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PREFACE

The latter part of the decade of the forties and the early part of the
decade of the fifties revealed the great fruits that were reaped in
quantum field theory through the progress and advancements made in
the area of perturbation theory. Great insights were gained in the prob-
lems of Quantum Electrodynamics, the problems of Mesodynamics, and
the questions attending the interactions of various particle fields. Many
problems that had previously been placed aside due to the inadequacies
of computational technique were approached anew with modern weapons
and experimentally verifiable numerical results were obtained. In areas
where exact numerical results were still beyond achievement, qualitative
information was obtained with regard to the nature of the solutions.

Stimulated by the success of the techniques of diagrammatic pertur-
bation theory, attention was turned to several of the persistent and
stalwart problems of statistical mechanics—problems that had been
described by Feynman as “cities under siege completely surrounded by
knowledge but themselves isolated and unassailable.” These included
superconductivity and superfluidity. In addition to these two questions,
the problems surrounding the elucidation of the behavior of nuclear
matter served to focus the attention of those who had previously been
concerned solely with quantum field theory upon the structure of statisti-
cal mechanics.

It was, however, the “two cities” of superfluidity and superconductivity
that stimulated the union of statistical mechanician and field theorist in
a revitalized attack upon the problem of a statistical mechanics of inter-
acting systems. This collection begins with a theoretical explanation of
the first of these “cities” and ends with an attempt at elucidation of the
second.

The student who first approaches this subject finds himself in a woods
of mathematical methods, manipulations, expansions, partial summations
and what appears to be a chaos of graphical abstractions. We hope that
this collection of papers may aid the student and research worker in
finding some order in the diversity of literature on this subject.
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The order of the papers is in the first instance historical and in the
second along the lines of methodology and the application of these
methods to various problems.

The first group of papers serves to introduce the reader to one of the
physical problems whose nature one seeks to elucidate and to the
method of perturbation theory that might serve as a tool in this respect.

The first paper in this collection is a contribution by R. P. Feynman
to the atomic theory of liquid helium. In order to compute the thermo-
dynamic behavior of helium at low temperatures it is necessary to know
the form of the energy spectrum for the low-lying states of the system.
The form of the energy spectrum and the nature of the low-lying states
were conjectured by Landau to be phonons and rotons. Landau went
further and gave a microscopic or atomic explanation of the so-called

" two-fluid model. In this first paper Feynman exhibits a variational wave
function for the helium system. From this wave function the shape of
the energy spectrum is deduced. Feynman discovers that the lowest
portion of the energy spectrum varies directly as the magnitude of the
momentum vector. The states for which this is true are called phonon
states. The states immediately above these are the states of quadratic
dependence upon the momentum. These are the roton states of Landau.

Feynman has thus adduced evidence for the general features of the
wave function of the helium system and theorectically derived the
Landau energy spectrum. This energy spectrum is then used to calculate
the thermodynamic properties of liquid helium. The parameters are
fitted by use of the experimentally determined structure function. Dis-
crepancies observed between the parameters so obtained and those same
parameters experimentally determined indicate the necessity for an
improved variational wave-function. The element that has been neglected
is the interaction between the quasi-particle configurations or excitations.
It is just these interactions that give rise to what has been termed the
backflow problem. This paper by Feynman serves as an excellent intro-
duction to the physical aspects of the liquid helium problem.

Although the arguments of Feynman and others give qualitative
physical insight into the many-body problem, what is yet called for is
an a prori deduction that begins with a specific model and proceeds to
rigorously derive these results quantitatively through mathematical
solution of the Schroedinger equation or some equivalent quantum
mechanical scheme. It is clear that this cannot be done except through
some type of perturbation theory.
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The next three papers serve to illustrate the development of a form
of perturbation theory capable of dealing with many-particle systems
in which the interactions are strong. These papers are by Brueckner,
Brueckner and Gammel, and Goldstone. They contain in essense a
derivation of the so-called linked cluster expansion theorem for the
ground state energy of a many-particle system. Calculation of the
ground state energy permits the deduction of the properties of nuclei
and the zero-temperature thermodynamic properties of many-particle
systems.

