LNCS 4346

Lubos Brim
Boudewijn Haverkort
Martin Leucker

Jaco van de Pol (Eds.)

Formal Methods:
Applications
and Technology

11th International Workshop, FMICS 2006
and 5th International Workshop, PDMC 2006
Bonn, Germany, August 2006, Revised Selected Papers

@ Springer

'Lubog Brim Boudewijn Haverkort
Martin Leucker Jaco van de Pol (Eds.)

Formal Methods:
Applications
and Technology

11th International Workshop, FMICS 2006

and 5th International Workshop, PDMC 2006

Bonn, Germany, August 26-27, and August 31, 2006
Revised Selected Papers

A springer | [ILIANINN

E2007003130

Volume Editors

Lubos Brim

Masaryk University

Botanicka 68a, 602 00 Brno, Czech Republic
E-mail: brim @fi.muni.cz

Boudewijn Haverkort

University of Twente

P.O. Box 217, 7500AE Enschede, The Netherlands
E-mail: brh@cs.utwente.nl

Martin Leucker

Technische Universitit Miinchen
Boltzmannstr. 3, 85748 Garching, Germany
E-mail: leucker @in.tum.de

Jaco van de Pol

Centrum voor Wiskunde en Informatica, SEN 2

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: Jaco.van.de.Pol@cwi.nl

Library of Congress Control Number: 2007921124

CR Subject Classification (1998): D.2.4, D.2, D.3, C.3, E3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-70951-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70951-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12021901 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler -

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4346

Preface

These are the joint final proceedings of the 11th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2006) and the fifth
International Workshop on Parallel and Distributed Methods in Verification
(PDMC 2006). Both workshops were organized as satellite events of CONCUR,
2006, the 17th International Conference on Concurrency Theory that was orga-
nized in Bonn, August 2006.

The FMICS workshop continued successfully the aim of the FMICS working
group — to promote the use of formal methods for industrial applications, by
supporting research in this area and its application in industry. The emphasis
in these workshops is on the exchange of ideas between researchers and practi-
tioners, in both industry and academia.

This year the Program Committee received a record number of submissions.
The 16 accepted regular contributions and 2 accepted tool papers, selected out
of a total of 47 submissions, cover formal methodologies for handling large state
spaces, model-based testing, formal description and analysis techniques as well
as a range of applications and case studies.

The workshop program included two invited talks, by Anna Slobodova from
Intel on “Challenges for Formal Verification in an Industrial Setting” and by
Edward A. Lee from the University of California at Berkeley on “Making Con-
currency Mainstream.” The former full paper can be found in this volume.

Following the tradition of previous workshops, the European Association of
Software Science and Technology (EASST) supported a best, paper award. This
award was granted to Michael Weber and Moritz Hammer for their excellent
paper “To Store or Not To Store’ Reloaded: Reclaiming Memory on Demand.”

The primary goal of the PDMC workshop series is to present and discuss
recent developments in the young area of parallel and distributed methods in
verification. Several verification techniques, ranging over model checking, equiv-
alence checking, theorem proving, constraint solving and dependability analysis
are addressed by the PDMC community. Verification problems are usually very
demanding tasks, especially because the systems that we build and want to verify
become increasingly complex.

On the other hand, parallel and distributed computing machinery is widely
available. Algorithms and tools must be developed to use this hardware optimally
for our verification tasks. Traditionally, we studied algorithms for homogeneous
situations, such as parallel shared-memory computers and distributed clusters of
PCs. Currently, the emphasis is shifting towards heterogeneous GRIDs. But even
modern desktop PCs are quite heterogeneous, consisting of multiple core proces-
sors, various memory devices and cache levels, all with their own performance
characteristics.

VI Preface

This year’s PDMC had nine submissions; six papers were selected for pre-
sentation, and four papers were accepted for publication in this volume. In ad-
dition, Lubo$ Brim from Masaryk University, Brno, gave an invited lecture on
“Distributed Verification: Exploring the Power of Raw Computing Power.” The
full paper can also be found in this volume.

We would like to thank all authors for their submissions. We would also like
to thank the members of both Program Committees, and the additional referees,
for their timely reviewing and lively participation in the subsequent discussion—
the quality of the contributions in this volume are also due to their efforts and
expertise.

