Yot TRER

- PROGRAMMING |
LANGUAGES ¢

Asw
o
5 Av
N A S
B -
}v sa“:\j«i
b
=% 1
.
3

TERRENCE W PRATT
‘v‘HHVlN V. ZELKOWITZ

2

2950307

¢

PROGRAMMING LANGUAGES

Design and Implementation
THIRD EDITION

EFRITIES
wit 53
B3
Terrence W. Pratt

Center of Excellence in Space Data and In formation Sciences
NASA Goddard Space Flight Center, Greenbelt, MD

Marvin V. Zelkowitz

Department of Computer Science and
Institute for Advanced Computer Studies
University of Maryland, College Park, MD

AR

N

Prentice-Hall International, Inc.

MIARRMILT

E9960307

() :IEF 158 5

Programming languages: design and implementation 3rd ed./Terrence W. Pratt
and Marvin V. Zelkowitz.

"_\ "

© 1996, 1984, 1975 by Prentice Hall, Inc.

Original edition published by Prentice Hall, Inc., a Simon & Schuster Compa-
ny.

Prentice Hall 23 &) $Z B0 H K2 AL 78 0 B 55 P9 OR (46 o B 7 9 45 51 A7
BUIK RT3 DR 6 7 4 X)) K RUR AT AR R AR
FHREABLZAR, REHBEPERE, FEAETHAXNDE . H RS
#RED,

FBHEMEH Prentice Hall AP HIRE, TIRBERSHE,

AL RARUS F VAL R 590 5 01-98-0263

BEH#ERY% B (CIP) ¥

FFRIHES . Wit 5 5m . 58 3 M. 90/ FFF (Pratt, T.W.), BFE/RH]
4 (Zelkowitz, M. V.) % . — FEIRR. — L& EE K2 R, 1998.5

(KRR ENS)

ISBN 7-302-02833-8

I.% 01.0% - @% - [I.RFES-EX N.TP312
EPIEMZ:IEH%ECIPWE?Z?(%)@EM@O%

HRARE T K AL (LU R KL P, BB 4 100084)
BRI R ik - www . tup. ts‘ihghua.' edu.cn

ENRIZE : 1§ KFERI

EiTHE : FEBIE BB AT

FF A& 850x1168 1/32 EN5K: 21.125

KRR k. 1998 4E 5 HEE 1 RL 1998 4 5 A% 1 EIRI

$ 5. ISBN 7-302-02833-8/TP- 1490

EN % 0001~5000

E M 32.00 ¢

Preface

This third edition of Programming Languages: Design and Implementation con-
tinues the tradition developed in the first two editions to describe programming
language design by means of the underlying software and hardware architecture
that is required for execution of programs written in those languages. This pro-
vides the programmer with the ability to develop software that is both correct and
efficient in execution. In this new edition, we continue this approach, as well as
improve upon the presentation of the underlying theory and formal models that
form the basis for the decisions made in creating those languages.

Programming language design is-still a very active pursuit in the computer
science community as languages are “born,” “age,” and eventually “die.” This third
edition represents the vital languages of the mid-1990s. Chapters on COBOL, PL/1I,
SNOBOL4, and APL have been dropped. Discussions on C, C++, ML, Prolog, and
Smalltalk have been added to reflect the evolution of programming language design
and the emergence of new paradigms within the community. Pascal is starting to
age, and Ada and FORTRAN have been renewed with new standards, Ada 95 and
FORTRAN 90, respectively. It is interesting to speculate as to whether any of these
languages will be in future editions of books such as this one. For both of us, the
deletion of SNOBOL4 was a considerable loss. It is one of the most interesting and
powerful languages ever developed, although it still lives on as “shareware” in PCs.

At the University of Maryland, a course has been taught for the past 20 years
that conforms to the structure of this book. For our Jjunior-level course, we assume
the student already knows Pascal and C from earlier courses. We then emphasize
ML, Prolog, C++, and LISP, as well as include further discussions of the implemen-
tation aspects of C and Pascal. The study of C++ furthers the students’ knowl-
edge of procedural languages with the addition of object oriented classes, and the
inclusion of LISP, Prolog, and ML provide for discussions of different programming
paradigms. Replacement of one or two of these by FORTRAN, Ada, or Smalltalk
would also be appropriate.

It is assumed that the reader is familiar with at least one procedural language,
generally C, FORTRAN, or Pascal. For those institutions using this book at a lower
level, or for others wishing to review prerequisite material to provide a framework for

vi Preface

discussing programming language design issues, Chapters 1 and 2 provide a review
of material needed to understand later chapters. Chapter 1 is a general introduction
to programming languages, while Chapter 2 is a brief overview of requirements for
programming languages.