The “linked cluster” expansion is a manner of rearranging and collect-
ing terms in perturbation expansion in order to prevent the occurrence
of divergencies and to assess the contribution of all terms of a given
order. Goldstone has invented a graphical representation of the pertur-
bation terms. This is an adaptation of the diagrammatic method of
Feynmann to the many-body problem. It is discovered that the graphs
that contribute to the energy are closed graphs having no loose ends,
the contributions of the energy being additive in that one sums over
single graphs that are connected or completely linked and not in two
or more disconnected pieces.

These results can be achieved without the introduction of graphical
representation by applying partial summation techniques to the pertur-
bation expansion. By use of these techniques Brueckner shows that
there are no contributions to the energy of a many-particle system by
unlinked clusters. Brueckner shows by direct evaluation that, at least
up to fourth order, the contributions from unlinked terms cancel. In
the paper with Gammel the energy expansion is applied to numerically
calculate some of the properties of nuclear matter.

In the description of large quantum mechanical systems one is
naturally lead to the question of the behavior of the dynamical variables
characteristic of the system in the limit of large volume. Are the variables
volume dependent or volume independent in the asymptotic limit? An
important advance in understanding this problem was made by Hugen-
holtz. In adapting graphical techniques to a perturbation theory of the
resolvent operator, Hugenholtz was able to study the volume depend-
ence of the perturbed energy levels of a many-body system. Through
an analysis of diagrams that contribute to the matrix elements a com-
plete separation was made between the extensive and intensive con-
tributions of the perturbed energy and energy shifts for the problem
of a Fermi gas with two-body interaction. This paper by Hugenholtz
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gives a very good resumé of the techniques of Van Hove and also an
introduction to the use of diagrammatic techniques in partial sum-
mations.

The next paper by Bloch contains a derivation of the ground state
energy of an interacting quantum system. Developing a graphical repe-
sentation of the contributing terms, Bloch unfolds another form of the
linked cluster expansion. The formal similarity between the ground
state energy expansion and the expansion of the partition function at
finite temperature permits the construction of a linked cluster expansion
for the Helmholz free energy. This is explored in later papers by Bloch
and DeDominicis.

In spite of the appearance of numerous formal expansion schemes,
one appears to be still a long way from a numerical calculation of the
properties of liquid helium that is based upon a realistic interatomic
potential function. There has been progress, however, in obtaining
numerical results for a simplified model of helium that one obtains by
omitting the attractive nature of the interactor and considering only
the hard sphere personality of the interatomic potential. The hope is
that the qualitative character of these results will persist when the
attractive nature is introduced.

In a brilliant series of papers, the hard sphere boson system is studied
exhaustively by Huang and Yang, and by Lee, Huang, and Yang.
Using a pseudopotential method, the eigenvalues and eigenfunction are
calculated and from these the thermodynamics of the system follows.
The authors verify rigorously the conjectures of Landau and the quali-
tative deductions of Feynman.

Further studies by Wu reveal that one can extend the pseudopotential
method further to yield higher terms in the low-density expansion of
the ground state energy of a Bose system with hard sphere potential.
It is found by Wu that the expansion is not a power series in (a’p)%
but contains logarithmic terms as well. Limitations of the pseudo-
potential method are assessed by considerations relating to the three-
body problem. .

As is well known, in the latter day developments in quantum electro-
dynamics Green’s function methods played a dominant role. Realizing
the formal connection between Green’s function methods of quantum
field theory and the density matrix formulation of quantum statistics,
Matsubara formulated Feynman’s method for quantum statistical me-
chanics and was the first to introduce Green’s function methods for the non-
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zero case. In addition to the general reformulation of statistical mechanics
of interacting particles, application was made to the problem of electron-
phonon interaction. Apart from the historical value of having pointed
the way, this paper by Matsubara contains valuable theorems on con-
tractions and commutations of operators that are adaptations of theorems
derived previously by Anderson in quantum field theory.