The organizers wish to thank CONCUR for hosting the FMICS and PDMC
2006 workshops and taking care of many administrative aspects, and ERCIM for
its financial support of FMICS. Additionally, the organizers would like to thank
the EASST (European Association of Software Science and Technology), the
Faculty of Informatics, Masaryk University Brno and the Technical University
Munich, the CWI (Center of Mathematics and Computer Science, Amsterdam)
and the University of Twente for supporting these events.

December 2006 Lubos Brim
Boudewijn R. Haverkort

Martin Leucker

Jaco van de Pol

FMICS

Program Chairs

Lubos Brim
Martin Leucker

Program Committee

Rance Cleaveland
Wan Fokkink

Stefania Gnesi
Susanne Graf
David Harel

Klaus Havelund
Thomas A. Henzinger
Leszek Holenderski
Stefan Kowalewski
Marta Kwiatkowska
Salvatore La Torre
Tiziana Margaria
Radu Mateescu
Doron Peled
Ernesto Pimentel
Andreas Podelski
Don Sannella
Joseph Sifakis

PDMC

Program Chairs

Boudewijn Haverkort
Jaco van de Pol

Program Committee

Gerd Behrmann
Ivana Cernd
Gianfranco Ciardo
Joerg Denzinger

Organization

Masaryk University Brno, Czech Republic
Technical University of Munich, Germany

University of Maryland, USA

Vrije Universiteit Amsterdam and CWI, The
Netherlands

ISTI-CNR, Italy

VERIMAG, France

Weizmann Institute of Science, Israel

Kestrel Technology, USA

EPFL, Switzerland

Philips Research, The Netherlands

RWTH Aachen University, Germany

University of Birmingham, UK

Universita degli Studi di Salerno, Italy

University of Géttingen, Germany

INRIA Rhéne-Alpes and ENS Lyon, France

University of Warwick, UK

University of Malaga, Spain

Max-Planck-Institut fiir Informatik, Germany

University of Edinburgh, UK

VERIMAG, France

University of Twente, The Netherlands
CWI Amsterdam, The Netherlands

Aalborg University, Denmark

Masaryk University Brno, Czech Republic
University of California at Riverside, USA
University of Calgary, Canada

VIII Organization

Hubert Garavel INRIA Rhéne-Alpes, France

Orna Grumberg Technion, Haifa, Israel

William Knottenbelt Imperial College, London, UK

Marta Kwiatkowska University of Birmingham, UK

Martin Leucker Technical University of Munich, Germany

Referees (FMICS and PDMCQ)

C. Artho I. Cerns M. Kuntz D. Parker
Y. Atir F. Ciesinski F. Lang G. Parlato
R. Atkey M. Faella P. Lopez G. Salaiin
J. Barnat A. Fantechi K. MacKenzie W. Serwe
M. ter Beek M. Felici P. Maier F. Sorrentino
M. van der Bijl A. J. Fernandez S. Maoz J. Tenzer
B. Bollig M. Fruth F. Mazzanti A. Venet

L. Bozzelli N. Geisweiller R. Merom A. Wijs

A. Bucchiarone A. Goldberg A. Murano T. Willemse
D. Calvanese A. Idani G. Norman V. Wolf

M. V. Cengarle C. Joubert M. Parente

Lecture Notes in Computer Science

For information about Vols. 1-4300

please contact your bookseller or Springer

Vol. 4429: C. Ullrich, J.H. Siekmann, R. Lu (Eds.), Cog-
nitive Systems. X, 162 pages. 2007. (Sublibrary LNAI).

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VIL. XII, 225 pages.
2007.

Vol. 4403: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T.
Murata (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XIX, 954 pages. 2007.

Vol. 4397: C. Stephanidis, M. Pieper (Eds.), Universal
Access in Ambient Intelligence Environments. XV, 467
pages. 2007.

Vol. 4396: J. Garcia-Vidal, L. Cerda-Alabern (Eds.),
Wireless Systems and Mobility in Next Generation In-
ternet. IX, 271 pages. 2007.

Vol. 4394: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVI, 648 pages. 2007.

Vol. 4393: W. Thomas, P. Weil (Eds.), STACS 2007.
XVIII, 708 pages. 2007.

Vol. 4392: S.P. Vadhan (Ed.), Theory of Cryptography.
XI, 595 pages. 2007.

Vol. 4390: S.O. Kuznetsov, S. Schmidt (Eds.), For-
mal Concept Analysis. X, 329 pages. 2007. (Sublibrary
LNAI).

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
XI, 355 pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007. (Sublibrary LNAI).

