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Preface

This third edition of Programming Languages: Design and Implementation con-
tinues the tradition developed in the first two editions to describe programming
language design by means of the underlying software and hardware architecture
that is required for execution of programs written in those languages. This pro-
vides the programmer with the ability to develop software that is both correct and
efficient in execution. In this new edition, we continue this approach, as well as
improve upon the presentation of the underlying theory and formal models that
form the basis for the decisions made in creating those languages.

Programming language design is-still a very active pursuit in the computer
science community as languages are “born,” “age,” and eventually “die.” This third
edition represents the vital languages of the mid-1990s. Chapters on COBOL, PL/1I,
SNOBOL4, and APL have been dropped. Discussions on C, C++, ML, Prolog, and
Smalltalk have been added to reflect the evolution of programming language design
and the emergence of new paradigms within the community. Pascal is starting to
age, and Ada and FORTRAN have been renewed with new standards, Ada 95 and
FORTRAN 90, respectively. It is interesting to speculate as to whether any of these
languages will be in future editions of books such as this one. For both of us, the
deletion of SNOBOL4 was a considerable loss. It is one of the most interesting and
powerful languages ever developed, although it still lives on as “shareware” in PCs.

At the University of Maryland, a course has been taught for the past 20 years
that conforms to the structure of this book. For our Jjunior-level course, we assume
the student already knows Pascal and C from earlier courses. We then emphasize
ML, Prolog, C++, and LISP, as well as include further discussions of the implemen-
tation aspects of C and Pascal. The study of C++ furthers the students’ knowl-
edge of procedural languages with the addition of object oriented classes, and the
inclusion of LISP, Prolog, and ML provide for discussions of different programming
paradigms. Replacement of one or two of these by FORTRAN, Ada, or Smalltalk
would also be appropriate.

It is assumed that the reader is familiar with at least one procedural language,
generally C, FORTRAN, or Pascal. For those institutions using this book at a lower
level, or for others wishing to review prerequisite material to provide a framework for
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discussing programming language design issues, Chapters 1 and 2 provide a review
of material needed to understand later chapters. Chapter 1 is a general introduction
to programming languages, while Chapter 2 is a brief overview of requirements for
programming languages.

The theme of this book is language design and implementation issues. * Part I
forms the core of an undergraduate course in programming languages. Chapters 3
through 8 are the basis for this course by describing the underlying grammatical
model for programming languages and their compilers (Chapter 3), elementary data
types (Chapter 4), encapsulation (Chapter 5), statements (Chapter 6), procedure
invocation (Chapter 7), and inheritance (Chapter 8), which are the central con-
cerns in language design. Examples of these features are described in a variety of
languages and typical implementation strategies are discussed.

The topics in this book cover the 12 knowledge units recommended by the 1991
ACM/IEEE Computer Society Joint Curriculum Task Force for the programming
languages subject area [TUCKER et al. 1991]. For institutions using this book
at a higher level or those wishing to address more advanced topics, Chapter 9
continues the discussion of parsing that is first introduced in Chapter 3 and brings
in the concept of programming language semantics with discussions of program
verification, denotational semantics, and the lambda calculus with an introduction
to undecidability and NP completeness. This provides the reader with an overview
of more advanced courses in the programming language, software engineering, and
computational theory areas of computer science. For this material, prior experience
with the predicate calculus and mathematical logic would help. In addition, Chapter
9 addresses current issues in parallel programming, provides an introduction to
current research in hardware and software, and suggests what are likely to be the
programming language design issues in the future.

While compiler writing was at one time a central course in the computer science
curriculum, there is increasing belief that not every computer science student needs
to be able to develop a compiler; such technology should be left to the compiler
specialist, and the “hole” in the schedule produced by deleting such a course might
be better utilized with courses such as software engineering, database engineering, or
other practical use of computer science technology. However, we believe that aspects
of compiler design should be part of the background for all good programmers.
Therefore, a focus of this book is how various language structures are compiled,
and Chapter 3 provides a fairly complete summary of parsing issues.

The nine chapters of Part I emphasize programming language examples in FOR-
TRAN, Ada, C, Pascal, ML, LISP, Prolog, C++, and Smalltalk. Additional exam-
ples are given in PL/I, SNOBOL4, APL, BASIC, and COBOL, as the need arises.
The sections of Part II, however, are organized around individual languages. Each
section describes a different language and shows how that language provides the
features described in the first nine chapters of Part I. The goal is to present each
language as a consistent implementation of the software architecture given in the
first half of the book. While certainly not a reference manual for each language,
" each section should provide enough information for the student to solve interesting
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class problems in each of those languages without the need to purchase separate
language reference manuals. (However, having a few of those around for your local
implementation is certainly a big help.)

While discussing all of the languages briefly during the semester is appropriate,
we do not suggest that the programming parts of this course consist of problems
in each of these languages. We think that would be too superficial in one course.
Nine programs in nine different languages would be quite a chore and provide the
student with little in-depth knowledge of any of these languages. We assume that
each instructor will choose three or four of the Part II languages and emphasize
those.

All examples in this book, except for the most trivial, were tested on an appro-
priate translator; however, as we clearly point out in Section 1.3.3, correct execution
on our local system is no guarantee that the translator is processing programs ac-
cording to the language standard. We are sure that Mr. Murphy is at work here,
and some of the “trivial” examples may have errors. If so, we apologize for any
problems that may cause.