In earlier papers of this volume one has seen the treatment of the
boson gas through diagonilization of model Hamiltonians. The next
paper in this volume contains a Green’s function treatment of the boson
system at zero temperature. Hugenholtz and Pines make essential use
of the Green’s function in the resolution of the difficulties associated
with the depletion of the zero momentum states. These authors exhibit
the general series expansion of the energy of the boson system. This
ground state energy calculation contains the next order term beyond
that of Lee and Yang and compares with the result of Wu.

The next step in understanding the boson problem is the generali-
zation of formalisms to the non-zero temperature case. Advancements
along these lines were seen earlier in the work of Bloch and DeDominicis;
however, the periodicities that characterize the mathematical properties
of the Green’s function present them as suitable objects for developing
the physics of a non-zero, temperature-interacting, many-body system.

Before pursuing the general theory of Green’s functions, we present
another example of their application to a physical problem. This is im-
plicitly contained in the works of Hubbard, who treats the behavior of
an electron gas in what has become a classical series of papers. The
fundamental work of Gell-Mann and Brueckner on the electron gas is
also presented for comparison with the Green’s function technique.

As is well known, in contrast to the case of the electron gas, the
interactions in nuclear matter are short range and strong. The next
series of papers by Klein and Prange reveal the power of the Green’s
function technique in the study of infinite fermion systems at zero
temperature. The generalization of the Green’s function to finite temper-
ature and their subsequent analytical properties are discussed.

The paper, Theory of Many-Particle Systems by Martin and Schwin-
ger, is the first of a series that attempts to treat the subject from a
unified nonperturbative point of view. The authors begin with a de-
velopment of thermodynamics within the framework of a generating
function defined over a complex field. A prescription is given for
extracting the density of states. This formal function also generates,
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via the method of steepest descents, expressions for the energy and
number. By consideration of the time rate of change of the momentum
density operator of a field Y(x) one arrives at the stress tensor for the
interacting field.The average diagonal element of the stress tensor is
identified as the pressure of the system. Contact is then made Wwith the
usual form of thermodynamics. Thus one is exposed to a very elegant
and self-contained exposition of thermodynamics developed within the
framework of a field theory and affected by the technique of a formal
generating function. This constitutes the mathematical description of
macroscopic properties.

The connection between the macroscopic properties and the micro-
scopic detail of a system is contained in the Green’s functions that
characterize the system. These functions are defined for a microcanonical
ensemble, however, in order to extract the properties of these functions
the authors introduce a generating Green’s function. The connection
between the generating function and the Green’s functions is indieated.
The usefulness of the generating Green’s functions lies in the deduc-
tion of the analytical properties of the temperature Green’s functions.
These generating functions have a periodicity in a kind of complex
temperature time space. This periodicity facilitates fourier analysis and
subsequent spectral representation. One of the more powerful and
useful points of this paper is the deduction of analytical properties
from the spectral representation. Martin and Schwinger indicate the
properties of the spectral function in the general case and exhibit it
for a noninteracting system. Spectral representations are studied for
Bose-Einstein, and Ferni-Dirac systems.

The remaining sections of this paper deal with nonequilibrium or
transport phenomena, determination of the Green’s functions and
formal solutions. To the reader interested in actually constructing the
Green’s functions for specific problems and the ultimate numerical
calculation for results, there is an extensive development of the various
approximation techniques that lend themselves to construction of these
functions. Among the methods given is a Hartree type of approximation
for the two particle Green’s functions. This type of decomposition is
generalized to higher n-particle Green’s functions and a n-particle
correlation function is introduced and studied. This particular approach
to the approximation of the Green’s functions has proven quite useful in
the study of n-particle systems. Martin and Kadanoff have treated the
problem of superconductivity through a study of the correlation func-
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tion. Other studies strengthened by this correlation function are by Puff,
in the problem of nuclear matter; and Parry, in the problem of Bose-
Einstein condensation of liquid helium. These are studies of systems at
equilibrium. A paper by McCumber studies the nonequilibrium problem
of sound propagation.

