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Preface

Since the second half of the last century, asymptotic expansions have been an im-
portant and very successful tool to understand the structure of solutions of ordinary
and partial differential (or difference) equations. The by now classical part of this
theory has been presented in many books on differential equations in the complex
plane or related topics, by such distinguished authors as Wolfgang Wasow [Wa],
Yasutaka Sibuya [Si], and many others. In my opinion, the most important result in
this context is (in Wasow’s terminology) the Main Asymptotic Existence Theorem:
it states that to every formal solution of a differential equation, and every sector (in
the complex plane) of sufficiently small opening, one can find a solution of the equa-
tion having the formal one as its asymptotic expansion. This solution, in general, is
not uniquely determined, and the proofs given for this theorem (in various degrees
of generality) do not provide a truly efficient way to compute such a solution, say,
in terms of the formal solution. In fact, to prove this result, even for linear, but in
particular non-linear equations, and to determine sharp bounds for the opening of
the sector (or more generally, determine size and location of all sectors for which
the theorem holds, for a given equation with “generic Stokes phenomenon”) is not
an easy task and has kept researchers busy until very recently; see, e.g., Ramis and
Sibuya’s paper on Hukuhara domains [RS 1] of 1989, or Wolfgang Jurkat’s discus-
sion of Asymptotic Sectors [Ju 1].

In the general theory of asymptotic expansions, the analogue to the Main Asymptotic
Existence Theorem is usually called Ritt’s Theorem, and is much easier to prove:
Given any formal power series and any sector of arbitrary (but finite) opening (on the
Riemann surface of the Logarithm), there exists a function, analytic in this sector
and having the formal power series as its asymptotic expansion. This function
i1s never uniquely determined — not even when the power series converges. To
overcome this non-uniqueness, G.N. Watson (Wt 1/2]in 1911/12, and F. Nevanlinna
[Ne] in 1918, introduced a special kind of asymptotic expansions, now commonly
called of Gevrey order k > 0. These have the property that the analogue to Ritt’s
Theorem holds for sectors of opening up to w/k, in which cases the function again
is not uniquely determined. If the opening is larger than 7/k, however, a function
which has a given formal power series as expansion of Gevrey order k£ > 0 may not
exist, but if it does, then it is uniquely determined. In case of existence, the function
can be represented as Laplace Transform of another function, which is analytic at
the origin, and whose power series expansion is explicitly given in terms of the formal
power series.

This achievement in the general theory of asymptotic expansions obviously escaped
the attention of specialists for differential equations in the complex domain for quite
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some time: In a series of papers [Ho 1-3], J. Horn showed for linear systems of ODE,
if the leading term of the coefficient matrix (at a singularity of second kind) has
all distinct eigenvalues, and if the sector is large enough, then one has uniqueness
in the Main Asymptotic Existence Theorem, and the function can be represented
as a Laplace integral, or equivalently, in terms of (inverse) factorial series; however,
he did not relate his observations to the general results of Watson and Nevanlinna.
Later, Trjitzinsky [Tr] and Turrittin [Tu] treated somewhat more general situations,
and they also pointed out the limitation of this approach to special cases.

In 1978/80, J.-P. Ramis [Ra 1/2] introduced his notion of k-summability of formal
power series, which may best be interpreted as a formalization of the ideas of Watson
and Nevanlinna. Applying this to linear systems of (meromorphic) ODE, he proved
that every formal (matrix) solution to every such equation can be factored into a
finite (matrix-) product of power series (times some explicit functions), so that each
factor is k-summable, with k depending upon the factor. (In my treatment of
first level formal solutions, [Ba 3-6] and [BJL], I had, more or less by accident, in-
dependently obtained the same result.) This factorization of formal solutions is not
truly effective, so that this result did not really give a way to compute the resulting
(matrix) function from the formal series.

More recently, J. Ecalle [Ec 1/2] presented a way to achieve this computation, intro-
ducing his definition of multisummability. In a way, his method differs from Ramis’
definition of k-summability by cleverly enlarging the class of functions to which
Laplace Transform, in some weak form, can be applied. He stated without proofs a
large number of results concerning properties and applications of multisummability
to formal solutions of (non-linear) systems of ODE. Based upon the described fac-
torization of formal solutions of linear equations, it was more or less evident that
multisummability applied to all formal solutions of linear equations. However, in
the non-linear situation, the first complete proof for this was only very recently
given by B.L.J. Braaksma [Br 1]. In which form this result carries over to formal
solutions of difference, or other functional equations, is still an open problem upon
which much work is done at present. Other directions of activity are the analysis
of the Stokes phenomenon for (non-linear) systems, based on the theory of multi-
summability. Again, Ecalle has done some pioneering work in this direction, but
has not given detailed proofs.