The theme of this book is language design and implementation issues. * Part I
forms the core of an undergraduate course in programming languages. Chapters 3
through 8 are the basis for this course by describing the underlying grammatical
model for programming languages and their compilers (Chapter 3), elementary data
types (Chapter 4), encapsulation (Chapter 5), statements (Chapter 6), procedure
invocation (Chapter 7), and inheritance (Chapter 8), which are the central con-
cerns in language design. Examples of these features are described in a variety of
languages and typical implementation strategies are discussed.

The topics in this book cover the 12 knowledge units recommended by the 1991
ACM/IEEE Computer Society Joint Curriculum Task Force for the programming
languages subject area [TUCKER et al. 1991]. For institutions using this book
at a higher level or those wishing to address more advanced topics, Chapter 9
continues the discussion of parsing that is first introduced in Chapter 3 and brings
in the concept of programming language semantics with discussions of program
verification, denotational semantics, and the lambda calculus with an introduction
to undecidability and NP completeness. This provides the reader with an overview
of more advanced courses in the programming language, software engineering, and
computational theory areas of computer science. For this material, prior experience
with the predicate calculus and mathematical logic would help. In addition, Chapter
9 addresses current issues in parallel programming, provides an introduction to
current research in hardware and software, and suggests what are likely to be the
programming language design issues in the future.

While compiler writing was at one time a central course in the computer science
curriculum, there is increasing belief that not every computer science student needs
to be able to develop a compiler; such technology should be left to the compiler
specialist, and the “hole” in the schedule produced by deleting such a course might
be better utilized with courses such as software engineering, database engineering, or
other practical use of computer science technology. However, we believe that aspects
of compiler design should be part of the background for all good programmers.
Therefore, a focus of this book is how various language structures are compiled,
and Chapter 3 provides a fairly complete summary of parsing issues.

The nine chapters of Part I emphasize programming language examples in FOR-
TRAN, Ada, C, Pascal, ML, LISP, Prolog, C++, and Smalltalk. Additional exam-
ples are given in PL/I, SNOBOL4, APL, BASIC, and COBOL, as the need arises.
The sections of Part II, however, are organized around individual languages. Each
section describes a different language and shows how that language provides the
features described in the first nine chapters of Part I. The goal is to present each
language as a consistent implementation of the software architecture given in the
first half of the book. While certainly not a reference manual for each language,
" each section should provide enough information for the student to solve interesting

Preface vil

class problems in each of those languages without the need to purchase separate
language reference manuals. (However, having a few of those around for your local
implementation is certainly a big help.)

While discussing all of the languages briefly during the semester is appropriate,
we do not suggest that the programming parts of this course consist of problems
in each of these languages. We think that would be too superficial in one course.
Nine programs in nine different languages would be quite a chore and provide the
student with little in-depth knowledge of any of these languages. We assume that
each instructor will choose three or four of the Part II languages and emphasize
those.

All examples in this book, except for the most trivial, were tested on an appro-
priate translator; however, as we clearly point out in Section 1.3.3, correct execution
on our local system is no guarantee that the translator is processing programs ac-
cording to the language standard. We are sure that Mr. Murphy is at work here,
and some of the “trivial” examples may have errors. If so, we apologize for any
problems that may cause.

To summarize, our goal in producing this third edition was to:

e Provide an overview of the key paradigms used in developing modern pro-
gramming languages;

e Highlight several languages, which provide those features, in sufficient detail
to permit programs to be written in each language demonstrating those features;

e Explore the implementation of each language in sufficient detail to provide
the programmer an understanding of the relationship between a source program
and its execution behavior;

e Provide sufficient formal theory to show where programming language design
fits within the general computer science research agenda; and

e Provide a sufficient set of problems and alternative references to allow stu-
dents the opportunity to extend their knowledge of this important topic.

We gratefully acknowledge the valuable comments received from Henry Bauer,
Hikyoo Koh, John Mauney, and Andrew Oldroyd on earlier drafts of this manuscript
and from the 118 students of CMSC 330 at the University of Maryland during the
Spring, 1995 semester who provided valuable feedback on improving the presenta-
tion contained in this book.

Perhaps 70% of the text has been rewritten between edition 2 and edition 3. We
believe the new edition is a considerable improvement over the previous version of
this book. We hope that you agree.