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4381: J. Akiyama, W.Y.C. Chen, M. Kano, X. Li, Q.
Yu (Eds.), Discrete Geometry, Combinatorics and Graph
Theory. XI, 289 pages. 2007.

Vol. 4380: S. Spaccapietra, P. Atzeni, F. Fages, M.-S.
Hacid, M. Kifer, J. Mylopoulos, B. Pernici, P. Shvaiko, J.
Trujillo, I. Zaihrayeu (Eds.), Journal on Data Semantics
VIII. XV, 219 pages. 2007.

Vol. 4378: 1. Virbitskaite, A. Voronkov (Eds.), Perspec-
tives of Systems Informatics. XIV, 496 pages. 2007.
Vol.4377: M. Abe (Ed.), Topics in Cryptology — CT-RSA
2007. XI, 403 pages. 2006.

Vol. 4376: E. Frachtenberg, U. Schwiegelshohn (Eds.),
Job Scheduling Strategies for Parallel Processing. VII,
257 pages. 2007.

Vol. 4373: K. Langendoen, T. Voigt (Eds.), Wireless Sen-
sor Networks. XIII, 358 pages. 2007.

Vol. 4372: M. Kaufmann, D. Wagner (Eds.), Graph
Drawing. XIV, 454 pages. 2007.

Vol. 4371: K. Inoue, K. Satoh, F. Toni (Eds.), Compu-
tational Logic in Multi-Agent Systems. X, 315 pages.
2007. (Sublibrary LNAI).

Vol. 4370: PP Lévy, B. Le Grand, F. Poulet, M. Soto,
L. Darago, L. Toubiana, J.-F. Vibert (Eds.), Pixelization
Paradigm. XV, 279 pages. 2007.

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2006. (Sub-
library LNAI).

Vol. 4368: T. Erlebach, C. Kaklamanis (Eds.), Approxi-
mation and Online Algorithms. X, 345 pages. 2007.

Vol. 4367: K. De Bosschere, D. Kaeli, P. Stenstrém, D.
Whalley, T. Ungerer (Eds.), High Performance Embed-
ded Architectures and Compilers. X1, 307 pages. 2007.

Vol. 4366: K. Tuyls, R. Westra, Y. Saeys, A. Nowé
(Eds.), Knowledge Discovery and Emergent Complex-
ity in Bioinformatics. IX, 183 pages. 2007. (Sublibrary
LNBI).

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4362: J. van Leeuwen, G.F. Italiano, W. van der
Hoek, C. Meinel, H. Sack, F. Pl4sil (Eds.), SOFSEM
2007: Theory and Practice of Computer Science. XXI,
937 pages. 2007.

Vol. 4361: H.J. Hoogeboom, G. Piun, G. Rozenberg, A.
Salomaa (Eds.), Membrane Computing. IX, 555 pages.
2006.

Vol. 4360: W. Dubitzky, A. Schuster, PM.A. Sloot,
M. Schroeder, M. Romberg (Eds.), Distributed, High-
Performance and Grid Computing in Computational Bi-
ology. X, 192 pages. 2007. (Sublibrary LNBI).

Vol. 4358: R. Vidal, A. Heyden, Y. Ma (Eds.), Dynamical
Vision. IX, 329 pages. 2007.

Vol. 4357: L. Buttyan, V. Gligor, D. Westhoff (Eds.),
Security and Privacy in Ad-Hoc and Sensor Networks.
X, 193 pages. 2006.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4353: T. Schwentick, D. Suciu (Eds.), Database The-
ory — ICDT 2007. XI, 419 pages. 2006.

Vol. 4352: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part II. XVIII, 743 pages. 2006.

Vol. 4351: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part I. XIX, 797 pages. 2006.

Vol. 4349: B. Cook, A. Podelski (Eds.), Verification,
Model Checking, and Abstract Interpretation. XI, 395
pages. 2007.

Vol. 4348: S.T. Taft, R.A. Duff, R.L. Brukardt, E. Ploed-
ereder, P. Leroy (Eds.), Ada 2005 Reference Manual.
XXII, 765 pages. 2006.

Vol. 4347: J. Lopez (Ed.), Critical Information Infras-
tructures Security. X, 286 pages. 2006.

Vol. 4346: L. Brim, B. Haverkort, M. Leucker, J. van de
Pol (Eds.), Formal Methods: Applications and Technol-
ogy. X, 363 pages. 2007.