As is common in a rapidly growing field, it is difficult for a newcomer to appreciate
the results achieved, because in the research papers and monographs at hand, every
author chooses his/her own notations and has his/her own ideas of what is elemen-
tary or needs to be proved. Concerning notation, I do the same in this text, but
at least I am consistent throughout the book, and I have included all proofs — or
stated parts of them in form of exercises which I feel readers with some background
in Complex Variables should be able to do, if they so wish. In winter semester of
1991/92, I taught a course in Ulm on multisummability. The material covered in
this course has become the nucleus of this text, but was considerably expanded and,
in some cases, presented in a more elegant form.
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Chapter 1

Asymptotic Power Series

This chapter is to set the framework for the remaining ones: We define the notions
of asymptotic expansions, and in particular, Gevrey asymptotics, and we show their
main properties. Despite of the fact that we frequently speak of differential algebrus,
a reader is not required to know more than their definition: For our purpose, a
differential algebra A is an algebra (over the field of complex numbers), together
with a linear mapping d of A into itself which obeys the product rule, i.e. for
every ap,a; € A we have

d((ll(lz) = d(al)a2 + (le(az) @

1.1 Sectors

Throughout this text, we will deal with analytic functions which generally have a
branch point at the origin. Therefore, it is convenient to think of these functions
as defined in sectorial regions on the Riemann surface of the (natural) Logarithm.
Consequently, complex numbers z = re’® (r > 0) will not be the same once
their arguments ¢ differ by integer multiples of 2x. Strictly speaking, instead of
complex numbers we deal with pairs (r,¢), but there is little risk of confusion in
writing re'¥ instead of (r,¢).

A sector (on the Riemann surface of the Logarithm) is defined to be a set of the
form

S:S(d,a,p):{z:re“’|0<r<p, d—a/2<<p<d+a/2};

where d is an arbitrary real number, a is a positive real, and p either is a positive
real number or +o0o. We shall refer to d, resp. «, resp. p, as the bisecting
direction, resp. the opening, resp. the radius of S. In particular, if p = 400, resp.
p < +o0o, we will speak of S having infinite, resp. finite, radius. It should be kept
in mind that we do not consider sectors of infinite opening, nor an empty sector. If
we write S(d, a,p), then it shall go without saying that d,a,p are as above. In
case p = oo, we mostly write S(d,a) instead of S(d,a,+00). A closed sector
is a set of the form

g:?(d,a,p):{z:re‘“’|0<r§p, d—a/2§4,9§d+a/2} ,
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with d and o as before, but p a positive real number (i.e. never equal to +00).
Hence closed sectors always are of finite radius, and they never contain the origin.

1.2 Analytic Functions in Sectors

Let S be a given sector, and let f be a function analyticin S (hence f may be
multi-valued if S has opening larger than 27 ). We say that f is bounded at the
origin, if for every closed subsector S; of S there exists a positive real constant
¢ (depending upon S;) such that

|f(2)| <c forevery z€ S .
If a complex constant, denoted by f(0), exists such that

f(0) =lim f(2),

uniformly in every closed subsector, we say that f is continuous at the origin.

If S has opening more than 2m, and f is analytic in S, we say that f is
single-valued, provided that

f(z) = f(z¢*™) whenever z,ze’™ € S.

We say that f (analytic in some sector S) is analytic at the origin, if f can be
analytically continued to a sector S of opening more than 27, andif f, moreover,
is single-valued and bounded at the origin (in S); a well-known result on removable
singularities then implies that f has a convergent power series expansion about the

origin.

Let S = S(d,a) be a sector of infinite radius, and let f be analyticin S, or at
least analytic for all z € S with |z| > p. Suppose that k > 0 exists such that
the following holds true:

To every ¢ with |d — | < af/2 and every ro > p there exist €,¢1,c3 > 0 such
that for every z = re'™ with r > ry, | — 7| <,

1f(2)] < crexp{eal2]*} .

