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PREFACE

The general theory of analytic functions of several complex variables was
formulated considerably later than the more familiar theory of analytic
functions of a single complex variable. Some of the principal function-
theoretic problems were attacked and a basic foundation for the subject
wag laid late in the nineteenth century by Weierstrass, and around the turn
of the century by Cousin, Hartogs and Poincaré. Certain central problems,
cither trivial in one variable or peculiar to several variables, were left open.
Significant work in many directions was achieved by Bergman, Behnke,
Bochner and others, in papers appearing from about the mid-1920’s until
the present time. The peculiarities of several complex variables were well
exposed and the central difficulties clearly stated by the time of the appearance
of the book of Behnke and Thullen, but the main problems were still there. .
Then K. Oka brought into the subject a brilliant collection of new ideas based
primarily in the earlier work of H. Cartan and, in a series of papers written
between 1936 and 1953, systematically eliminated these problems. But Oka’s
work had a far wider scope, and it was H. Cartan who realized this and
developed the algebraic basis in the theory. This was essentially put into its
present form in the seminars of Cartan in Paris (1951-52 and 1953-54) and
the vastly useful tools provided by sheaf theory were first systematically
employed there. The deep and etensive work of Grauert and Remmert on
complex analytic spaces was built upon this foundation, and the same is of
course true for the impressive works of many others during the last decade
and at the present time.

The intention of the present volume is to provide an extensive introduction
to the Oka-Cartan theory and some of its applications, and to the general
theory of analytic spaces. We have neither attempted to write an encyclopedia
of the subject of analytic functions of several complex variables, nor even
tried to cover everything that is known today in the two areas of principal
emphasis. Many fascinating aspects of this broad and active field that might
have been encompassed by a book of the same title have been omitted almost
entirely; the reader must look elsewhere for the differential-geometric and
algebraic-geometric sides of the subject, for the theory of automorphic
functions and complex symmetric spaces, for the Bergman kernel function,
and for applications to mathematical physics. An attempt has been made
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viii Preface

to append a rather complete bibliography of books and papers in the two
areas on which this introduction concentrates, so that the reader can pursue
these topics further at will. ‘

This book has been written with the prospective student of several
complex variables in mind. In fact, the main reason for writing this book
has been the untenable lack of an adequate introduction to one of the most
active mathematical fields of the day. Further, there have been many recent
results which cast a new light on much of the introductory material, and
these results should properly be exposed early in the development of the
subject. We have tried both to arrange this book so that the fundamental
techniques will be exposed as soon as possible, and at the same time to give
a firm foundation for their use. Of course, as a very active field, several
complex variables is still in a state of ‘flux. There are many different
approaches that an introduction such as this could take, and one’s choice
of the ideal organization of the material varies from year to year. Indeed,
were we to rewrite this book from scratch starting today it would probably
turn out to be a quite different book. k.

The prerequisites for reading this book are, essentially, a good under-
graduate training in analysis (principally the classical theory of functions of
one complex variable), algebra, and topology; references have been provided
for any important bits of mathematical lore which we did not consider stan-
dard minimum equipment for beginning graduate students in mathematics or
their equivalent. The book is divided into nine chapters numbered with
Roman numerals; each chapter is subdivided into sections indicated by
capital letters. The definitions, lemmas, theorems, jokes, etc., are numbered
in one sequence within each Section; the principal formulas are numbered
Similarly in a separate sequence. An expression such as “Theorem III C21”
indicates a reference to the second numbered entity (in this case, a theorem) in
Section C of Chapter III; for references within the same Chapter the Roman
numeral will be dropped, and for references within the same Section the letter
will often be dropped as well. References given in other forms will be left to
the reader to decipher, with our best wishes for his success.

