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Preface

These are the joint final proceedings of the 11th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2006) and the fifth
International Workshop on Parallel and Distributed Methods in Verification
(PDMC 2006). Both workshops were organized as satellite events of CONCUR,
2006, the 17th International Conference on Concurrency Theory that was orga-
nized in Bonn, August 2006.

The FMICS workshop continued successfully the aim of the FMICS working
group — to promote the use of formal methods for industrial applications, by
supporting research in this area and its application in industry. The emphasis
in these workshops is on the exchange of ideas between researchers and practi-
tioners, in both industry and academia.

This year the Program Committee received a record number of submissions.
The 16 accepted regular contributions and 2 accepted tool papers, selected out
of a total of 47 submissions, cover formal methodologies for handling large state
spaces, model-based testing, formal description and analysis techniques as well
as a range of applications and case studies.

The workshop program included two invited talks, by Anna Slobodova from
Intel on “Challenges for Formal Verification in an Industrial Setting” and by
Edward A. Lee from the University of California at Berkeley on “Making Con-
currency Mainstream.” The former full paper can be found in this volume.

Following the tradition of previous workshops, the European Association of
Software Science and Technology (EASST) supported a best, paper award. This
award was granted to Michael Weber and Moritz Hammer for their excellent
paper “To Store or Not To Store’ Reloaded: Reclaiming Memory on Demand.”

The primary goal of the PDMC workshop series is to present and discuss
recent developments in the young area of parallel and distributed methods in
verification. Several verification techniques, ranging over model checking, equiv-
alence checking, theorem proving, constraint solving and dependability analysis
are addressed by the PDMC community. Verification problems are usually very
demanding tasks, especially because the systems that we build and want to verify
become increasingly complex.

On the other hand, parallel and distributed computing machinery is widely
available. Algorithms and tools must be developed to use this hardware optimally
for our verification tasks. Traditionally, we studied algorithms for homogeneous
situations, such as parallel shared-memory computers and distributed clusters of
PCs. Currently, the emphasis is shifting towards heterogeneous GRIDs. But even
modern desktop PCs are quite heterogeneous, consisting of multiple core proces-
sors, various memory devices and cache levels, all with their own performance
characteristics.



VI Preface

This year’s PDMC had nine submissions; six papers were selected for pre-
sentation, and four papers were accepted for publication in this volume. In ad-
dition, Lubo$ Brim from Masaryk University, Brno, gave an invited lecture on
“Distributed Verification: Exploring the Power of Raw Computing Power.” The
full paper can also be found in this volume.

We would like to thank all authors for their submissions. We would also like
to thank the members of both Program Committees, and the additional referees,
for their timely reviewing and lively participation in the subsequent discussion—
the quality of the contributions in this volume are also due to their efforts and
expertise.

The organizers wish to thank CONCUR for hosting the FMICS and PDMC
2006 workshops and taking care of many administrative aspects, and ERCIM for
its financial support of FMICS. Additionally, the organizers would like to thank
the EASST (European Association of Software Science and Technology), the
Faculty of Informatics, Masaryk University Brno and the Technical University
Munich, the CWI (Center of Mathematics and Computer Science, Amsterdam)
and the University of Twente for supporting these events.

December 2006 Lubos Brim
Boudewijn R. Haverkort

Martin Leucker

Jaco van de Pol
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Challenges for Formal Verification in Industrial
Setting

Anna Slobodova

Intel
anna.slobodova@intel.com

Abstract. Commercial competition is forcing computer companies to
get better products to market more rapidly, and therefore the time for
validation is shrinking relative to the complexity of microprocessor de-
signs. Improving time-to-market performance cannot be solved by just
growing the size of design and validation teams. Design process automa-
tion is increasing, and the adoption of more rigorous methods, including
formal verification, is unavoidable because for achieving the quality de-
manded by the marketplace.