To summarize, our goal in producing this third edition was to:

e Provide an overview of the key paradigms used in developing modern pro-
gramming languages;

e Highlight several languages, which provide those features, in sufficient detail
to permit programs to be written in each language demonstrating those features;

e Explore the implementation of each language in sufficient detail to provide
the programmer an understanding of the relationship between a source program
and its execution behavior;

e Provide sufficient formal theory to show where programming language design
fits within the general computer science research agenda; and

e Provide a sufficient set of problems and alternative references to allow stu-
dents the opportunity to extend their knowledge of this important topic.

We gratefully acknowledge the valuable comments received from Henry Bauer,
Hikyoo Koh, John Mauney, and Andrew Oldroyd on earlier drafts of this manuscript
and from the 118 students of CMSC 330 at the University of Maryland during the
Spring, 1995 semester who provided valuable feedback on improving the presenta-
tion contained in this book.

Perhaps 70% of the text has been rewritten between edition 2 and edition 3. We
believe the new edition is a considerable improvement over the previous version of
this book. We hope that you agree.

Terry Pratt
Greenbelt, Maryland

Marv Zelkowitz
College Park, Maryland
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Part |

Concepts

In Part I we study the features that make up programming languages. We ad-
dress the following issues: What are the features that form a programming lan-
guage? How do they interact? How are they implemented? What are the various
paradigms that describe program execution? We give examples in several languages
that demonstrate answers to each of these questions.

Later in Part II, we look at each language individually and describe how that
particular language addresses the above questions.



Chapter 1

The Study of Programming
Languages

Any notation for the description of algorithms and data structures may be termed
a programming language; however, in this book we are mostly interested in those
that are implemented on a computer. The sense in which a language may be
“implemented” is considered in the next two chapters. In the remainder of Part I the
design and implementation of the various components of a language are considered
in detail. The goal is to look at language features, independent of any particular
language, and give examples from a wide class of commonly used languages.

In Part II of this book, we illustrate the application of these concepts in the
design of nine major programming languages and their dialects: Ada, C, C++,
FORTRAN, LISP, ML, Pascal, Prolog, and Smalltalk. In addition, we also give brief
summaries about other languages that have made an impact on the field. This list
includes APL, BASIC, COBOL, Forth, PL/I, and SNOBOL4. Before approaching
the general study of programming languages, however, it is worth understanding
why there is value in such a study to a computer programmer.

1.1 WHY STUDY PROGRAMMING LANGUAGES?

Hundreds of different programming languages have been designed and implemented.
Even in 1969, Sammet [SAMMET 1969] listed 120 that were fairly widely used, and
many others have been developed since then. Most programmers, however, never
venture to use more than a few languages, and many confine their programming
entirely to one or two. In fact, practicing programmers often work at computer
installations where use of a particular language such as C, Ada, or FORTRAN is
required. What is to be gained, then, by study of a variety of different languages
that one is unlikely ever to use?

There are excellent reasons for such a study, provided that you go beneath the
superficial consideration of the “features” of languages and delve into the underlying
design concepts and their effect on language implementation. Six primary reasons

2



Sec. 1.1. Why Study Programming Languages? 3

come immediately to mind:

1. To improve your ability to develop effective algorithms. Many languages pro-
vide features that when used properly are of benefit to the programmer but
when used improperly may waste large amounts of computer time or lead the
programmer into time-consuming logical errors. Even a programmer who has
used a language for years may not understand all of its features. A typical
example is recursion, a handy programming feature that when properly used
allows the direct implementation of elegant and efficient algorithms. But used
improperly, it may cause an astronomical increase in execution time. The
programmer who knows nothing of the design questions and implementation
difficulties that recursion implies is likely to shy away from this somewhat
mysterious construct. However, a basic knowledge of its principles and imple-
mentation techniques allows the programmer to understand the relative cost
of recursion in a particular language and from this understanding to determine
whether its use is warranted in a particular programming situation.

New programming methods are constantly being introduced in the literature.
The best use of concepts like object-oriented programming, logic program-
ming, or concurrent programming, for example, requires an understanding of
languages that implement these concepts.

2. To improve your use of your existing programming language. By understand-
ing how features in your language are implemented, you greatly increase your
ability to write efficient programs. For example, understanding how data such
as arrays, strings, lists, or records are created and manipulated by your lan-
guage, knowing the implementation details of recursion, or understanding how
object classes are built allows you to build more efficient programs consisting
of such components.

3. To increase your vocabulary of useful programming constructs. Language
serves both as an aid and a constraint to thinking. People use language
to express thoughts, but language serves also to structure how one thinks,
to the extent that it is difficult to think in ways that allow no direct expres-
sion in words. Familiarity with a single programming language tends to have
a similar constraining effect. In searching for data and program structures
suitable to the solution of a problem, one tends to think only of structures
that are immediately expressible in the languages with which one is familiar.
By studying the constructs provided by a wide range of languages, and the
manner in which these constructs are implemented, a programmer increases
his programming “vocabulary.” The understanding of implementation tech-
niques is particularly important, because in order to use a construct while
programming in a language that does not provide it directly, the program-
mer must provide his own implementation of the construct in terms of the
primitive elements actually provided by the language. For example, the sub-
program control structure known as coroutines is useful in many programs,