Although we feel that the ideas and techniques contained in the
Martin-Schwinger formalism have yet to be fully exploited, much progress
has been made. The aforementioned papers are taken as examples of
the Green’s function technique of Martin and Schwinger.

Kadanoff and Martin base their treatment of superconductivity upon
the analytical behavior of the correlation functions of a superconductor.
They exhibit these correlation functions within the Hartree approxi-
mation and the equations that they satisfy. Green’s functions for the
superconductor are found within this approximation. A study of the
temperature behavior of the poles of these reveals the mathematical
manifestations of the instability which leads to the superconducting
state. A correlation function description of the superconducting model
of BCS and Bogalubov is described and their results are obtained. Later
sections of this paper are concerned with the development of an approxi-
mation to the hierarchy of correlation functions that would satisfy the
requirement of gauge invariance. Lifetimes of the elementary excitations
and transport properties are treated in the last sections.

With this paper on the theory of superconductivity this volume comes
to an end. It is the hope of the editor that this choice of collected papers
may prove useful as a stepping stone for the reader to current develop-
ments in this rapidly moving area of physics.

Hagrry L. MorrisoNn
Colorado Springs, July, 1962
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VOLUME 94, NUMBER 2

Atomic Theory of the Two-Fluid Model of Liquid Helium

R. P. FEYNMAN
California Institwie of Technology, Pasadena, California
(Received January 11, 1954)

It is argued that the wave function representing an excitation in liquid helium should be nearly of the form
Z:f (r:)é, where ¢ is the ground-state wave function, f(r) is some function of position, and the sum is taken
over each atom i. In the variational principle this trial function minimizes the energy if f(r) =exp(ik-r),
the energy value being E(k) =A%*/2mS(k), where S(k) is the structure factor of the liquid for neutron
scattering. For small k, E rises linearly (phonons). For larger , S(k) has a maximum which makes a ring
in the diffraction pattern and a minimum in the E(k) vs k curve. Near the minimum, E(k) behaves as
A+-A*(k— ko)?/2u, which form Landau found agrees with the data on specific heat. The theoretical value
of A is twice too high, however, indicating need of a better trial function.

Excitations near the minimum are shown to behave in all essential ways like the rotons postulated by
Landau. The thermodynamic and hydrodynamic equations of the two-fluid model are discussed from this
view. The view is not adequate to deal with the details of the X transition and with problems of critical
flow velocity.

In a dilute solution of He* atoms in He?, the He® should move essentially as free particles but of higher
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effective mass. This mass is calculated, in an appendix, to be about six atomic mass units.

N a previous paper,' II, a physical argument was
given to interpret the fact that the excitations which
constitute the normal fluid in the two-fluid theory of
liquid helium were of two kinds. Those of lowest energy
are longitudinal phonons. The main result of that paper
was to give the physical reason for the fact that there
can be no other excitations of low energy. It was shown
that any others must have at least a minimum energy
A. No quantitative argument was given to obtain this
A nor to get an idea of the type of motion that such an
excitation represents. In this paper we expect to deter-
mine A and the character of the excitations.

The physical arguments of II are carried a step
further here to show that the wave function must be
of a certain form. The form contains a function whose
exact character is difficult to establish by intuitive
arguments. However, the function can be determined,
instead, from the variational principle as that function
which minimizes the energy integral.