Vol. 4345: N. Maglaveras, 1. Chouvarda, V. Koutkias, R.
Brause (Eds.), Biological and Medical Data Analysis.
XIII, 496 pages. 2006. (Sublibrary LNBI).

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4342: H. de Swart, E. Ortowska, G. Schmidt, M.-

Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments II. X, 373 pages.
2006. (Sublibrary LNAI).

Vol. 4341: P.Q. Nguyen (Ed.), Progress in Cryptology -
VIETCRYPT 2006. XI, 385 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIIL, 317 pages. 2007.

Vol. 4339: E. Ayguadé, G. Baumgartner, J. Ramanujam,
P. Sadayappan (Eds.), Languages and Compilers for Par-
allel Computing. X1, 476 pages. 2006.

Vol. 4338: P. Kalra, S. Peleg (Eds.), Computer Vision,
Graphics and Image Processing. XV, 965 pages. 2006.

Vol. 4337: S. Arun-Kumar, N. Garg (Eds.), FSTTCS
2006: Foundations of Software Technology and Theo-
retical Computer Science. XIII, 430 pages. 2006.

Vol. 4335: S.A. Brueckner, S. Hassas, M. Jelasity, D.
Yamins (Eds.), Engineering Self-Organising Systems.
XII, 212 pages. 2007. (Sublibrary LNAI).

Vol. 4334: B. Beckert, R. Hihnle, PH. Schmitt (Eds.),
Verification of Object-Oriented Software. XXIX, 658
pages. 2007. (Sublibrary LNAI).

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practical
Aspects of Knowledge Management. XII, 338 pages.
2006. (Sublibrary LNAI).

Vol. 4332: A. Bagchi, V. Atluri (Eds.), Information Sys-
tems Security. XV, 382 pages. 2006.

Vol. 4331: G. Min, B. Di Martino, L.T. Yang, M. Guo, G.
Ruenger (Eds.), Frontiers of High Performance Comput-
ing and Networking — ISPA 2006 Workshops. XXXVII,
1141 pages. 2006.

Vol. 4330: M. Guo, L.T. Yang, B. Di Martino, H.P. Zima,
J. Dongarra, F. Tang (Eds.), Parallel and Distributed Pro-
cessing and Applications. XVIII, 953 pages. 2006.

Vol. 4329: R. Barua, T. Lange (Eds.), Progress in Cryp-
tology - INDOCRYPT 2006. X, 454 pages. 2006.

Vol. 4328: D. Penkler, M. Reitenspiess, F. Tam (Eds.),
Service Availability. X, 289 pages. 2006.

Vol. 4327: M. Baldoni, U. Endriss (Eds.), Declarative
Agent Languages and Technologies IV. VIII, 257 pages.
2006. (Sublibrary LNAI).

Vol. 4326: S. Gobel, R. Malkewitz, I. Turgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4325: J. Cao, I. Stojmenovic, X. Jia, S.K. Das (Eds.),
Mobile Ad-hoc and Sensor Networks. XIX, 887 pages.
2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4320: R. Gotzhein, R. Reed (Eds.), System Analysis
and Modeling: Language Profiles. X, 229 pages. 2006.

Vol. 4319: L.-W. Chang, W.-N. Lie (Eds.), Advances in
Image and Video Technology. XXVI, 1347 pages. 2006.

Vol. 4318: H. Lipmaa, M. Yung, D. Lin (Eds.), Informa-
tion Security and Cryptology. XI, 305 pages. 2006.

Vol. 4317: S.K. Madria, K.T. Claypool, R. Kannan, P.
Uppuluri, M.M. Gore (Eds.), Distributed Computing and
Internet Technology. XIX, 466 pages. 2006.

Vol. 4316: M.M. Dalkilic, S. Kim, J. Yang (Eds.), Data
Mining and Bioinformatics. VIII, 197 pages. 2006. (Sub-
library LNBI).

Vol. 4314: C. Freksa, M. Kohlhase, K. Schill (Eds.), KI
2006: Advances in Artificial Intelligence. XII, 458 pages.
2007. (Sublibrary LNAI).

Vol. 4313: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods. IX, 197 pages. 2006.
Vol. 4312: S. Sugimoto, J. Hunter, A. Rauber, A. Mor-
ishima (Eds.), Digital Libraries: Achievements, Chal-
lenges and Opportunities. XVIII, 571 pages. 2006.