Then we shall say that f s of ezponential size at most k (in S). This notion
compares to that of (exponential) order as follows: If f is of exponential size at
most k (in S), then it either is of order less than k, or of order equal to k and
of finite type, and vice versa (see, e.g., [Bo] for the definition of order and type, and
formulas relating both to the coefficients of an entire function).

Example: Mittag-Lefller’s function

E.(z) = iz"/l"(l +an), a>0,

n=0
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is an entire function of exponential order k& = 1/a and finite type, hence is of
exponential size (at most) k in every sector of infinite radius. More generally, if
(fn)22, is a sequence of complex numbers such that for some ¢ > 0
lfal <", n2>0,
then -
f(2) =3 faz"/T(1 + n/k)

n=0
is bounded by Fjk(c|z|), and therefore f(z) is of exponential size at most & in
every sector of infinite radius.

Exercises.

1. Show that if an analytic function f is of exponential size at most k& > 0
in S(d,a), then the constants c¢;,c; in the above estimate can be chosen
independent of ¢, provided ¢ is restricted to a closed subinterval of

(d—a/2,d+a/2) .

For the following exercises, define

o0 o0

g(z) = /e”t"dt = /exp[t(z — log t)]dt

0 0
(integrating along the positive real axis); compare also [Nm].

2. Show that ¢ is an entire function and compute its power series expansion.

3. For Imz = J +¢, ¢ > 0, show that Cauchy’s theorem allows to replace
integration along the real axis by integration along the positive imaginary
axis. Use this to show (for these z)

lg(z)] <

o=

Prove a similar estimate for Im 2z = —(7 4+ ¢).

4. For every sector S of infinite radius, not containing the positive real axis,
show that g(z) is of exponential size zero in S.

5. Use Phragmen-Lindelof’s theorem (see [SG]) or a direct lower estimate of g(z)
for z > 0, to show that in sectors S including the positive real axis, g(z)
cannot be of finite exponential size, hence g is of infinite order.

6. For ¢ as above, let

J@) =glz+Z+0).

Show that f(z) remains bounded along every ray argz = ¢ (for |z] = c0).
Why does this not imply that f is of exponential order zero in every sector 57?7
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1.3 Formal Power Series

Given a sequence (f,)s, of complex numbers, the formal object

is called a formal power series (in z). The set of all such formal power series is
denoted by

Clz]] -
We say that f converges, or is convergent, if p > 0 exists so that the power series
converges for all z with |z| < p, defining a function f(z), analytic in a neigh-
bourhood of the origin. We shall call f the sum of f (whenever f converges),
and we write

f=8f.

The set of all convergent (formal) power series will be denoted by
Cc{z}.

If f(z) =3 fa2" is a formal power series so that for some positive C, K, and &k
we have

|fo]l K CK"I'(1 +n/k) forevery n>0,

then we say that f is a formal power series of Gevrey order k=, and we write

Cll=]li/

for the set of all such formal power series. It is easily seen (compare the Exercises
below) that €([[z]]i/s, under natural operations, forms a differential algebra.

Exercises. For f(z) =3 f.2z", §(z) =3 g.2", and a € C, define

" Jr-mGm
0

(n + 1)fn+lzn :

(fatgn)z™,  (fi)z) =
(afa)z", fi(2)

4

(f+9)(z) =
(af)(z) =

3
i =

o8 =o[]8
=[™8 =18

1. Show that C[[z]], with respect to addition and multiplication with scalars,
as defined above, is a vector space over C.

2. Show that €[[2]], with respect to multiplication of power series, as defined
above, is a commutative algebra over C.

3. Show that (€[[z]], with respect to derivation as defined above, is a differential
algebra over € (i.e. show that the map f + f' is C-linear and obeys the

product rule (f_(})' = f’ﬁ + fﬁl)
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It

4. Show that é, the power series whose coefficients are all zero except for the
constant term which equals one, acts as the unit element of C[[2]].

5. Show that the invertible elements of @'[[z]], i.e. those f to which § exists
such that fg = é, are exactly those whose constant term is non-zero.

6. For arbitrary k > 0, show that C[[z]];/s again is a differential algebra over
€ (with respect to the same operations as above).

Hint: Use the Beta Integral

1
2)* 2% 'dz, Rea>0, Ref >0,
(y+[3 0/ A

to show

i P14+ 22)0(1 4 2) < (1 +n)(1+n/k)D(1 +n/k) .

m=0

From this estimate, derive that €[[z]],/; is closed with respect to multipli-
cation. Moreover, use Stirling’s Formula to show

I'(14 2
L1+ 2)(n/k)/x

— 1 (n—o00),
and from this, derive that €][z]],/; is closed with respect to derivation.