Terry Pratt
Greenbelt, Maryland

Marv Zelkowitz
College Park, Maryland

Contents

Part I. Concepts 1
1 The Study of Programming Languages 2
1.1 Why Study Programming Languages? 2
1.2 A Short History of Programming Languages 5
1.2.1 Development of Early Languages 5

1.2.2 Role of Programming Languages 9

1.3 What Makes a Good Language? 12
1.3.1 Attributes of a Good Language 12

1.3.2 Application Domains 16

1.3.3 T.anguage Standardization 19

1.4 Effects of Environments on Languages 23
1.4.1 Batch-Processing Environments 23

1.4.2 Interactive Environments 24

1.4.3 Embedded System Environments 25

1.4.4 Programming Environments 26

1.4.5 Environment Frameworks 30

1.5 Suggestions for Further Reading 30
1.6 Problems 31

2 Language Design Issues 33
2.1 The Structure and Operation of a Computer 33
2.1.1 The Hardware of the Computer 35

2.1.2 Firmware Computers 39

2.1.3 Translators and Software-Simulated Computers 41

Contents

2.2

2.3
2.4
2.5

Virtual Computers and Binding Times

2.2.1 Syntax and Semantics

2.2.2 Virtual Computers and Language Implementations
2.2.3 Hierarchies of Computers

2.2.4 Binding and Binding Time

Language Paradigms

Suggestions for Further Reading

Problems

Language Translation Issues

3.1

3.2

3.3

3.4
3.5

Programming Language Syntax

3.1.1 General Syntactic Criteria

3.1.2 Syntactic Elements of a Language
3.1.3 Overall Program-Subprogram Structure
Stages in Translation

3.2.1 Analysis of the Source Program
3.2.2 Synthesis of the Object Program
Formal Translation Models

3.3.1 BNF Grammars

3.3.2 Finite-State Automata

3.3.3 Pushdown Automata

3.3.4 Efficient Parsing Algorithms

3.3.5 Semantic Modeling

Suggestions for Further Reading
Problems

Data Types

4.1

4.2

Properties of Types and Objects

4.1.1 Data Objects, Variables, and Constants
4.1.2 Data Types

4.1.3 Specification of Elementary Data Types
4.1.4 Implementation of Elementary Data Types
4.1.5 Declarations

4.1.6 Type Checking and Type Conversion
4.1.7 Assignment and Initialization
Elementary Data Types

4.2.1 Numeric Data Types

4.2.2 Enumerations

45
46
47
48
50
55
59
59

61
61
62
66
69
72
74
7
79
80
89
93
95
98
102
103

107
107
107
112
113
117
119
121
127
130
130
137

CONTENTS

xi

4.3

4.4
4.5

4.2.3 Booleans

4.2.4 Characters

4.2.5 Internationalization

Structured Data Types

4.3.1 Structured Data Objects and Data Types

4.3.2 Specification of Data Structure Types

4.3.3 Implementation of Data Structure Types

4.3.4 Declarations and Type Checking for Data Structures
4.3.5 Vectors and Arrays

4.3.6 Records

4.3.7 Lists

4.3.8 Character Strings

4.3.9 Pointers and Programmer-Constructed Data Objects
4.3.10 Sets

4.3.11 Executable Data Objects

4.3.12 Files and Input-Output

Suggestions for Further Reading

Problems

5 Abstraction I: Encapsulation

5.1

5.2

5.3

5.4

Abstract Data Types

5.1.1 Evolution of the Data Type Concept

5.1.2 Information Hiding

Encapsulation by Subprograms

5.2.1 Subprograms as Abstract Operations

5.2.2 Subprogram Definition and Invocation

5.2.3 Subprogram Definitions as Data Objects

Type Definitions

5.3.1 Type Equivalence

5.3.2 Type Definitions with Parameters

Storage Management

5.4.1 Major Run-Time Elements Requiring Storage

5.4.2 Programmer- and System-Controlled Storage Management
5.4.3 Static Storage Management

5.4.4 Stack-Based Storage Management

5.4.5 Heap Storage Management: Fixed-Size Elements
5.4.6 Heap Storage Management: Variable-Size Elements

139
140
141
142
142
143
145
149
151
160
167
172
175
178
181
181
187
187

195
196
197
198
200
200
203
208
209
211
215
216
217
219
220
221
223
231

Contents

xii
5.5 Suggestions for Further Reading 234