Vol. 4311: K. Cho, P. Jacquet (Eds.), Technologies for

Advanced Heterogeneous Networks II. XI, 253 pages.
2006.

Vol. 4310: T. Boyanov, S. Dimova, K. Georgiev, G.
Nikolov (Eds.), Numerical Methods and Applications.
X111, 715 pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4308: S. Chaudhuri, S.R. Das, H.S. Paul, S. Tirtha-
pura (Eds.), Distributed Computing and Networking.
XIX, 608 pages. 2006.

Vol. 4307: P. Ning, S. Qing, N. Li (Eds.), Information
and Communications Security. XIV, 558 pages. 2006.
Vol. 4306: Y. Avrithis, Y. Kompatsiaris, S. Staab, N.E.
O’Connor (Eds.), Semantic Multimedia. XII, 241 pages.
2006.

Vol. 4305: A.A. Shvartsman (Ed.), Principles of Dis-
tributed Systems. XIII, 441 pages. 2006.

Vol. 4304: A. Sattar, B.-H. Kang (Eds.), Al 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006. (Sublibrary LNAI).

Vol. 4303: A. Hoffmann, B.-H. Kang, D. Richards, S.
Tsumoto (Eds.), Advances in Knowledge Acquisition
and Management. XI, 259 pages. 2006. (Sublibrary
LNAD).

Vol. 4302: J. Domingo-Ferrer, L. Franconi (Eds.), Pri-
vacy in Statistical Databases. XI, 383 pages. 2006.

Vol. 4301: D. Pointcheval, Y. Mu, K. Chen (Eds.), Cryp-
tology and Network Security. XIII, 381 pages. 2006.

X sb2. 2%

Table of Contents

Invited Contributions

Challenges for Formal Verification in Industrial Setting

Anna Slobodovd

Distributed Verification: Exploring the Power of Raw

Computing Power

Lubos Brim

FMICS

An Easy-to-Use, Efficient Tool-Chain to Analyze the Availability of

Telecommunication Equipment

Kai Lampka, Markus Siegle, and Max Walter

“To Store or Not To Store” Reloaded: Reclaiming Memory

O DETHAIIA .« v s vwesne swems Shimi $hiTidhiEininidnins sRIBs cHEME 48

Moritz Hammer and Michael Weber

Discovering Symmetries.oouuiiiiiii i

Hassen Saidi

On Combining Partial Order Reduction with Fairness Assumptions. . ..

Lubos Brim, Ivana Cernd, Pavel Moravec, and Juri Simsa

Test Coverage for Loose Timing Annotations

C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz

Model-Based Testing of a WAP Gateway: An Industrial Case-Study . ..

Anders Hessel and Paul Pettersson

Heuristics for ioco-Based Test-Based Modelling

Tim A.C. Willemse

Verifying VHDL Designs with Multiple Clocks in SMV

A. Smréka, V. Rehdk, T. Vojnar, D. Safrdnek,
P. Matousek, and Z. Rehdk

Verified Design of an Automated Parking Garage

Aad Mathijssen and A. Johannes Pretorius

Evaluating Quality of Service for Service Level Agreements...........

Allan Clark and Stephen Gilmore

23

35

51

67

84

X Table of Contents

Simulation-Based Performance Analysis of a Medical Image-Processing
Architecture....... ... 195
P.J.L. Cuijpers and A.V. Fyukov

Brasting Linux Code o 211
Jan Tobias Mihlberg and Gerald Liittgen

A Finite State Modeling of AFDX Frame Management Using Spin 227
Indranil Saha and Suman Roy

UML 2.0 State Machines: Complete Formal Semantics Via Core State
Machineso 244
Harald Fecher and Jens Schonborn

Automated Incremental Synthesis of Timed Automata 261
Borzoo Bonakdarpour and Sandeep S. Kulkarni

SAT-Based Verification of LTL Formulasooouuereno. ... 277
Wenhui Zhang

jmle: A Tool for Executing JML Specifications Via Constraint
PHOGTATIINING ¢ ci5m 5 55165595 8 H 8 56565 5575505 5 mn e ot s soie # mrm s s ot e 10 o o 0 20 293
Ben Krause and Tim Wahls

Goanna—A Static Model Checker.................................. 297
Ansgar Fehnker, Ralf Huuck, Patrick Jayet,
Michel Lussenburg, and Felizx Rauch