7. For arbitrary k > 0, show f € C([z]}i/k invertible (in €[]}y, ) iff it is
invertible in  C[[z]], i.e. iff its constant term does not vanish.

Hint: For

fz) =14 2h(z),  h(z)= 3 hpnz™,
ylz) = 1 + zz(z2), #(z) =) Tm2™,

show that f,j € C[[z])1/x iff the series

3" hpz™*T(1+m/k) and Y z,2™*/T(1 +m/k)

m=0 m=0

converge for |z| < p, with sufficiently small p > 0, defining functions h(z),
resp. z(z), analytic in the variable z!'/¥. Moreover, show that

feg=1
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is equivalent to the Volterra integral equation
o(z) + h(z) + / k(z — O)z(t)dt = 0,
0

with
k(z) = Y b2 D((m+ 1) /R)

m=0

and use the theory of these equations to show that a (unique) solution z(z) ex-
ists which has a convergent expansion of the above form, showing § € C[[z]]:/«

(for such f with constant term 1, but this is no restriction).

8. For arbitrary k > 0, show that for f =3 f,z" € Cl[2]li/x with fo=0 we
have

(@) = 3 Sz € Clelle -

9. If we interprete C[[z]]y/x for k = oo according to the convention 1/co =0,
show that

Cllellje0 = €{z} .

Check that the statements of Ex.6-8 hold true for k£ = oo.

1.4 Asymptotic Expansions

Given a function f, analytic in some sector S, and a formal power series f(z) =
> faz" € C[[z]], one says that f(z) asymptotically equals f(z), as z — 0 in
S, or: f(z) is the asymptotic ezpansion of f(z) in S, iff to every non-negative
integer N and every closed subsector S of S there exists C = C(N,S;) > 0
such that for z € 5,

<C;
n=0
in other words iff the functions
N-1
ri(z,N) = z"N(f(z) - fnz")
n=0

are bounded at the origin, for every N > 0. If this is so, we write for short

f(z)  f(z) in S,

and whenever we do, it will go without saying that S is a sector, f is analyticin
S, and f is a formal power series.

For this type of asymptotics we refer the reader to standard texts as [Wa], [CL]. For
our purposes, we only require the following
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Proposition 1. a) Given a sector S and a function f, analyticin S and

f(z) Z f(z) in S

forsome [ =¥ fuz" € C[[2]], the functions r;(z,N) (as above) are all continuous
at the origin, and
lim ry(z, N)=fxv (N 20).

zZES

b) Under the same assumptions as in a), suppose that the opening of S s larger
than 2r, and that

f(ze¥™") = f(2) whenever z,ze*™ €S .

Then f is analytic at the origin, and [ converges and coincides with the power
series expansion of f at the origin.

Proof. a) Observe
r(z, N+ 1) =27 (ry(z,N) = fn) ,
hence r;(z, N + 1) bounded at the origin implies

lzi_I_Iol (7'f(z,N) — fN> ={j.

ZES

b) Under our assumptions, f(z) is a single-valued analytic function in a punctured
disc around the origin, and remains bounded as z — 0. Hence the origin is a re-
movable singularity of f, i.e. f(z) can be expanded into its power series about the
origin. It follows right from the definition that the power series expansion is, at the
same time, an asymptotic expansion, and from a) we conclude that an asymptotic
expansion is uniquely determined by f(z). This proves f(z) to converge and be
the power series expansion for f(z). a

Let A(S) be the set of all functions f(z), analytic in the sector S and having
an asymptotic expansion f(z). In view of Proposition la), to every f(z) € A(S)
there is precisely one f € C[[2]] such that f(z) = f(z) in S. Therefore, we have
a mapping

J: A(S) ey C[[=]]
fz)  —  f2)=(f)z),

mapping each f to its asymptotic expansion. Standard results on asymptotics
(see [Wa], [CL]) show that A(S), under the natural operations, is a differential
algebra, and J is a homomorphism between the two differential algebras A(S)
and (C][[z]]. Moreover, Ritt’s Theorem implies that J is surjective. However, J
is not injective — even if we consider sectors of large opening. In the next section
we are going to study another type of asymptotic expansions which are better suited
to our purposes, since it will turn out that the corresponding map J, for sectors of
sufficiently large opening, is injective (however, not surjective).