5.6 Problems 234
6 Sequence Control 238
6.1 Implicit and Explicit Sequence Control 238
6.2 Sequencing with Arithmetic Expressions 239
6.2.1 Tree-Structure Representation 240
6.2.2 Execution-Time Representation 248
6.3 Sequencing‘with Nonarithmetic Expressions 253
6.3.1 Pattern Matching 253
6.3.2 Unification 257
6.3.3 Backtracking 263
6.4 Sequence Control Between Statements 264
6.4.1 Basic Statements 264
6.4.2 Structured Sequence Control 270
6.4.3 Prime Programs 279
6.5 Suggestions for Further Reading 284
6.6 Problems 284
7 Subprogram Control 286
7.1 Subprogram Sequence Control 286
7.1.1 Simple Call-Return Subprograms 288
7.1.2 Recursive Subprograms 292
7.2 Attributes of Data Control 294
7.2.1 Names and Referencing Environments 295
7.2.2 Static and Dynamic Scope 300
7.2.3 Block Structure 303
7.2.4 Local Data and Local Referencing Environments 305
7.3 Shared Data in Subprograms 311
7.3.1 Parameters and Parameter Transmission 312
7.3.2 Explicit Common Environments 330
7.3.3 Dynamic Scope 333
7.3.4 Static Scope and Block Structure 337
7.4 Suggestions for Further Reading 344
7.5 Problems 345
8 Abstraction II: Inheritance 350
8.1 Abstract Data Types Revisited 351

CONTENTS xiii
8.2 Inheritance 358
8.2.1 Derived Classes: 359
8.2.2 Methods 362
8.2.3 Abstract Classes 364
8.2.4 Objects and Messages 366
8.2.5 Abstraction Concepts 370

8.3 Polymorphism 372
8.4 Suggestions for Further Reading 373
8.5 Problems 374
9 Advances in Language Design 375
9.1 Variations on Subprogram Control 377
9.1.1 Exceptions and Exception Handlers 377
9.1.2 Coroutines 382
9.1.3 Scheduled Subprograms 383
9.1.4 Nonsequential Execution 385

9.2 Parallel Programming 385
9.2.1 Concurrent Execution 387
9.2.2 Guarded Commands 388
9.2.3 Tasks 391
9.2.4 Synchronization of Tasks 393

9.3 Formal Properties of Languages 404
9.3.1 Chomsky Hierarchy 405
9.3.2 Undecidability 408
9.3.3 Algorithm Complexity 413

9.4 Language Semantics 416
9.4.1 Denotational Semantics 416
9.4.2 Program Verification 423
9.4.3 Algebraic Data Types 428
9.4.4 Resolution 431

9.5 Hardware Developments 433
9.5.1 Processor Design 433
9.5.2 System Design 436

9.6 Software Architecture 438
9.6.1 Persistent Data and Transaction Systems 438
9.6.2 Networks and Client/Server Computing 440
9.6.3 Desktop Publishing 441

Contents

9.6.4

Programming Language Trends

9.7 Suggestions for Further Reading
9.8 Problems

Part II. Paradigms and Languages

10 Simple Procedural Languages
10.1 FORTRAN

10:1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8
102 C
10.2.1
10.2:2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

10.3 Suggestions for Further Reading
1014 Problems

11 Block-Structured Procedural Languages

11.1 Pascal

11.1.1
11.1.2
11.1.3
11.14
11.1.5
11.1.6
11.1.7
11.1.8

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

444
444
445

449

451
451
452
452
453
457
462
468
470
471
471
472
472
472
477
482
485
489
489
490
490

492
492
493
494
494
498
505
509
516
516

CONTENTS

Xv

11.2 Suggestions for Further Reading
11.3 Problems

12 Object-Based Languages

12.1

12.2

12.3

Ada
12:1.1
12.1.2
12.1.3
12.1.4
12.1.5
12(1:6
12.1.7
12.1.8
C++
12:2:1
12:2.2
12.2.3
12.24
12.2:5
12.2.6
12.2.7
12.2:8

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

Smalltalk

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.3.8

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

12.4 Suggestions for Further Reading
12.5 Problems

13 Functional Languages

13.1

LISP
13.1.1
13.1.2

History
Hello World

518
518

520
520
520
522
522
527
536
540
547
549
550
550
551
551
556
561
562
564
564
565
565
566
566
570
572
574
577
577
578
579