PDMC

Parallel SAfI‘ Solving in Bounded Model Checking 301
Erika Abrahdm, Tobias Schubert, Bernd Becker,
Martin Franzle, and Christian Herde

Parallel Algorithms for Finding SCCs in Implicitly Given Graphs 316
Jiurt Barnat and Pavel Moravec

Can Saturation Be Parallelised? — On the Parallelisation of a Symbolic
State-Space Generatoruiiiiiii i 331
Jonathan Ezekiel, Gerald Littgen, and Radu Siminiceanu

Distributed Colored Petri Net Model-Checking with CYCLADES 347
Christophe Pajault and Jean-Francois Pradat-Peyre

Author Index 363

Challenges for Formal Verification in Industrial
Setting

Anna Slobodova

Intel
anna.slobodova@intel.com

Abstract. Commercial competition is forcing computer companies to
get better products to market more rapidly, and therefore the time for
validation is shrinking relative to the complexity of microprocessor de-
signs. Improving time-to-market performance cannot be solved by just
growing the size of design and validation teams. Design process automa-
tion is increasing, and the adoption of more rigorous methods, including
formal verification, is unavoidable because for achieving the quality de-
manded by the marketplace.

Intel is one of the strongest promoters of the use of formal methods
across all phases of the design development. Intel’s design teams use high-
level modeling of protocols and algorithms, formal verification of floating-
point libraries, design exploration systems based on formal methods, full
proofs and property verification of RTL specifications, and equivalence
checking to verify that transistor-level schematics correspond to their
RTL specifications. Even with the best effort to adopt the progress in
formal methods quickly, there is a large gap between an idea published at
a conference and a development of a tool that can be used on industrial-
sized designs. These tools and methods need to scale well, be stable
during a multi-year design effort, and be able to support efficient de-
bugging. The use of formal methods on a live design must allow for
ongoing changes in the specification and the design. The methodology
must be flexible enough to permit new design features, such as scan and
power-down logic, soft error detection, etc. In this paper, I will share my
experience with the formal verification of the floating-point unit on an
Itanium(R) microprocessor design and point out how it may influence
future microprocessor-design projects.

1 Introduction

Floating-point (FP) arithmetic is, with respect to functional validation, one of
the critical parts of modern microprocessor designs. Even though the algorithms
for FP arithmetic are well known, optimization for high performance, reliability,
testability and low power, may introduce bugs into a design. The huge input data
space that needs to be explored to ensure correctness of floating-point designs is
beyond the limits of traditional simulation techniques (hereafter referred to as
simulation). Fortunately, formal methods are well suited for this area and they
can enhance a verification effort substantially. Formal semantics of floating-point

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 1-22, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 A. Slobodova

operations can be expressed in a succinct way and the IEEE Floating-Point
standard [IEEE] serves as a guide for many instruction-set architectures. In this
paper, floating-point algorithms are not our concern. Instead, I focus on the
correctness of their register-transfer level (RTL) implementations.

For almost a decade, papers reporting compliance proofs for circuit models
with respect to the IEEE standard and particular instruction set architecture
have been published. While the early research was focused on answering a prin-
cipal question of the feasibility of formal proofs for computer arithmetic (e.g.,
[AS95, CB98, OZ+99]), recent work emanates from commercial industry. Formal
tools and methods have reached the maturity necessary for their deployment in
real design projects.

There are substantial differences between the methodologies used at different
companies, depending on their target and available tools and resources. Intel
and AMD were among first companies that applied formal methods, at first to
verification of floating-point algorithms and then to RTL design. Methods re-
ported from AMD design team in [Rus98, RF00, FK+02] are solely based on
theorem proving using ACL2 system !. Although lot of automation has been
added to building ACL2 models from RTL descriptions, and an ACL2 library
of Floating-Point Arithmetic has been created to avoid repetition of implemen-
tation independent proofs, the methodology still requires high-level expertise in
theorem proving and a perfect understanding of the design.

A recent paper from IBM by Jacobi et al. [JW+05] presents a verification
method based on symbolic simulation of a RTL model and its comparison to a
high-level model written in VHDL. Although highly automated, the approach
is not as rigorous as the one described by AMD, and lacks the scope of the
methodology developed at Intel [AJ400][AJ+00, KA00, KN02, KK03, Sch03].
It skips the verification of the more difficult part of the design - multiplier,
by removing it from the cone of influence, hence proving merely correctness of
the adder and rounder. In contrast, in our approach, no abstraction or design
modification took place. We return to the comparison of their work to our results
in Section 7.

