606 Tomato canning, 407 Trailer rental, 678 Training program cost, 755

Surplus, 805, 808, 824

Survey data errors, 593

Transaction time, 530 Transportation costs, 284, 361, 362, 401, 406

United States economy, 129, 478 University research funding, 444 Utility cable, 723

Wages, 566
Waiting time, 523
Warranty cost, 828
Wheat prices, 559
Wine production, 332, 410
Worker error, 473, 475
Worker productivity, 128, 216, 655, 748, 798, 809, 825
Worker profile, 454, 470, 478, 524

Yield to maturity, 262

Zoning rules, 362

Natural Science

Acid concentration, 332, 646 AIDS test, 479 Alcohol concentration in the bloodstream, 169, 747 Animal activity, 329 Animal feed, 272, 288, 359, 390, 393, 569, 586, 590 Animal growth, 296 Ant population, 673 Anti-smoking campaign, 542 Arctic tern, 634 Atmospheric pressure, 196

Bacteria population, 191, 194, 618, 633, 655, 666, 713, 819 Beaver population, 194 Bee population, 673 Biochemical excretion, 767 Bird population, 814 Birth control, 590 Blood acidity, 569 Blood antigens, 436 Blood cell velocity, 613 Blood cholesterol level, 122, 456 Blood flow, 850 Blood pressure medication, 471 Blood volume, 647 Buffalo population, 460

Calcium, 666
Cancer treatment, 545
Carbon dating, 211, 213
Carbon dioxide, 831
Cardiac output, 169

Cavities and restoration, 548 Chemical solution, 194 Chlorophyll production, 162 Climate change, 111 Color blindness, 456, 470, 471, 513, 586 Competing species, 825 Contagion, 334 Cost-benefit function, 173, 175, 176

Delivery weight, 34
Dietetics, 277, 295, 347, 393, 407
Drinking water, 29, 34
Drug concentration, 607, 655, 712, 713, 747, 748
Drug dosage, 176
Drug effectiveness, 293, 498, 513, 585
Drug reaction, 666, 809, 812,

Deer population, 169, 671, 809

Escherichia coli population, 188 Eucalyptus tree growth, 798, 809

Farms, 592 Fertilizer, 276 Fish food requirements, 382 Fish population, 189, 194, 665 Flu epidemic, 206, 747 Flu vaccine, 513, 586 Food web, 326 Fox population, 206 Fruit fly population, 189, 214, 590, 688

Genetics, 436, 456, 457, 512, 522 Goat population, 816 Guinea pig oxygen consumption, 214

Hepatitis blood test, 479 HMO enrollment, 590 Homing pigeons, 724

Infant mortality, 585 Infection rate, 824 Insect classification, 498 Insect mating, 673

Lice population, 194 Lizard activity, 705

Maximum permitted levels of pollutants, 213 Medical diagnosis, 485 Meristic variability, 457 Microbe population, 705, 812 Moisture, 215 Monkeyface prickleback, 218 Mosquito population, 161

Nerve impulses, 161 Nesting, 586 Newton's Law of Cooling, 196 Novas, 679 Nuclear plant discharge, 844

Octane rating, 23
Oil leak, 798
Oil pressure in a reservoir, 169
Oil slick, 665
Orange crop, 538
Organism complexity, 188
Oxygen consumption, 786
Ozone layer, 119

Panda home ranges, 559 Penicillin, 634 Pollution, 139, 665, 673, 798, 808 Population, 213 Predator food requirement, 362 Projectile height, 161

Radiation, 512
Radioactive debris, 214
Radioactive decay, 187, 191, 194, 210, 213, 216, 217, 673
Richter scale, 211, 213, 217
Rocket height, 179

Salmon oxygen consumption, 185 Salmon spawning, 705 Selenium contamination, 705 Sexual attraction, 647 Shellfish population, 633 Sickle cell anemia, 483 Smog-control, 807 Snow depth, 139 Sound intensity, 213 Storm seeding, 538

Teeth brushing, 513
Temperature, 21, 578, 616, 634, 681
Thyroid problems, 428
Time dating, 819
Toxemia test, 479
Tracer dye, 820
Tropical rain forests, 111
Tumor growth, 644
Twins birth, 512

Van Meegeren art forgeries, 220 Vitamins, 362, 407, 512, 578

Weight lifting, 214

Physical Science

Acceleration, 708, 711, 712, 825

Baseball distance, 110 BMW 733i, 787 BTUs, 787

Circuit gain, 176

Gravitational attraction, 850

Methanol conversion, 34

Newton's Law of Cooling, 825

O-ring failure, 177

Particle movement, 75, 81 Porsche 928, 786 Power extraction, 34 Projectile height, 75, 81