THE WAVE FUNCTION FOR EXCITED STATES

In II the exact character of the lowest excitation was
not determined, but various possibilities were suggested.
One is the rotation of a small ring of atoms. A second
is the excitation of an atom in the local cage formed
around it by its neighbors. Still a third is analogous to
the motion of a single atom, with wave number % about
2x/a, where a is the atomic spacing, the other atoms

F16. 1. Typical configuration

O 083 O oo siows, 1t n xction

O e’ ' atoms such as the six in heavy

O Q O Q outline the wave function must

@) o O be plus if they are in the a posi-

O OD“' tions and minus if they are

O O O O O moygd to the intermediate B8
positions.

! R. P. Feynman, Phys. Rev. 91, 1291, 1301 (1953), hereafter
called I, II, respectively.

moving about to get out of the way in front and to close
in behind. It is not clear that they are really distinct
possibilities, for they might be merely different ways of
describing roughly the same thing.

We shall now try to find the form of the wave func-
tion which we would expect under the assumption that
one or another of these possibilities is correct. It will
turn out that all of the alternatives suggest the same
wave function, at least to within a function f(r), of
position r, which is determined only vaguely.

First, suppose that the excitation is the rotation of a
small ring of atoms. The number of atoms in the ring
is determined, according to II, by the condition that it
is the smallest ring that can be considered to be able
to turn easily as an independent unit in view of the
interatomic forces. For illustrative purposes we suppose
this means that there are six atoms in the ring.

We can describe the wave function for this excitation
by giving the amplitude associated with every configura-
tion of the atoms. Suppose Fig. 1 represents a typical
configuration, the six atoms of the ring in question (say
ring A) being indicated by heavy outline. We discuss
how the amplitude changes as we rotate this ring,
leaving the other atoms out of account for a moment.
Suppose the wave function is positive, say +1, if the
atoms are in the position shown by the full circles in
Fig. 1, which we arbitrarily call the a position. Suppose
all the six atoms move around together, and let the
ring turn about 60°. The atoms then appear again in a
position, although which is which has been changed,
so the wave function, by the Bose statistics, is still +1.
On the other hand, for a 30° rotation, if the atoms are
located as indicated in the figure by dotted circles
(B position), the wave function will change to —1 for
the first excited state. We need only discuss the real
part of the wave function—the imaginary part, if any,
can be dealt with in a similar way. (Actually since we
deal with an eigenstate of the energy, the real part of

262
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the wave function is an eigenfunction also.) For orienta-
tions intermediate between «, 8 the function is corre-
spondingly intermediate between +1 and —1, but to
simplify the remarks we describe it for just the con-
figurations a, 8. The wave function for excitation of this
ring we call 4. It is 4-1 if the 4 ring is at @, and —1 if
at 8, and does not depend on how other rings of atoms
are oriented. We can describe this wave function as
follows. Consider a function of position r in space,
fa(r) which is +1/6 if r is at one of the six positions of
the centers of the atoms for the a position of ring 4, is
—1/6 if it is at a 8 position, and is zero if r is at any
other place in the liquid far from the 4 ring. Then
consider the quantity J_;f.(r;) where the sum is taken
over all the atoms, ¢, in the liquid. For a configuration
of the liquid for which there are atoms at the six «
positions the quantity is 41, while if six atoms are at
B position, it is —1. This suggests that we can write
Va=2sfa(ry).

Actually this is incomplete because it does not
correctly describe what happens if atoms in other parts
of the liquid move. If ring 4 is in the a position, we
wish the complete wave function to be +1 as far as this
is concerned, but to drop to zero if two atoms overlap
in other parts of the liquid, etc., just as for the ground
state. That is, we expect (disregarding normalization)