At Intel, an important work in the area of the verification of floating-point
algorithms, and in particular, floating-point libraries for Itanium® has been
done by John Harrison (see [Har05] for an overview, and [Har00a, Har00b, Har03]
for details). However, in hardware verification, while many papers have been
published on verification of Pentium(® design, the first report on the formal
verification of floating-point arithmetic for the Itanium®) microprocessor family
was reported on Designing Correct Circuits (DCC) Workshop 2, in March, 2004,
in Barcelona [SNO4]. The main result was the first successful formal verification
of floating-point fused multiply-add instruction which is in repertoire of the IA-
64 Instruction Set Architecture (ISA). Proofs have been constructed for a live
project aimed at a next generation of Itanium(® microprocessor. We continued
our work presented at DCC by extending the scope and verifying correctness

L http:/ /www. cs.utezas. edu/moore/acl2/
2 http:/ /www.math.chalmers.se/ ms/DCC04/

Challenges for Formal Verification in Industrial Setting 3

of the rest of floating-point instructions (about 40) issued to execution pipe
All instructions have been verified with respect to eight precisions and four
IEEE rounding modes, including dynamic rounding specified in floating-point
status register. The verification was based on symbolic trajectory evaluation
and arithmetic libraries previously proven within the same system [KN02]. The
proof includes correctness of the result, update of floating-point status register,
and correctness of more than a dozen interrupt signals. Behavior of the floating-
point circuitry for invalid instructions and/or instructions with false qualifying
predicates have been considered as well. All proofs have been regularly rerun as
a regression suite to ensure the consistency of any changes in the design. Formal
sequential equivalence checking was used to finish the validation of low-level
design proving its correctness with respect to the RTL. However this last phase
of verification is out of scope of this paper.

In the process of constructing our proofs we found many bugs and issues
that required RTL changes. Our work also helped to clarify incomplete and
ambiguous parts of our micro-architectural specification, and it contributed to
some hardware optimizations. The proofs are automated and portable to other
TItanium® micro-processor designs.

The goal of this paper is to describe the scope and results of our work, and to
provide some insight into challenges of using formal verification in an industrial
environment, where a fine balance between rigorous verification methods and
traditional simulation-based methods is crucial for success of the validation.
Although the approach we choose is a combination of known techniques already
documented in context of the verification of floating-point adders and multipliers,
we believe that it has many aspects that might be interesting to researchers in
academia as well as validation engineers.

The paper is organized in following way: Next section describes tools and
methodology developed for formal verification of floating-point arithmetic at
Intel Corporation and specifics of our approach. The core of our work is described
in Section 3, where we dive into details of the verification of the most interesting
operation - fused multiply-add, and report what has been covered by our proofs.
Since debugging of failing proofs is one of the concerns in the use of formal
methods, we touch this question in Section 4. Section 5 focuses on benefits of our
effort for the design project. We describe our experience with proof management
in Section 6. Concluding section contains summary of our work and detailed
comparison to related published work.

2 Our Approach to Formal Verification of FP Arithmetic

Intel’s approach to the validation of floating-point arithmetic includes a huge
database of corner test-cases and pseudo-random generators for simulation, as
well as Intel’s FORTE formal verification tool that combines theorem-proving
with model-checking capabilities 3. The methodology described below does not

3 A publicly available version of the tool that can be used for non-commercial purposes
can be downloaded from http://www.intel.com/software/products/opensource/

4 A. Slobodova

rely on FORTE specifics and can be reproduced using any tool with capability
of symbolic trajectory evaluation (STE) and some means of composing results
obtained by STE. We believe that formal proofs coupled with traditional pseudo-
random and focused simulation is a good way to achieve thorough functional
validation. In our project, the formal and simulation based validation teams
mutually benefited from their collaboration. However, this is out of the scope of
this paper and we will focus on formal verification only.