In somewhat more detail, the outline of the contents is as follows.
Chapter I is in itself an introductory course in the subject (perhaps one
semester in length). It presents, in outline, the essentials of the problems and
some approaches to their solutions, and, in some special cases, includes the
complete solutions. The discussion also shows the necessity for developing
further techniques for tackling the problems, and thus motivates the remainder
of the work. Except for Sections G and H, which are optional, the contents of
this Chapter are prerequisite for what follows. However, to getinto the subject
most rapidly, bypassing the motivational portions, the reader may pass directly
to Chapter II after reading Sections A, B, and C of Chapter I; Sections D
through G are not needed until Chapter VI, and reading them can be



Preface ix

postponed until specific references are given to them. Chapter II contains the
local theory of analytic functions and varieties, and is the natural sequel to
Chapter I. Beyond this point, there are several paths which the reader may
follow, one of which of course is the straightforward plodding through the
chapters as they occur. The reader mostly interested in the sheaf-theoretic
aspects, especially in Cartan’s famous Theorems A and B, may proceed next
to Chapters IV, VI, and VIIL The reader interested rather in complex analytic
spaces and their properties may proceed directly to Chapters III and V. The
sheaf-theoretic notation and terminology introduced in Chapter IV are used
in Chapter V for convenience, but none of the deeper properties are really
required; however the discussion in Chapter VII does require some of the
results of Chapter VI. The final chapter consists of an exposition, from the
point of view of the preceding material, of pseudoconvexity.

This book developed from joint courses in several complex variables given
by the authors at Princeton University during the academic years 1960-61 and
1962-63. It is a deep pleasure to both of us to be able to record here the debts
of gratitude we owe to those who helped make this book possible. Lutz
Bungart and Robin Hartshorne wrote and organized the lecture notes for our
first course; these notes formed the kernel of the present work, and their
reception encouraged us to proceed with the task. Thomas Bloom, William
Fulton, Michael Gilmartin, and David Prill at Princeton aided in the revision
of these notes and contributed many corrections and improvements. We are
deeply indebted to Errett Bishop and Kenneth Hoffman, who read our
tentative drafts with many helpful and inspiring comments. Finally, our
thanks go to the typists of these various drafts; Caroline Browne, Eleanor
Clark, Patricia Clark, and Elizabeth Epstein; and to the staff of Prentice-Hall,
Inc.

Princeton, New Jersey R. C. GUNNING
Waltham, Massachusetts H. Rossi
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CHAPTER I

HOLOMORPHIC FUNCTIONS

A. The Elementary Properties of Holomorphic Functions

The field of real numbers will be denoted by IR, and the field of complex
numbers by C; both are topological fields with the familiar structures. In
studying the theory of functions of several complex variables, we are par-
ticularly interested in the space C" = C X - -+ x C, the Cartesian product
of n copies of the complex plane. For the points of C" we shall use the
notation z = (zy,. .., 2,), where z;=x;+iy;€ C and x;, y; are real
numbers (and i is a square root of —1). The absolute value of a complex
number z, will be denoted by |z,|, and for z € Cr, we define

|z] = max {|z|; 1 <j <n}.

An open polydisc (or open polycylinder) in C" is a subset A(w;r) = C” of
the form

(¢)) A(w;r) = AWy, ..o s Wa3Tiy < o5 Tn)
={zeC|lz; —wl <r,1 <j<n}

the point w € C™ is called the center of the polydisc, and
r=(y...,rx)€ER" (r;>0),

is' called the polyradius. The closure of A(w;r) will be called the closed
polydisc with center w and polyradius r, and will be denoted by A(w; r).
More generally, if D; = C are any subdomains (connected open subsets)
of the complex plane, the product set D = Dy X - X Dy < C" will be
called an open polydomain. A polydisc is the special case in which the sets
D; are discs; similarly, an open polysquare is the special case in which the
sets D, are open squares in the plane. The open polydiscs form a basis for
the collection of open sets in the Cartesian product topology on C". Con-
sidered only as a topological space (or as a real vector space), C" is of course
just the same as R?", the ordinary Euclidean space of 2n dimensions. Thus
we can impose on C" in a natural manner any of the structures of R2?"; for

1



2 Holomorphic Functions Chap. I

instance, the Lebesgue measure on R?* becomes a measure on C”, which
will be denoted by dV.