Intel is one of the strongest promoters of the use of formal methods
across all phases of the design development. Intel’s design teams use high-
level modeling of protocols and algorithms, formal verification of floating-
point libraries, design exploration systems based on formal methods, full
proofs and property verification of RTL specifications, and equivalence
checking to verify that transistor-level schematics correspond to their
RTL specifications. Even with the best effort to adopt the progress in
formal methods quickly, there is a large gap between an idea published at
a conference and a development of a tool that can be used on industrial-
sized designs. These tools and methods need to scale well, be stable
during a multi-year design effort, and be able to support efficient de-
bugging. The use of formal methods on a live design must allow for
ongoing changes in the specification and the design. The methodology
must be flexible enough to permit new design features, such as scan and
power-down logic, soft error detection, etc. In this paper, I will share my
experience with the formal verification of the floating-point unit on an
Itanium(R) microprocessor design and point out how it may influence
future microprocessor-design projects.

1 Introduction

Floating-point (FP) arithmetic is, with respect to functional validation, one of
the critical parts of modern microprocessor designs. Even though the algorithms
for FP arithmetic are well known, optimization for high performance, reliability,
testability and low power, may introduce bugs into a design. The huge input data
space that needs to be explored to ensure correctness of floating-point designs is
beyond the limits of traditional simulation techniques (hereafter referred to as
simulation). Fortunately, formal methods are well suited for this area and they
can enhance a verification effort substantially. Formal semantics of floating-point

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 1-22, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 A. Slobodova

operations can be expressed in a succinct way and the IEEE Floating-Point
standard [IEEE] serves as a guide for many instruction-set architectures. In this
paper, floating-point algorithms are not our concern. Instead, I focus on the
correctness of their register-transfer level (RTL) implementations.

For almost a decade, papers reporting compliance proofs for circuit models
with respect to the IEEE standard and particular instruction set architecture
have been published. While the early research was focused on answering a prin-
cipal question of the feasibility of formal proofs for computer arithmetic (e.g.,
[AS95, CB98, OZ+99]), recent work emanates from commercial industry. Formal
tools and methods have reached the maturity necessary for their deployment in
real design projects.

There are substantial differences between the methodologies used at different
companies, depending on their target and available tools and resources. Intel
and AMD were among first companies that applied formal methods, at first to
verification of floating-point algorithms and then to RTL design. Methods re-
ported from AMD design team in [Rus98, RF00, FK+02] are solely based on
theorem proving using ACL2 system !. Although lot of automation has been
added to building ACL2 models from RTL descriptions, and an ACL2 library
of Floating-Point Arithmetic has been created to avoid repetition of implemen-
tation independent proofs, the methodology still requires high-level expertise in
theorem proving and a perfect understanding of the design.

A recent paper from IBM by Jacobi et al. [JW+05] presents a verification
method based on symbolic simulation of a RTL model and its comparison to a
high-level model written in VHDL. Although highly automated, the approach
is not as rigorous as the one described by AMD, and lacks the scope of the
methodology developed at Intel [AJ400][AJ+00, KA00, KN02, KK03, Sch03].
It skips the verification of the more difficult part of the design - multiplier,
by removing it from the cone of influence, hence proving merely correctness of
the adder and rounder. In contrast, in our approach, no abstraction or design
modification took place. We return to the comparison of their work to our results
in Section 7.

At Intel, an important work in the area of the verification of floating-point
algorithms, and in particular, floating-point libraries for Itanium® has been
done by John Harrison (see [Har05] for an overview, and [Har00a, Har00b, Har03]
for details). However, in hardware verification, while many papers have been
published on verification of Pentium(® design, the first report on the formal
verification of floating-point arithmetic for the Itanium®) microprocessor family
was reported on Designing Correct Circuits (DCC) Workshop 2, in March, 2004,
in Barcelona [SNO4]. The main result was the first successful formal verification
of floating-point fused multiply-add instruction which is in repertoire of the IA-
64 Instruction Set Architecture (ISA). Proofs have been constructed for a live
project aimed at a next generation of Itanium(® microprocessor. We continued
our work presented at DCC by extending the scope and verifying correctness