Radioactive decay, 820 Rocket altitude, 722

Temperature, 34, 110, 120, 126

Velocity, 611, 612, 615, 617, 619, 628, 647, 648

Social Science

Animal size, 64 Automobile accidents, 196

Big Eight Conference football, 507 Billboard "Hot 100" survey, Birth and death rates, 144, 306 Birthdays, 504, 506 Body type, 454 Border shopping, 775

Cable television, 427
Cashier speed, 666
Chebyshev's theorem, 566, 589
Child population, 126
Chinese New Year, 435
Code theory, 320, 325, 333
Coffee drinking, 590
College costs, 29, 128
College majors, 523
Computers, 470
Concert attendance, 332
Country-western music, 435

Cricket matches, 523
Drivers license, 471

Credit cards, 456

Educational attainment, 296 Election strategy, 542, 546 Entertainment components, 430 Evolving languages, 214

Farms, 110 Foreign students, 10 Forgetting curve, 193 Fund raising, 382

Grade point average, 363

Habit strength, 673 Health care costs, 127, 139, 145 Height, 217 Home ownership, 521, 522

Immigration, 56, 567 Imports, 767 Income, 809 Income tax, 139 Indianapolis 500, 75 Intelligence test, 29, 34 IO tests, 590

Just-noticeable difference, 127

Languages, 454, 506, 521, 585
Learning curve, 681
Learning skills, 188
Legislative committee, 498
Legislative turnover, 217
Legislative voting, 748
Life expectancy, 130
Life insurance, 456
Living standards, 647
Lottery, 498, 506, 536

Marriage, 469, 479, 560 Math prerequisites, 454 Mathematic examinations, 567 Median family income, 129 Memory, 196, 618, 655 Military personnel, 482 Multiple choice tests, 513

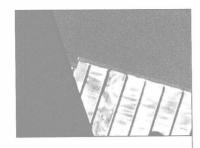
Native Americans, 436, 477 Never-married parents, 143

Oil production and consumption, 785

Park Planning, 752 Pollution penalties, 618 Population, 190, 194, 444, 469, 512, 513, 559, 590, 647, 673 President Clinton's cabinet, 506

Quality points, 363

Reading scores, 569 Refugees, 454 Rumors, 195, 820


Seat belts, 195, 455 Social services, 328 Social status, 11 Soft drinks, 470 Student success, 848

Telephone numbers, 496 Television viewing, 455, 470 Threshold weight, 64 Time passage, 127 Traffic analysis, 451, 469, 578 Training films, 705 Two parent families, 143 Typing speed, 655

Unemployment, 435, 567

Vent pipe, 839 View discrepancy, 705

Waiting time, 176 Weight-loss, 849 Winter Olympic participation, 560 Women earn less, 579 Women pay more, 579 Worker productivity, 812, 820 Worker profile, 470 World population, 187

To The Student

FEATURES TO AID YOUR UNDERSTANDING There are many pedagogical features in this text which will enhance your understanding of the concepts.

Side problems are one of these features that will help you to learn new concepts and reinforce your understanding. They are referred to in the text by numbers within colored squares: 1. When you see that symbol, you should work the indicated problem at the side before going on.

One of the main reasons for learning mathematics is to be able to use it to solve practical problems. As its name implies, the purpose of this book is to show how to use mathematics to solve applied problems. However, for many students, learning how to use mathematical skills in real-world applications is the most difficult task they face. A common difficulty students have with applied problems is trying to do everything at once. It is usually best to attack the problem in stages as outlined below:

Solving Applied Problems

- 1. Decide on the unknown. Name it with some variable that you write down. Many students try to skip this step. They are eager to get on with the writing of the equation. But this is an important step. If you don't know what the variable represents, how can you write a meaningful equation or interpret a result?
- 2. Draw a sketch or make a chart, if appropriate, showing the information given in the problem.

- 3. Decide on a variable expression to represent any other unknowns in the problem. For example, if x represents the width of a rectangle, and you know that the length is one more than twice the width, then write down that the length is 1 + 2x.
- 4. Using the results of Steps 1-3, write an equation that expresses a condition that must be satisfied
- 5. Solve the equation.
- 6. Check the solution in the words of the *original problem*, not just in the equation you have written.

Index of Applications
To the Student xix

Chapter 1	Fundamentals of Algebra 1	
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10	Rational Exponents and Radicals 57	
Case 1	Chapter 1 Summary 82 Chapter 1 Review Exercises 83 Consumers Often Defy Common Sense 88	
Chapter 2	Linear Equations, Functions and Graphs	89
2.1 2.2 2.3 2.4 2.5	Linear Equations 90 Slope and the Equations of a Line 100 Functions 111 Applications of Linear Functions 119 Other Useful Functions and Their Graphs 131	

χi

XVİ