581
581
582
582

xvi Contents
13.1.3 Brief Overview of the Language 583

13.1.4 Data Objects 587

13.1.5 Sequence Control 589

13.1.6 Subprograms and Storage Management 593

13.1.7 Abstraction and Encapsulation 599

13.1.8 Language Evaluation 599

13.2 ML 600
13.2.1 History 600

13.2.2 Hello World 600

13.2.3 Brief Overview of the Language 601

13.2.4 Data Objects 603

13.2.5 Sequence Control 607

13.2.6 Subprograms and Storage Management 611

13.2.7 Abstraction and Encapsulation 613

13.2.8 Language Evaluation 616

13.3 Suggestions for Further Reading 616
13.4 Problems 617

14 Logic Programming Languages 620
14.1 Prolog 620
14.1.1 History 621

14.1.2 Hello World 621

14.1.3 Brief Overview of the Language 622

14.1.4 Data Objects 625

14.1.5 Sequence Control 626

14.1.6 Subprograms and Storage Management 628

14.1.7 Abstraction and Encapsulation 629

14.1.8 Language Evaluation 630

14.2 Suggestions for Further Reading 630
14.3 Problems 630
References 632
Index 641

Part |

Concepts

In Part I we study the features that make up programming languages. We ad-
dress the following issues: What are the features that form a programming lan-
guage? How do they interact? How are they implemented? What are the various
paradigms that describe program execution? We give examples in several languages
that demonstrate answers to each of these questions.

Later in Part II, we look at each language individually and describe how that
particular language addresses the above questions.

Chapter 1

The Study of Programming
Languages

Any notation for the description of algorithms and data structures may be termed
a programming language; however, in this book we are mostly interested in those
that are implemented on a computer. The sense in which a language may be
“implemented” is considered in the next two chapters. In the remainder of Part I the
design and implementation of the various components of a language are considered
in detail. The goal is to look at language features, independent of any particular
language, and give examples from a wide class of commonly used languages.

In Part II of this book, we illustrate the application of these concepts in the
design of nine major programming languages and their dialects: Ada, C, C++,
FORTRAN, LISP, ML, Pascal, Prolog, and Smalltalk. In addition, we also give brief
summaries about other languages that have made an impact on the field. This list
includes APL, BASIC, COBOL, Forth, PL/I, and SNOBOL4. Before approaching
the general study of programming languages, however, it is worth understanding
why there is value in such a study to a computer programmer.

1.1 WHY STUDY PROGRAMMING LANGUAGES?

Hundreds of different programming languages have been designed and implemented.
Even in 1969, Sammet [SAMMET 1969] listed 120 that were fairly widely used, and
many others have been developed since then. Most programmers, however, never
venture to use more than a few languages, and many confine their programming
entirely to one or two. In fact, practicing programmers often work at computer
installations where use of a particular language such as C, Ada, or FORTRAN is
required. What is to be gained, then, by study of a variety of different languages
that one is unlikely ever to use?

There are excellent reasons for such a study, provided that you go beneath the
superficial consideration of the “features” of languages and delve into the underlying
design concepts and their effect on language implementation. Six primary reasons

2

Sec. 1.1. Why Study Programming Languages? 3

come immediately to mind:

1. To improve your ability to develop effective algorithms. Many languages pro-
vide features that when used properly are of benefit to the programmer but
when used improperly may waste large amounts of computer time or lead the
programmer into time-consuming logical errors. Even a programmer who has
used a language for years may not understand all of its features. A typical
example is recursion, a handy programming feature that when properly used
allows the direct implementation of elegant and efficient algorithms. But used
improperly, it may cause an astronomical increase in execution time. The
programmer who knows nothing of the design questions and implementation
difficulties that recursion implies is likely to shy away from this somewhat
mysterious construct. However, a basic knowledge of its principles and imple-
mentation techniques allows the programmer to understand the relative cost
of recursion in a particular language and from this understanding to determine
whether its use is warranted in a particular programming situation.

New programming methods are constantly being introduced in the literature.
The best use of concepts like object-oriented programming, logic program-
ming, or concurrent programming, for example, requires an understanding of
languages that implement these concepts.

2. To improve your use of your existing programming language. By understand-
ing how features in your language are implemented, you greatly increase your
ability to write efficient programs. For example, understanding how data such
as arrays, strings, lists, or records are created and manipulated by your lan-
guage, knowing the implementation details of recursion, or understanding how
object classes are built allows you to build more efficient programs consisting
of such components.

3. To increase your vocabulary of useful programming constructs. Language
serves both as an aid and a constraint to thinking. People use language
to express thoughts, but language serves also to structure how one thinks,
to the extent that it is difficult to think in ways that allow no direct expres-
sion in words. Familiarity with a single programming language tends to have
a similar constraining effect. In searching for data and program structures
suitable to the solution of a problem, one tends to think only of structures
that are immediately expressible in the languages with which one is familiar.
By studying the constructs provided by a wide range of languages, and the
manner in which these constructs are implemented, a programmer increases
his programming “vocabulary.” The understanding of implementation tech-
niques is particularly important, because in order to use a construct while
programming in a language that does not provide it directly, the program-
mer must provide his own implementation of the construct in terms of the
primitive elements actually provided by the language. For example, the sub-
program control structure known as coroutines is useful in many programs,