Ya=2ifa(r)o, 1)
where ¢ is the ground-state wave function, a function
of all the coordinates. This takes care of another matter
also. What happens if some atoms are on « and some
on ? This should be of very small amplitude because
we do not wish the atoms to overlap on account of the
repulsions. This is not correctly described by 3,7 (r),
but the ¢ factor does guarantee such a behavior. It is
small for such overlaps. Of course, if the ring contained
many atoms it could readjust just a little and the ¢
would not prevent, for example, all those near one side
of the ring being «, and those on the opposite side of the
ring being 8. We are not guaranteed that (1) will de-
scribe well the amplitude for such a configuration. In
fact, it wouldn’t be expected that a function of just one
variable could describe the motion of several atoms.
However, by the arguments of II the ring is supposed
to be small, in fact, so small that one part of the ring
cannot move independently of the rest. The ring is so
small that if one atom is at «, there cannot be a large
amplitude for finding atoms at 8 because of the inter-
atomic repulsions. This is represented in (1) by the
factor ¢ which falls if two atoms approach (see II for a
full description of the properties of ¢).

Not knowing the exact size and shape of the ring we
cannot say what the exact function f4(r) should be.
But at least we conclude in this case the excited-state
wave function is of the form

v=2:f(r)e, (2)

where f(r) is some function of position.
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We might try to improve (1) by noting that, of
course, the energy should be essentially the same if the
excited ring were somewhere else in the liquid, say at B.
The function

Ve=2 :f5(r:)e (3)

would describe this if fz(r) is 4+1/6 for r at some one
of the six & positions of some other ring B, and —1/6
for intermediate 8 positions, and zero elsewhere. Or we
could locate the ring at still another position, etc.
Any one atom might be thought of as belonging to more
than one ring. This produces a kind of interaction be-
tween adjacent rings. Because of this interaction, a
better wave function than (1) might be some linear
combination of these possibilities, say capa+cp¥s+ - -.
But we can still conclude that the form of the wave
function is given by (2), but now, with the function
f()=cafa(r)+cpfp(r)+---, for any linear combina-
tion of functions of the form (2) is still of this form.

If the lowest excited state which we seek were some-
thing like the excitation of a single atom in a cage
formed from its neighbors we would guess the wave
function to be of the form (2) also. Because there
would be a nodal plane across the cage, and we would
take f(r) to be positive if r is in the cage on one side of
the plane, and negative if on the other, and to fall off
to zero if r goes outside the cage. We do not care which
atom is in the cage so the sum on 7 is taken over all
atoms. Those which are outside the cage contribute
nothing to the sum, because f(r) is zero there. Further,
there is no appreciable amplitude for there being more
than one atom in the cage, because of the action of the
factor ¢ which is very small if the atoms penetrate each
other’s mutual potential. The ¢ also takes care of the
fact that the atoms in remote parts of the liquid behave
independently of what the excited atom is doing, and
act just as in the ground state. Further, linear combina-
tions, representing the alternatives that the excited cage
may be located at different places in the liquid, are
still of the form (2).

The third possibility was only crudely described in II.
It was noted that if the atoms were considered as
roughly confined to cells, then a wave function repre-
senting the motion of an atom A4 could be exp(ik-r4),
where r,4 is the position of 4, and it is assumed that as
A moves about, the other atoms move around to make
way for it so that the density is maintained roughly
uniform. This would correspond in the liquid to a wave
function

exp(ik-14)9, 4)

where ¢ is the ground-state wave functions of all the
atoms including 4. The factor ¢ does the equivalent of
keeping the atoms in cells so that the density is nearly
uniform no matter where ry is. For small k this is a
possibility only if atom 4 is different from the others
and does not obey the Bose statistics. If the symmetry
is taken into account then we must replace this by
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the symmetrical sum
2 iexp(ik-r))¢. ©)