A complex-valued function f on a subset D = C" is merely a mapping
from D into the complex plane; the value of the function f at a point z € D
will be denoted by f(z), as usual.

1. Definition. 4 complex-valued function f defined on an open subset D < C*
is called holomorphic in D if each point w € D has an open neighborhood U,
w € U < D, such that the function f has a power series expansion

@ D=3 6= W = W

Vi V=0
which converges for all z € U. The set of all functions holomorphic in D will
be denoted by Oy,

Notice that polynomials in the functions z,, . . ., z, are holomorphic in
all of C™. It is a familiar result from elementary analysis that a power series
expansion of the form (2) is absolutely uniformly convergent in all suitably
small open polydiscs A(w; r) centered at the point w. A first consequence
of this observation is that the function f is continuous in such polydiscs
A(w; r); and hence, any function holomorphic in D is also continuous in D.
A second consequence is that the power series (2) can be rearranged
arbitrarily and will still represent the function f. In particular, if the co-
ordinates z;, . . ., Z;_3, Z;41, - - - » Z are given any fixed values a,. .., a; ,,
Qj.1, - - - » Ay, then this power series ean be arranged as a convergent power
series in the variable z; alone, for z; sufficiently close to w;; and this holds
for any values g, sufficiently near w,. That is to say, the function f is
holomorphic in each variable separately throughout the domain in which it
is analytic; thus the ordinary complex derivative with respect to one of the
variables z, is well-defined, and will be denoted by 9/dz,. A converse to the
boldface statement is also true, as follows.

2. Theorem (Osgood’s Lemma). If a complex-valued function f is continuous
in an open set D < C™", and is holomorphic in each variable separately, then
it is holomorphic in D.

Proof: Select any point w € D, and any closed polydisc A(w;r) < D.
Since f is holomorphic in each variable separately in an open neighborhood
of A(w; r), a repeated application of the Cauchy integral formula for functions
of one variable leads to the formula

@ @)= (5:;) f CL dly.

ey € gV
lw;—Lyl=ry o . |"’:—C:‘="3C2 .

dg
AR
I"’n—Cu|-fnz” [



Sec. A The Elementary Properties of Holomorphic Functions 3

for all z € A(w; r). For any fixed point z, the integrand in (3) is continuous
on the compact domain of integration; hence the iterated integral in (3)
can be replaced by the single multiple integral

@ ol el ey

|wj—Cs51=r4

But now, again for a fixed point z € A(w; r), the series expansion

1 3 (24> wy)™ - - - (Zg — Wa)'™

(Et = Zl) i (;n =g zn) ='l' v vp=0 (€1 e wl)vrl—l = (Zn = wn)vn‘H.

is absolutely uniformly convergent for all points { on the domain of inte-
gration in (4); consequently, after substituting this expansion into (4) and
interchanging the orders of summation and integration, it follows immediately
that the function f has a power series expansion of the form (2), with

i 2 o  f©dL - d,
(5) Qs ciivn (ZTTi)lwl_J;IBr’(CI & wl)v1+1 5 (gn e wn)v.ﬁ-l %

Therefore f'is a holomorphic function, as desired.

Remark: The hypothesis that the function f be continuous in D is
actually inessential; but this stronger theorem (Hartogs’ theorem) is sur-
prisingly much more difficult. This result will not be needed in the present
book, so we shall not include a proof; the reader interested in pursuing thi:
question is referred to Bochner-Martin [46, VII].

Some of the observations made during the course of the preceding proof
merit separating out for special attention. First, any function f holomorphic
in an open neighborhood of a closed polydisc A(w; r) has a Cauchy integral .
representation of the form (4); that formula is the natural generalization of
the Cauchy integral formula for holomorphic functions of one complex
variable. By differentiating (4), it follows that

(6) ak1+' ; .+k“f(z)___ (kl !) 5o (kn!) f f(c) dCl Fags dCﬂ
az,{I e aZ’;" (21”)11 {w—Lsl=r (Zl - zl)kﬂ.1 B (Cn T zn)kn+1 e

Upon then comparing (5) and (6), it further follows that the coefficients in
the power series expansion (2) of f are given by

avl+ v +v,‘f

24 YT T v
. sl

(7) (vl!) fris (”n!)av, ceeVp (W)



4 Holomorphic Functions Chap. 1

As a further consequence of these observations, it follows that the power
series expansion of a holomorphic function at w is uniquely determined by
that function and converges within any polydisc A(w;r) contained in the
region of analyticity of that function; for the proof of Theorem 2 exhibited
a power series expansion convergent within any fixed compact subset of
A(w; r), and by (7) all of these series expansions must actually coincide.