L http:/ /www. cs.utezas. edu/moore/acl2/
2 http:/ /www.math.chalmers.se/ ms/DCC04/
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of the rest of floating-point instructions (about 40) issued to execution pipe
All instructions have been verified with respect to eight precisions and four
IEEE rounding modes, including dynamic rounding specified in floating-point
status register. The verification was based on symbolic trajectory evaluation
and arithmetic libraries previously proven within the same system [KN02]. The
proof includes correctness of the result, update of floating-point status register,
and correctness of more than a dozen interrupt signals. Behavior of the floating-
point circuitry for invalid instructions and/or instructions with false qualifying
predicates have been considered as well. All proofs have been regularly rerun as
a regression suite to ensure the consistency of any changes in the design. Formal
sequential equivalence checking was used to finish the validation of low-level
design proving its correctness with respect to the RTL. However this last phase
of verification is out of scope of this paper.

In the process of constructing our proofs we found many bugs and issues
that required RTL changes. Our work also helped to clarify incomplete and
ambiguous parts of our micro-architectural specification, and it contributed to
some hardware optimizations. The proofs are automated and portable to other
TItanium® micro-processor designs.

The goal of this paper is to describe the scope and results of our work, and to
provide some insight into challenges of using formal verification in an industrial
environment, where a fine balance between rigorous verification methods and
traditional simulation-based methods is crucial for success of the validation.
Although the approach we choose is a combination of known techniques already
documented in context of the verification of floating-point adders and multipliers,
we believe that it has many aspects that might be interesting to researchers in
academia as well as validation engineers.

The paper is organized in following way: Next section describes tools and
methodology developed for formal verification of floating-point arithmetic at
Intel Corporation and specifics of our approach. The core of our work is described
in Section 3, where we dive into details of the verification of the most interesting
operation - fused multiply-add, and report what has been covered by our proofs.
Since debugging of failing proofs is one of the concerns in the use of formal
methods, we touch this question in Section 4. Section 5 focuses on benefits of our
effort for the design project. We describe our experience with proof management
in Section 6. Concluding section contains summary of our work and detailed
comparison to related published work.

2 Our Approach to Formal Verification of FP Arithmetic

Intel’s approach to the validation of floating-point arithmetic includes a huge
database of corner test-cases and pseudo-random generators for simulation, as
well as Intel’s FORTE formal verification tool that combines theorem-proving
with model-checking capabilities 3. The methodology described below does not

3 A publicly available version of the tool that can be used for non-commercial purposes
can be downloaded from http://www.intel.com/software/products/opensource/
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rely on FORTE specifics and can be reproduced using any tool with capability
of symbolic trajectory evaluation (STE) and some means of composing results
obtained by STE. We believe that formal proofs coupled with traditional pseudo-
random and focused simulation is a good way to achieve thorough functional
validation. In our project, the formal and simulation based validation teams
mutually benefited from their collaboration. However, this is out of the scope of
this paper and we will focus on formal verification only.

2.1 FORTE System and STE

The history of formal verification of floating-point arithmetic at Intel has been
motivated by two controversial trends: promising results in academia that were
followed by proof of concept at Intel Research Lab [OZ+99]; and bugs that
escaped to the micro-processor products [Coe96, Fis97]. Today, formal proofs
developed for Pentium®) designs [AJ+00, KA00, KN02, KK03, Sch03] are re-
used and even put into hands of validation engineers that are not experts on
formal methods. These proofs have been done using FORTE — a system built on
top of VOSS. In this section, we give a rather informal description of the tech-
nology inside the FORTE system, just enough to understand the paper; details
can be found in the referred publications. FORTE includes a light-weight theo-
rem prover and a symbolic trajectory evaluation (STE) engine [STE]. The theo-
rem prover is based on a higher-order logic. The interface language for FORTE
is FL - a strongly-typed functional language in the ML family [Pau96]. One
good property of FL as a specification language is its executability. While cre-
ating specifications, we often ran sanity checks. For instance, the translation
from the memory format to register-file format was written as specified by the
Software Developers Manual [ISA], and then checked whether consequent in-
verse translations yield consistent values. FL includes Binary Decision Diagrams
(BDDs)[Bry86] as first-class objects and STE as a built-in function. For more
information we refer the interested reader to the online documentation for the
FORTE system and [KA00]. Here we describe the basic mechanisms of STE and
the framework in which we work.