If ¢ had no large scale density fluctuations this would
be no wave function at all, because there would be
just as many atoms in the region where exp(ik-r) is
positive as where it is negative and the sum cancels out.?
This is in concert with the idea that the wave function
cannot depend on where atom A is on a large scale. For
if A moves a long distance and the others readjust to
keep the density uniform, on a large scale (the scale
1/k for small &), the result is just equivalent to the
interchange of atoms and the wave function cannot
change as a consequence of the Bose symmetry. On the
other hand, if while the atom moves from one position
to that of its neighbor the wave function changes sign
and returns, then (5) may be allowed. That is, some-
thing like (5) with k of order 2r/a may be a possibility.
This again is of the form (2), but with f(r)=exp(ik-r).
The argument just given for this alternative is ad-
mittedly not as complete as for the others, mainly
because the original idea of what the state is, was
based on such a crude model of atoms in cells. Insofar
as the idea can be carried over to the case of the trué
liquid perhaps we can say the form (5), or (2) will
represent it.

Since all the examples have led to the same form, we
might expect that a more general argument could be
made for the validity of (2). This is, in fact, possible
starting from the general argument given in II to show
why the excited states, other than phonons, can be
expected to have an excitation. It was pointed out
there that the excited-state function y must be orthog-
onal to the ground state. For some configuration, say
a, of the atoms it acquires its maximum positive value.
Then it will be negative for some other, say 8, which
represents some stirring from the a configuration with-
out change of large scale density (to avoid phonon
states). But stirring reproduces a configuration nearly
like a although with some atoms interchanged. Thus it
is hard to get the configuration 8 to be very far (in con-
figuration space) from a to keep the gradient of y small
in going from a to B.

Fic. 2. In general the lowest
excitation energy results if the
configuration of atoms (solid
circles) for which the wave
function is most positive is as
far as possible from that
(dotted circles, 8) for which it
is most negative. All the 8 posi-

tions must be as far as possible
from a positions, therefore.

* We shall see later that (3), for small k, is actually a satis-
factory wave function because ¢ does have the long wave density
variations of the zero point motion of the sound field. We are
trying to get excited states orthogonal to phonon states, and (5)
for small k is not orthogonal. It is, in fact, just the wave function
for such a phonon state. This is discussed later.

FEYNMAN

The lowest state would have the 8 configuration as
far as possible from a. This means that in 8 as many
atoms as possible are moved from sites (call them a
positions) occupied by atoms in a. Hence 8 must be a
configuration in which the atoms occupy sites (8
positions) which are placed as well as possible between
the a positions. (See Fig. 2.) In all these configurations,
of course, the gross density must be kept uniform and
the atoms should be kept from overlapping, to avoid
high potential energy terms. If all atoms are on «
positions ¥ is maximum positive, and if all on 8, maxi-
mum negative. The transition is made as smoothly as
possible, and the kinetic energy thereby kept down, if
for other configurations the amplitude is taken to be
just the number of atoms on a positions minus the
number on S positions. The number is just X_:f(r)
where f(r) is a function which is +1 if r is at an «
position, and —1 if at a 8 position (and varies smoothly
in between these limits as r moves about). It is of course
a modulation to be taken on ¢, because we wish to give
small amplitude to configurations in which atoms over-
lap, etc., just as in the ground state. We are led, there-
fore, to (2). We can add the information that f(r) must
vary rapidly from plus to minus in distances of half an
atomic spacing. That is, we expect that f(r) will consist
predominently of Fourier components of wave number
k of absolute magnitude k=2x/a.

In the above argument it is not self-evident that
in going from the configuration of all atoms at a posi-
tions to that of all at 8, the amplitude must be just
linear in the number on @, N, minus the number of
B, Vs Perhaps some other smooth function of this
number, like sin[x(N.—Ng)/2N] might be better.
However, for the majority of possible configurations
Nq and Ny are nearly equal; in fact, for almost all,
(Na—Ng)/N is of order ==N—*. For such a small range
of the variable, the function, whatever it is, ought to
behave nearly linearly. If the wave function (2) is
wrong for a very few special configurations it will not
be important as we shall determine the energies by the
variational method, and the special configurations will
contribute only a small amount to the integrals because
of their small share of the volume in configuration space.