One corollary which can be drawn from Osgood’s lemma is an extension
of the familiar Cauchy-Riemann equations, as a criterion for analyticity.
As a convenient notation, introduce the first-order linear partial differential
operators

2 1(3 .a) 9 1(3 .a)
8 —=\——i— nd —=-|— —,
BN g % B Y v
where x;, y; are the underlying real coordinates in C", and z; = X; + iy;.

It should perhaps be remarked that the left-hand sides in (8) are defined by
that equation, and have no separate meaning. However, note that

d 1( d U ) :
se T e L 00 S SRR =1,
0z, e 0x, lay, (xrt-dy))
and hence that
—zp=nzT;
9z, i i

therefore, when applied to holomorphic functions, the operator 9/dz; co-
incides with the familiar complex derivative of a holomorphic function.

3. Theorem (Cauchy-Riemann Criterion). A complex-valued function f, which
is defined in an open subset D = C™ and which is continuously differentiable
in the underlying real coordinates of C", is holomorphic in D if and only if
it satisfies the system of partial differential equations

)] —?_—f(z)=0, Sy an .
az 7
Proof: At any point of D, consider f{(z) as a function of the single variable
z;, holding the other variables constant. Decomposing f into its real and
imaginary parts by writing f(z) = u(z) + iv(z), note that

0 (au av) .(au av)
2 ienif () sinc| o 3% S g
af,f(z) gy, . dy, e 0y, * 0x,

Therefore (9) is equivalent to the classical Cauchy-Riemann equations for
each variable separately; and, as is well-known, this in turn is equivalent to
the function f being holomorphic in each variable separately. The desired
theorem then follows immediately from Osgood’s lemma.
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The following facts follow easily from the Cauchy-Riemann criterion.

4. Theorem. Let D be an open set in C®. Then:
() Oy is a ring under the operations (f + 82 = f(z) + g(2), (fg)(2) =
f(2)g(2).
(ii) If f is in Oy, and is nowhere zero, then 1/f is in Oy,
(ii) If f is in Oy, and is real-valued or has constant modulus, then f is
constant.

Proof: (i) By direct computation,

Le _o o
%z, (It.2) 2z, + 22,
2 il 5 g T8y
(10) oz, (f2) oz, g+ 2z,

hence the assertion (i) follows from Theorem 3.
(i) Apply (10) with g replaced by f~1. We find that

1
iy S0
0z,

(i) If fe Op is real-valued, 9f/dx; and 9f/dy, are also real-valued. But
0f/0x; = i 9f]dy;, so both are zero for all j, | <j < n. Thus fis constant.
If f has constant modulus, then for any we D we can write f = pe®(®,
where 0 is a well-defined real-valued function in a neighborhood of w. Then,
in U, o o e 0

0z, 0z,
Thus 0 is holomorphic, so is also constant.

One of the fundamental properties of holomorphic functions of one

-complex variable is that the composition of two holomorphic functions is
also holomorphic; the Cauchy-Riemann criterion now permits us to extend
this property to functions of several complex variables, as follows. Suppose
that D < C* and that D' = C™ are two open domains; the variables
in D will be written z = (z,, . . ., z,) and the variables in D’ will be written
W= (Wy,...,W,). Any mapping G: D —> D’ can be described by m
- functions
(11) Wi BBt o5 99 %adss v v o Wa = alBu 5 a:Za):
The mapping G will be called a holomorphic mapping if the m functions
& - - - 8m are holomorphic functions in D. If f(w,,...,w,) = Sfw) is
any function defined in D’, the composite f(G(z)) is then a well-defined
function in D.
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5. Theorem (Composition Theorem). If f(w) is a holomorphic function in
D’ and if G: D —> D’ is a holomorphic mapping, then the composition
f(G(2)) is a holomorphic function in D.