2.1 FORTE System and STE

The history of formal verification of floating-point arithmetic at Intel has been
motivated by two controversial trends: promising results in academia that were
followed by proof of concept at Intel Research Lab [OZ+99]; and bugs that
escaped to the micro-processor products [Coe96, Fis97]. Today, formal proofs
developed for Pentium®) designs [AJ+00, KA00, KN02, KK03, Sch03] are re-
used and even put into hands of validation engineers that are not experts on
formal methods. These proofs have been done using FORTE — a system built on
top of VOSS. In this section, we give a rather informal description of the tech-
nology inside the FORTE system, just enough to understand the paper; details
can be found in the referred publications. FORTE includes a light-weight theo-
rem prover and a symbolic trajectory evaluation (STE) engine [STE]. The theo-
rem prover is based on a higher-order logic. The interface language for FORTE
is FL - a strongly-typed functional language in the ML family [Pau96]. One
good property of FL as a specification language is its executability. While cre-
ating specifications, we often ran sanity checks. For instance, the translation
from the memory format to register-file format was written as specified by the
Software Developers Manual [ISA], and then checked whether consequent in-
verse translations yield consistent values. FL includes Binary Decision Diagrams
(BDDs)[Bry86] as first-class objects and STE as a built-in function. For more
information we refer the interested reader to the online documentation for the
FORTE system and [KA00]. Here we describe the basic mechanisms of STE and
the framework in which we work.

STE is a weak form of model-checking where a formal (gate-level) model is
subjected to a symbolic simulation. The idea of a symbolic simulator is similar to
that of standard simulator but it differs in that symbolic values (besides explicit
binary values) are assigned to each signal and these values propagated through
the design model. Results of such simulations are formulas for specified signals
at specified times.

STE is an enhancement of symbolic simulation where Boolean logic has been
extended to a lattice [STE] with X as a bottom (no information) and T as a
top element (overconstrained). X is automatically assigned (by the STE simula-
tor) to signals to which no value has been specified. X can be thought of as an
unknown value. Its semantics and use are discussed later. Symbolic values are
bound to signals at specified times to form signal trajectories. Trajectories that
prune possible computations by restricting the values of some signals at specific

Challenges for Formal Verification in Industrial Setting 5

times are called antecedents; they can be interpreted as assumptions. Trajec-
tories that specify expected responses of the circuit are called consequents. A
specification is written in a form of Boolean expressions that constrain sym-
bolic values in antecedents and consequents. Trajectory evaluation correctness
statement = 1; [ant =>> cons| means: all circuit computations that satisfy
antecedent ant also satisfy consequent cons. If any of consequent is violated, a
STE run (proof) fails and a counterexample can be extracted from this failure.
In fact, the failed proof provides all possible counterexamples and the user may
select one for debugging purposes. If all consequents hold at every point of the
simulation, success is reported by the tool.

2.2 Pre- and Post-condition Framework

Because of capacity limitations inherit in the STE engine, we may be forced
to break our model into smaller pieces. In this case, we make sure that those
pieces perfectly fit together. Informally, this means that the border signals of
the decomposition match exactly and that nothing is left out of the design. Also
the times at which we extract the values of the signals must be consistent. In
terms of STE, consequents that include border signals serve as antecedents in
the following step of the proof. In this way, we can use facts proved in one part
as assumptions for later proofs.

The idea of proof (de)composition described above comes from the pre-and-
post-condition theory used for verification of sequential programs. It was first
applied to STE by Kaivola and Aagaard [KAQ0]. It allows one to prove the
statements of the form {P}S{Q}, where P and Q are logical properties and
S is a program. In our case, the program is replaced by a circuit and tra-
jectories that bind values inputs and outputs of the circuit at specific times.
{P(x)}(pretry, ckt, posttr,){Q(z,y)} represents the statement: if pretr, binds
the Boolean vector z to signals (usually inputs) of the circuit ckt and posttr,
binds the Boolean vector y to signals of the circuit (usually outputs), then the
property P(z) guarantees property Q(z,y).

{P(z)}(pretry, ckt, posttry){Q(z, y)} is a shorthand for the following formula:

Vz(P(z) = (Jy(f=ckt [pretre =>> posttry])) A
(Vy((Fert [pretre => posttry]) = Q(z,y)))) (1)

In our methodology, P is a conjunction of an initial condition that describes
the restriction of inputs to the circuit, and an auziliary pre-condition that is
used to further restrict the simulation. For consistency, we use the same initial
conditions throughout all proofs for every instruction analyzed, except when we
weaken an initial condition to true. An example of an initial input condition
is a statement that the specified input signals have value of a specific opcode.
Auxiliary pre-conditions are usually used to simplify a particular STE run by
restricting symbolic values (meaning that the inputs or internal nodes are re-
stricted). An example of an auxiliary pre-condition is a restriction specifying