THE EXCITATION ENERGY

We have concluded that a function of the form (2)
should be a good approximation to the wave function
of the excited state.? The function f(r) is known only
imperfectly, however. We shall determine this function
f(r) by using the variational principle. The Hamiil-
tonian of the system is

H=—(#*/2m)L:V*+V —E,, (6)

s Wave functions of this form have been proposed before, for
example by A. Bijl, Physica 7, 869 (1940). However, an argument
smbﬁshing their validity for large k has been lacking, and it
has not been clear that functions of other forms might not give
much lower states.
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where V is the potential energy of the system, and we
measure energies above the ground-state energy E,
so E, is subtracted in (6). Therefore the ground-state
wave function satisfies

He=0. )
If we write

y=F¢, ®)

where F is a function of all the coordinates, then we
can verify, using (7), that

Hy=H(F¢)=— (W/2m)L(¢V*:F
+2Vip- ViF)=¢7 (—B/2m)L Vs (pnViF), (9)

where py(rV)=¢? is the density function for the ground
state, that is, the probability of finding the configura-
tion r¥ (we use V¥ to denote the set of coordinates r;
of all the atoms, and /*- - -d¥r to represent the integral
over all of them).

The energy values come from minimizing the integral,
(note ¢ is real)

8= f VA HYdr
= /2mE [OF)- @Ppwite, (10)
subject to the condition that the normalization integral,
g= f VHdNr= f F*Fpnd*r,

is fixed. The energy is then E= §/4.
In these expressions we must substitute

F=3f(r).

Consider the normalization integral first. It is

(12)

=55 f 4 f(xdwds.

For a fixed 7 and j we can integrate first over all of the
other atomic coordinates. This integral on py gives the
probability for finding the ith atom at r; and the jth
at r;; therefore

o= [P semenendn, 09

where p; is the probability of finding an atom at r, per
cm?, and at r; per cm®. These density functions can
be defined in general by

p(rr - n )= T f¢5 (ri—ny)
(14)

X8(r;—r1y)- - -8(rn—1:")pn (xV)d"r.

(11)
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For example, p;(r) is simply the chance of finding an
atomat ry’, for the liquid in the ground state. This is in-
dependent of r and is the number density p, in the
ground state. In the same way ps(ry,rz) can be written
as pop(ri—r;) where p is the probability of finding an
atom at ry per unit volume if one is known to be at r;.
Except near the liquid surface it is a function of only
the distance from r; to 1y, so (13) is

$=po f FE)@p—r)dndn,  (15)

The energy integral (10), with the substitution (12)
becomes

8= (/2m)%s f Vof* (8- Vof(r:)pwd™r.
The integral of px over all atomic coordinates except r;

gives a result involving only pi(r;)=po. Therefore we
have simply

8= po(2/2m) f VW Vimd  (16)

The best choice of f is that which minimizes the ratio
of (16) to (15). The variation with respect to f* gives
the equation

E f p(r1—13) f () Pra= — (K/2m)V*f (ry),

where the energy E is §/4. This has the solution

f(r)=expi(k-), (17)
with the energy value
E(k)=hr**/2mS (k), (18)

where S(k) is the Fourier transform of the correlation
function,

Sk)= f 2(s) exp(ik- . (19)

It is a function only of %, the magnitude of k.

It is readily verified that the solution is orthogonal
to the ground state if we exclude k=0. In fact, the
solutions for different values of k are orthogonal to each
other. This is because they all belong to different eigen-
values, %k, of the total momentum operator

=(h/DX:V,

as is directly verified from (2) with (17), taking P¢=0
since the ground state has zero total momentum.? Since

3 The argument is not rigorous because the momentum of the
entire liquid can be cha.nged without appreciable energy change
by moving the center o vxty This multiplies the wave functxon
by a factor like exp( —;in Z;r;). This function is so different
from (2), however, that the orthogonality is probably not
destroyed.