STE is a weak form of model-checking where a formal (gate-level) model is
subjected to a symbolic simulation. The idea of a symbolic simulator is similar to
that of standard simulator but it differs in that symbolic values (besides explicit
binary values) are assigned to each signal and these values propagated through
the design model. Results of such simulations are formulas for specified signals
at specified times.

STE is an enhancement of symbolic simulation where Boolean logic has been
extended to a lattice [STE] with X as a bottom (no information) and T as a
top element (overconstrained). X is automatically assigned (by the STE simula-
tor) to signals to which no value has been specified. X can be thought of as an
unknown value. Its semantics and use are discussed later. Symbolic values are
bound to signals at specified times to form signal trajectories. Trajectories that
prune possible computations by restricting the values of some signals at specific
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times are called antecedents; they can be interpreted as assumptions. Trajec-
tories that specify expected responses of the circuit are called consequents. A
specification is written in a form of Boolean expressions that constrain sym-
bolic values in antecedents and consequents. Trajectory evaluation correctness
statement = 1; [ant =>> cons| means: all circuit computations that satisfy
antecedent ant also satisfy consequent cons. If any of consequent is violated, a
STE run (proof) fails and a counterexample can be extracted from this failure.
In fact, the failed proof provides all possible counterexamples and the user may
select one for debugging purposes. If all consequents hold at every point of the
simulation, success is reported by the tool.

2.2 Pre- and Post-condition Framework

Because of capacity limitations inherit in the STE engine, we may be forced
to break our model into smaller pieces. In this case, we make sure that those
pieces perfectly fit together. Informally, this means that the border signals of
the decomposition match exactly and that nothing is left out of the design. Also
the times at which we extract the values of the signals must be consistent. In
terms of STE, consequents that include border signals serve as antecedents in
the following step of the proof. In this way, we can use facts proved in one part
as assumptions for later proofs.

The idea of proof (de)composition described above comes from the pre-and-
post-condition theory used for verification of sequential programs. It was first
applied to STE by Kaivola and Aagaard [KAQ0]. It allows one to prove the
statements of the form {P}S{Q}, where P and Q are logical properties and
S is a program. In our case, the program is replaced by a circuit and tra-
jectories that bind values inputs and outputs of the circuit at specific times.
{P(x)}(pretry, ckt, posttr,){Q(z,y)} represents the statement: if pretr, binds
the Boolean vector z to signals (usually inputs) of the circuit ckt and posttr,
binds the Boolean vector y to signals of the circuit (usually outputs), then the
property P(z) guarantees property Q(z,y).

{P(z)}(pretry, ckt, posttry){Q(z, y)} is a shorthand for the following formula:

Vz(P(z) = (Jy(f=ckt [pretre =>> posttry])) A
(Vy((Fert [pretre => posttry]) = Q(z,y)))) (1)

In our methodology, P is a conjunction of an initial condition that describes
the restriction of inputs to the circuit, and an auziliary pre-condition that is
used to further restrict the simulation. For consistency, we use the same initial
conditions throughout all proofs for every instruction analyzed, except when we
weaken an initial condition to true. An example of an initial input condition
is a statement that the specified input signals have value of a specific opcode.
Auxiliary pre-conditions are usually used to simplify a particular STE run by
restricting symbolic values (meaning that the inputs or internal nodes are re-
stricted). An example of an auxiliary pre-condition is a restriction specifying