Proof: Separate the functions (11) into their real and imaginary parts
by writing g,(z) = u,(z) + iv/(z). Since all the mappings involved are differ-
entiable in the underlying real coordinates, the usual chain rule for differenti-
ation can be applied as follows:

f(G(z)) ™ (af Ou, of av,,)
12 ST = e Y Tk
=% l(if £ -ﬁ)% S 1(3_f -2[)%
—kgl 2 auk lavk aZ, +k=l 2 auk + : avk aZ,
—3(2L% o %)
2 (aw,, 0z, . oW, 02,
(This is the complex form of the chain rule.) If the function fand the mapping
G are both holomorphic, then 9f/9w, = 0 and dg,/dz; = O for all k; so by
the above formula, 9f(G(2))/dz; = 0 for all j. It then follows from the

Cauchy-Riemann criterion that the function f(G(2)) is holomorphic, as
desired.

k=1

Many other familiar results from the theory of holomorphic functions
of one complex variable also have easy extensions to functions of several
complex variables.

6. Theorem (Identity Theorem). If f(z) and g(z) are holomorphic functions
in a connected open set D < C*, and if f(z) = g(z) for all points z in a non-
empty open subset U < D, then f(z) = g(z) for all points z € D.

Proof: Let E be the interior of the set consisting of all points z for which
JS(2) = g(2); thus E is an open subset of D, and is nonempty since U < E.
It clearly suffices to show that E is relatively closed in D as well; for it will
then follow from the connectedness of D that E — D, and the theorem is
therewith demonstrated. Therefore, consider any point w € D N E, where
E'is the point set closure of E; and select a number r > 0 sufficiently small
that the polydisc A(w;r,...,r) © D. Since w € E, there must exist a point
w’ such that Iw; —w,l <rf2, (j=1,...,n), and that w’ € E; note that
weAW'; rf2,...,r[2). The function Sf(2) — g(2) is holomorphic in

AW, ..., VD),

hence has a power series expansion centered at w’ and converging throughout
this small polydisc. Now since w’ € E, this function vanishes identically in
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an open neighborhood of w’, and so by (7) all the coefficients in this power
series expansion are zero; but then f(z) — g(z) = 0 throughout

AW 12 T2,
and thus w € E. This shows that E is relatively closed in D, as desired.

7. Theorem (Maximum Modulus Theorem). If f(z) is holomorphic in a con-
nected open set D = C*, and if there is a point w € D such that |f(z)| < |f(w)|
for all points z in some open neighborhood of W, then f(z) = f(w) for all points
zeD.

Proof: Following the pattern of one of the customary proofs of the
maximum modulus theorem for functions of one complex variable, we begin
by observing that as a consequence of the Cauchy integral formula (4), for
any polydisc A(w;r) < D,

V(O)f (w) = f £O AV,
A(w;r)

where dV({) is the Euclidean volume element and V(A) = dv(0) is the
volume of A(w;r). As a consequence of this formula, Alo:r)

VB) If W)l < f £ V(D).

Alw;r)

Now select a polycylinder A(w;r) such that | f(w)| — | f(2)| =0 for all
points z € A(w; r); then

0< f AFW)] — 1£QOD av(©)

A(w;r)

= VB) [f00)] — f D1V <0,

A(w;r)

so that | f(w)] — |f(2)| = O for all z € A(w; r). Then, by Theorem 4, f must
be constant in A(w; r); indeed f(z) = f(w) for all z € A(w; r). The desired
result follows immediately from the identity theorem.

Since the power series expansion (2) of a function holomorphic in a
neighborhood of w converges absolutely, we may regroup terms into a series
of homogeneous polynomials:

f(z)=§:(v+ 3 Eal s = W) (B w,,)"'). 13)

k=0 ov ot Vg=k



